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We analyze the formation of transient patterns and spin-spin correlations in quasi-two-dimensional spin-1
homogeneous Bose-Einstein condensates subjected to parametric driving of s-wave scattering lengths. The
dynamics for an initial ferromagnetic phase is identical to that of a scalar condensate. In contrast, intriguing
dynamics emerges for an initial polar state. For instance, we show that competition exists between density
patterns and spin-mixing dynamics. Dominant spin-mixing dynamics lead to a gas of polar core vortices and
antivortices of different spin textures. The density modes of the Bogoliubov spectrum govern the wave-number
selection of Faraday patterns. The spin modes determine the vortex density and the spatial dependence of
spin-spin correlation functions. When the density patterns outgrow the spin-mixing dynamics, the spin-spin
correlations decay exponentially with a correlation length of the order of a spin healing length; otherwise, they
exhibit a Bessel function dependence. Strikingly, competing instabilities within density and spin modes emerge
when both scattering lengths are modulated at different frequencies and appropriate modulation amplitudes.
The competing instability leads to a superposition of density patterns or correlation functions of two distinct
wavelengths. Our studies reveal that fine control over the driven dynamics can be attained by tuning interaction
strengths, quadratic Zeeman field, driving frequencies, and amplitudes.
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I. INTRODUCTION

Periodically driven Bose-Einstein condensates have been a
playground for studying various phenomena such as Faraday
patterns [1–17], dark-soliton lattices [18], dynamical localiza-
tion [19–21], spin freezing [22,23], matter-wave jets [24–27],
bright solitons [28,29], parametric instability [30], the gen-
eration of higher harmonics [31], etc. Faraday patterns
are observed experimentally in elongated condensates by
modulating either the trap frequencies [2,16] or the interac-
tions [32,33]. Such patterns offer critical insights into the
elementary excitations of condensates because the pattern size
is determined by the Bogoliubov mode resonant with half of
the driving frequency. A nonmonotonous excitation spectrum
can make the wave-number selection nontrivial [4,10].

Because of the spin degrees of freedom, spinor conden-
sates are ideal for exploring spin textures and magnetic
phases [34–36]. Interesting phenomena such as dynamical
stabilization [23], spin squeezing [37,38], Shapiro reso-
nances [39,40], parametric resonances [41], and the quantum
walk in momentum space [42,43] have been reported in driven
spinor condensates. In this paper, we analyze the formation
of transient density and spin patterns and spin-spin correla-
tions in a quasi-two-dimensional (Q2D) spin-1 homogeneous
condensate subjected to the parametric driving of s-wave
scattering lengths a0 and a2. We consider three cases where
either a0 or a2 is modulated individually or both are mod-
ulated simultaneously. Modulating either a0 or a2 leads to
modulations in both spin-independent and spin-dependent in-
teractions, affecting the dynamics of both spatial and spin
degrees of freedom.

As we show, the dynamics depends critically on the initial
states, and in particular, we consider ferromagnetic and polar
phases. A ferromagnetic phase is immune to the modulation of
a0 [44], whereas a2 modulation results in dynamics similar to
that of a driven scalar condensate [1,2]. In contrast, an initial
polar condensate exhibits nontrivial dynamics. Unstable Bo-
goliubov modes lead to both Faraday patterns and spin-mixing
dynamics. There exists an implicit competition between den-
sity modulations and spin-mixing dynamics. When the spin
mixing becomes dominant, a gas of polar core vortices (PCVs)
and antivortices of different spin textures are formed. Previous
studies on PCVs in Q2D spin-1 condensates were based on
the Kibble-Zurek mechanism via quenching of the quadratic
Zeeman field from nonpolar phases [37,45,46]. The unstable
momentum of the density mode quantifies the wave number of
the Faraday pattern, whereas that of the spin mode determines
the vortex density. At longer times, spin mixing disrupts the
selection of higher harmonics, which is highly in contrast to
the case of a scalar condensate. If the spin-dependent interac-
tions are stronger than the spin-independent ones, the Faraday
patterns outgrow the spin dynamics, and the spin-spin corre-
lations decay exponentially over distance with a correlation
length of the order of a spin healing length. In contrast, when
the spin dynamics are dominant, the spin-spin correlations are
governed by a Bessel function with an argument depending on
the momentum of the unstable spin mode.

Interestingly, when both scattering lengths are modu-
lated simultaneously with the same frequency, the mod-
ulation amplitudes can be chosen such that parametric
driving is present only in spin-independent or spin-dependent
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interactions. Hence, it is possible to excite the density or spin
mode alone during the initial stage of the dynamics. When
the modulation frequencies differ, a fascinating scenario of
competing instabilities appears. For instance, two momenta
from either the density or spin mode become equally unsta-
ble, causing competition between the two wavelengths. In a
classical fluid, two patterns with different symmetries coexist
in the onset of competing instabilities [47]. In our case, the
competing instabilities result in a superposition of Faraday
patterns or a correlation function with different wavelengths
whose amplitudes vary in time. To conclude, our studies re-
veal that the nature of driven dynamics in spinor condensates
can be controlled by tuning the interaction strengths, quadratic
Zeeman field, modulation frequencies, and amplitudes.

This paper is structured as follows. In Sec. II, we discuss
the setup and the mean-field equations describing a spin-1
condensate. The Mathieu-like equations governing the wave-
number selection of a driven spin-1 condensate are derived
in Sec. III. The dynamics of driven ferromagnetic and polar
phases, including the spin-spin correlations, are discussed in
Secs. IV and V, respectively. Competing instabilities of dif-
ferent density or spin modes are discussed in Sec. V C 1. The
experimental possibilities are discussed in Sec. VI. Finally, we
summarize and provide an outlook in Sec. VII.

II. SETUP AND MODEL

We consider a Q2D spin-1 homogeneous Bose gas in the
presence of a quadratic Zeeman field q. The Hamiltonian
describing the system is

Ĥ =
∫

dρ
∑

m=0,±1

ψ̂†
m(ρ)

(
− h̄2

2M
∇2

ρ

)
ψ̂m(ρ)

+ ĤZ + V̂I , (1)

where ψ̂m is the field operator which annihilates a boson in the
mth Zeeman state, M is the mass of a boson, and ρ = (x, y).
The quadratic Zeeman Hamiltonian is

ĤZ = q
∫

dρ
∑

m1,m2

ψ̂†
m1

(ρ)
(
F̂ 2

z

)
m1,m2

ψ̂m2 (ρ), (2)

and the interaction operator is

V̂I = 1

2

∫
dρ[c̃0 : n̂2(ρ) : +c̃1 : F̂

2
(ρ) :], (3)

where c̃0,1 = c0,1/
√

2π lz, with lz = √
h̄/mωz being the trans-

verse width of the condensate provided by the harmonic
potential Vt (z) = mω2

z z2/2, and n̂(ρ) = ∑ f
m=− f ψ̂†

m(ρ)ψ̂m(ρ)
is the total density operator. The symbol : : denotes the normal
ordering that places annihilation operators to the right of the
creation operators. The components of the spin-density oper-
ator are

F̂ν∈x,y,z(ρ) =
∑
m,m′

( fν )mm′ψ̂
†
m(ρ)ψ̂m′ (ρ), (4)

with fν being the νth component of the spin-1 matri-
ces. The spin-independent and spin-dependent interaction
constants are c0 = (g0 + 2g2)/3 > 0 and c1 = (g2 − g0)/3,

respectively, with gF = 4π h̄2aF /m related to the scattering
length aF=0, 2 of the total spin-F channel.

At very low temperatures the system is described by
the coupled nonlinear Gross-Pitaevskii equations (NLGPEs),
where ψ̂m(ρ) is replaced by a c-number ψm(ρ),

ih̄
∂ψ1

∂t
=

[
− h̄2∇2

ρ

2M
+ q + c̃0n + c̃1Fz

]
ψ1 + c̃1F−√

2
ψ0, (5)

ih̄
∂ψ0

∂t
=

[
− h̄2∇2

ρ

2M
+ c̃0n

]
ψ0 + c̃1√

2
F+ψ1 + c̃1F−√

2
ψ−1,

(6)

ih̄
∂ψ−1

∂t
=

[
− h̄2∇2

ρ

2M
+ q + c̃0n − c̃1Fz

]
ψ−1 + c̃1F+√

2
ψ0,

(7)

where Fν = ∑
m,m′ ψ∗

m(fν )mm′ψm′ , n(ρ, t ) = ∑
m |ψm(ρ, t )|2,

and F± = Fx ± iFy. To study the modulation-induced
dynamics, we solve Eqs. (5)–(7) numerically, starting from
a homogeneous density embedded with a small noise in all
three components [37,46].

III. TIME MODULATION OF s-WAVE
SCATTERING LENGTHS

We consider a time-dependent a j (t ) = ā j[1 +
2α j cos(2ω jt )], where ā j is the mean scattering length,
α j is the modulation amplitude, and 2ω j is the driving
frequency. Scattering lengths can be periodically modulated
by Feshbach resonance [32,33,48] or using radio frequency
or microwave fields [49–52]. We consider three cases: (i)
a0 is time dependent, and a2 is constant, (ii) a0 is constant,
and a2 is time dependent, and (iii) both a0 and a2 are time
dependent. These cases can be implemented by independently
controlling the two scattering lengths [53]. The interaction
coefficients c̃0,1 for the three cases are

c̃0(t ) = c̄0 + (2α0ḡ0/3) cos(2ω0t ),

c̃1(t ) = c̄1 − (2α0ḡ0/3) cos(2ω0t )

for case (i),

c̃0(t ) = c̄0 + (4α2ḡ2/3) cos(2ω2t ),

c̃1(t ) = c̄1 + (2α2ḡ2/3) cos(2ω2t )

for case (ii), and

c̃0(t ) = c̄0 + (2α0ḡ0/3) cos(2ω0t ) + (4α2ḡ2/3) cos(2ω2t ),

c̃1(t ) = c̄1 − (2α0ḡ0/3) cos(2ω0t ) + (2α2ḡ2/3) cos(2ω2t )

for case (iii), where c̄0 = (ḡ0 + 2ḡ2)/3 and c̄1 = (ḡ2 − ḡ0)/3,
with ḡ j = 4π h̄2ā j/(M

√
2π lz ).

The homogeneous solution in the presence of modulation
is ψ(t ) = √

n̄ζ exp[−iθ (t )/h̄], where ψ(t ) = (ψ1, ψ0, ψ−1)T

and

θ (t ) =
∫ t

0
[n̄c̃0(t ′) + Ac̃1(t ′)]dt ′ + Bt, (8)

where A = [2n0(n1 + n−1) + F 2
z + 4n0

√
n1n−1]/n̄ and B =

q(n1 + n−1)/n̄, with Fz = n1 − n−1 and nm = n̄ζ 2
m. Now,
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we introduce

ψ(ρ, t ) = [
√

n̄ζ + w(t ) cos(k · ρ)]e−iθ (t )/h̄ (9)

in Eqs. (5)–(7), where w(t ) = (w1,w0,w−1)T is the am-
plitude of the modulations, and we linearize in w(t ).
Writing w(t ) = u(t ) + iv(t ), where u = (u1, u0, u−1)T and
v = (v1, v0, v−1)T are real-valued vectors, we obtain the two
first-order coupled differential equations:

−h̄
dv

dt
= (EkI+M1 +M2)u, (10)

h̄
du
dt

= (EkI+M1 +M3)v, (11)

where k = |k|, Ek = h̄2k2/2M, I is a 3 × 3 identity matrix,
and M1 is a time-independent diagonal matrix depending
only on the Zeeman field with elements (M1)11 = (M1)33 =
q − B and (M1)22 = −B. However,M2,3 depend on the ini-
tial spinor ψm and are real, interaction- and time-dependent
matrices. Equations (10) and (11) can be combined into a
Mathieu-like second-order differential equation depending on
the system parameters.

IV. FERROMAGNETIC PHASE

For an initial ferromagnetic phase with ζ = (1, 0, 0)T, the
matrix M2 is diagonal in form with elements (M2)11 =
2n̄[c̃0(t ) + c̃1(t )], (M2)22 = 0, and (M2)33 = −2n̄c̃1(t ), and
M3 has only one nonzero element, (M3)33 = −2n̄c̃1(t ). The
relevant Mathieu equation is

d2u1

dt2
+ 1

h̄2

[
ε2

k,1 + 4n̄Ekα2ḡ2 cos(2ω2t )
]
u1 = 0, (12)

where

εk,1 =
√

Ek[Ek + 2(c̄0 + c̄1)n̄] (13)

is the Bogoliubov dispersion describing the density excita-
tions [35]. The dynamical stability of the uniform ferromag-
netic phase demands c̄0 + c̄1 > 0 (real εk,1). Since Eq. (12) is
independent of α0, the ferromagnetic state is immune to the
parametric driving of a0. The reason is that periodic modula-
tion of a0 causes equal and out-of-phase oscillations in c̃0 and
c̃1, which cancel each other.

According to the Floquet theorem, the solutions of
Eq. (12) are u1(t ) = b(t ) exp(σ t ), where b(t ) = b(t + π/ω2)
and σ (k, ω2, α) is called the Floquet exponent. If Re(σ ) > 0,
the ferromagnetic state is dynamically unstable against the
formation of transient density modulations or Faraday patterns
[see insets in Fig. 1(a)]. The pattern size is determined by
the most unstable momentum ku, i.e., momentum for which σ

is the largest. For vanishing modulation amplitude (α2 → 0),
ku is determined by the resonance εk,1 = h̄ω2, and the corre-
sponding Floquet exponent is σ � n̄Ekuα2ḡ2/h̄2ω2 [3]. Since
εk,1 is a monotonously increasing function of k, ku increases
with ω2 [see the unstable momentum rings in Figs. 1(b)
and 1(c) for two different frequencies]. This implies that the
pattern size decreases monotonously with increasing driving
frequency ω2. At longer times, the higher harmonics (εk,1 =
jh̄ω2, with j = 2, 3, . . . ) become relevant, causing the emer-
gence of other rings of higher |k| in the momentum density,
thus heating and destroying the condensate [54,55].

(a)

(b) (c)

FIG. 1. Wave-number selection of an initial ferromagnetic
homogeneous phase for a2 modulation, c̄0n̄ = 0.3h̄ωz, c̄1n̄ =
−0.1h̄ωz, q = −0.3h̄ωz, and α2 = 0.4. (a) The most unstable mo-
mentum ku as a function of driving frequency ω2. The insets show the
numerical results of Faraday patterns. (b) and (c) The corresponding
condensate momentum density for ω2/ωz = 0.3 and ω2/ωz = 0.5 at
ωzt = 330 and ωzt = 250, respectively. C.D. stands for condensate
density, and in (b) and (c), the central peak at k = 0 is removed to
improve the visibility of the momentum rings.

V. POLAR PHASE

For the polar phase ζP = (0, 1, 0)T, the chemical potential
is μ2D = c̄0n̄, and we have

M2 = n̄

⎡
⎣c̃1(t ) 0 c̃1(t )

0 2c̃0(t ) 0
c̃1(t ) 0 c̃1(t )

⎤
⎦,

M3 = n̄c̃1(t )

⎡
⎣ 1 0 −1

0 0 0
−1 0 1

⎤
⎦.

We get the Mathieu-like equations

d2u0

dt2
+ 1

h̄2 Ek[Ek + 2n̄c̃0(t )]u0 = 0, (14)

d2u+
dt2

+ 1

h̄2 (Ek + q)[Ek + q + 2n̄c̃1(t )]u+ = 0, (15)

where u+ = u1 + u−1. Unlike the ferromagnetic case, both the
density and spin modes,

εk,0 =
√

Ek (Ek + 2c̄0n̄), (16)

εk,±1 =
√

(Ek + q)(Ek + q + 2c̄1n̄), (17)
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become important for the dynamics. εk,0 corresponds to
the density modulations (phonons) and the degenerate εk,±1

modes associated with the elementary process of (0, 0) +
(0, 0) ↔ (k,±1) + (−k,∓1). When q = 0 and c̄0 = c̄1, all
three modes are degenerate. The dynamical stability of the
homogeneous polar phase demands c̄0 > 0, q(q + 2c̄1n̄) � 0,
and q + c̄1n̄ � 0. Below we consider the three cases of modu-
lation. In the numerical calculations in Eqs. (5)–(7), the initial
polar phase is embedded with a noise field δ(ρ) populating
the vacuum modes in the limit q → ∞ based on the truncated
Wigner prescription [46,56],

δ(ρ) = 1√
V

∑
k

⎛
⎜⎝ α+1

k exp(ik · ρ)
α0

kuk exp(ik · ρ) + α0∗
k vk exp(−ik · ρ)

α−1
k exp(ik · ρ)

⎞
⎟⎠,

(18)

where V is the volume, αm
k are complex Gaussian random vari-

ables with zero mean and satisfy 〈αm∗
k αm′

k′ 〉 = (1/2)δmm′δkk′ ,
and the amplitudes are given by

uk =
√

Ek + c0n̄

2
√

Ek (Ek + 2c0n̄)
− 1

2
, (19)

vk =
√

1 − u2
k. (20)

We also found qualitatively similar results for the initial state

ψ(ρ, t = 0) =

⎛
⎜⎝ p+1 exp(iθ1)[

1 − p2
+1 − p2

−1

]
exp(iθ0)

p−1 exp(iθ−1)

⎞
⎟⎠, (21)

with a noise from a uniform distribution, where pα and θα are
random numbers with p±1 � 1.

A. a0 modulation

For a0 modulation, the Mathieu equations (14) and (15)
become

d2u0

dt2
+ 1

h̄2

[
ε2

k,0 + 4n̄Ekα0ḡ0

3
cos(2ω0t )

]
u0 = 0, (22)

d2u+
dt2

+ 1

h̄2

[
ε2

k,±1 − 4n̄(Ek + q)α0ḡ0

3
cos(2ω0t )

]
u+ = 0.

(23)

For a given ω0 in the limit α0 → 0, the resonances εk,0 = h̄ω0

and εk,±1 = h̄ω0 provide two unstable momenta k(0)
u and k(+)

u
with Floquet exponents σ (0) � n̄Ek(0)

u
α0ḡ0/3h̄2ω0 and σ (+) �

n̄(Ek(+)
u

+ q)α0ḡ0/3h̄2ω0. Using k(0)
u and k(+)

u obtained from
the resonance conditions, we rewrite the Floquet exponents
as

σ (0) = α0n̄ḡ0

3h̄2ω0

[√
(n̄c̄0)2 + h̄2ω2

0 − n̄c̄0
]
, (24)

σ (+) = α0n̄ḡ0

3h̄2ω0

[√
(n̄c̄1)2 + h̄2ω2

0 − n̄c̄1
]
. (25)

When c̄0 = c̄1, σ (0) = σ (+), and interestingly, σ (+) is indepen-
dent of the quadratic Zeeman field q, which has interesting
consequences, as we discuss later.

−80 0 80
x/lz

−80

0

80

y
/l

z

C
.
D

.

(a)

−80 0 80
x/lz

−80

0

80
×10−2

C
.
D

.

(b)

0 2.3 4.6 6.9 9.20.71 0.84 0.96 1.09 1.22

FIG. 2. Density patterns for a0 modulation on an initial polar
phase. The parameters are q = 0, c̄0n̄ = c̄1n̄ = 0.2h̄ωz, α0 = 0.4, and
ω0/ωz = 0.2 at ωzt = 600. The density pattern in (b) m = ±1 differs
from that of (a) m = 0. C.D. stands for condensate density.

1. Degenerate modes

When all three modes are degenerate (when q = 0 and
c̄1 = c̄0), k(0)

u = k(+)
u = ku, and σ (0) = σ (+), which implies

that both density and spin modes get populated simultane-
ously by periodic driving. The unstable density mode εk,0

leads to the formation of Faraday patterns [see Fig. 2(a)]
or, equivalently, the exponential growth of atoms with finite
momenta in the m = 0 component, shown as N0,k �=0 in Fig. 3.
The unstable εk,±1 modes initiate the population transfer from
m = 0 to m = ±1, leading to the spin dynamics seen in Fig. 3.
At the initial stage, the population in m = ±1 grows exponen-
tially at a rate determined by σ (+) and exhibits oscillations of
frequency 2ω0. Eventually, a density pattern also develops in
the m = ±1 components [see Fig. 2(b)].

The momentum density of m = 0 is shown in Fig. 4 at two
different instances. In the early stages of the pattern forma-
tion, the most unstable momenta are given by the resonance

FIG. 3. Population dynamics for a0 modulation and q = 0. Other
parameters are c̄0n̄ = c̄1n̄ = 0.2h̄ωz, α0 = 0.4, and ω0/ωz = 0.2.
The population in each component is Nm(t ) = ∫ |ψm(x, y, t )|2dxdy,
the total population N = ∑

m Nm, the population with k �= 0 in
m = 0 is N0,k �=0 = ∫

k �=0 dkxdky|ψ̃0(kx, ky, t )|2, and the
zero-momentum population in m = 0 is N0,k=0. The dash-dotted
lines show the exponential fit determined by the Floquet exponent,
and the solid lines are from the numerical calculations of NLGPEs.
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FIG. 4. The momentum density of the m = 0 component at
(a) ωzt = 300 and (b) ωzt = 650 for c̄0n̄ = c̄1n̄ = 0.2h̄ωz, α0 = 0.4,
and ω0/ωz = 0.2. The momentum ring in (a) and the primary one
in (b) are given by the resonance εk,0 = h̄ω0. Two higher harmonics
can also be seen in (b). C.D. stands for the condensate density, and
the central peak at k = 0 is removed to improve the visibility of the
momentum rings.

condition εk,0 = h̄ω0, which we mark by ku in Fig. 4(a).
Although the next leading unstable momenta come from the
second harmonics εk,0 = 2h̄ω0, there are also contributions
from processes in which a pair of atoms, each from m =
+1 and m = −1 with momenta of magnitudes (ku,−ku) or
(±ku,±ku), scatters into (+k,−k) or (k, k′) with |k + k′| =
2ku. All such k and k′ lead to a disk-shaped pattern in the
momentum space of the condensate wave function in addition
to the harmonics, but with lower amplitudes, as shown in
Fig. 4(b). At longer times, the condensate gets destroyed by
heating.

Magnetization dynamics. The initial polar condensate has
a null spin-density vector F. The spin-mixing dynamics in
Fig. 3 leads to the emergence of the spin textures shown in
Fig. 5(a). Strikingly, the velocity field of the transverse spin-
density vector F⊥(x, y) in Fig. 5(b) reveals the formation of
PCVs and antivortices [34,57,58]. They are marked by circles
in Figs. 5(a) and 5(b). The core of a PCV is filled with m = 0
atoms with no vorticity, and the surrounding m = +1 and
m = −1 atoms have opposite vorticities. Figure 5(c) shows
the time dependence of vortex density Nv/L2, where L2 is the
area of the numerical box we use. The vortex number Nv is
determined by computing the phase winding at the smallest
loops defined by the grid size. At t = 0, the initial random
noise in the m = ±1 components contributes to the vortex
number Nv , which eventually decays over time as the PCVs
materialize. Nv decreases until the number of PCVs reaches a
steady value N (PCV)

v and the decay rate is determined by σ (+).
Since the amplitude of the spin texture oscillates in time

with the driving frequency, Nv exhibits the same oscillations.
When the spin-texture amplitude is tiny, Nv becomes large
from the noise contribution. If the amplitude is sufficiently
large, the noise is overshadowed. Once Nv reaches a steady
value, the minima shown in the inset of Fig. 5(c) approxi-
mately provide us with the number of PCVs. Interestingly,
N (PCV)

v is determined by the unstable momentum ku, as shown
in Fig. 5(c), and as expected, it exhibits k2

u behavior. This im-
plies that the larger the modulation frequency is, the denser the
spin-vortex gas is. At longer times (σ (+)t > 16), we observed

−15 0 15
x/lz

−15

0

15

y
/l

z

(a)

−15 0 15
x/lz

−15

0

15

y
/l

z

(b)

0 5 10 15

σ(+)t

0.0

0.5

1.0

1.5

2.0

N
v
/L

2

(c)

ω0 = 0.1ωz

ω0 = 0.3ωz

ω0 = 0.5ωz

0.1 0.2 0.3 0.4 0.5

ω0/ωz

0.00

0.03

0.06

0.09

0.12
(d)

N
(PCV)
v /L2

const. × k2
u

FIG. 5. Spin textures for a0 modulation and q = 0. (a) The trans-
verse spin density F⊥(x, y) and (b) the velocity field of F⊥(x, y) =
(Fx, Fy ), i.e., �∇φ/| �∇φ|, where φ = arctan(Fx/Fy ) at ωzt = 670 or
σ (+)t = 14.74. Other parameters are the same as in Fig. 3. Both
vortices and antivortices are marked in (b). (c) The dynamics of the
vortex density Nv/L2, where L is the numerical box size, is obtained
by averaging over 10 realizations of noises. It decreases in time
and eventually saturates. (d) The saturated vortex density (before
the condensate is destroyed, taken around σ (+)t = 15) as a function
of driving frequency ω0, which exhibits a quadratic dependence on
the most unstable momentum. The latter is expected, considering the
Q2D nature of the condensate.
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FIG. 6. Spin-spin correlations for a0 modulation and q = 0.
(a) The transverse magnetization correlation Cx (ρ, t ) in the xy plane
and (b) the radial correlation function Cx,z(ρ ) at ωzt = 500. Other
parameters are the same as in Fig. 3. We see that Cx,y(ρ ) ∝ J0(kuρ )
and Cz(ρ ) ∝ J2

0 (kuρ ). The plots are obtained by taking an average of
results from 10 different realizations of initial noise.

that the m = 0 homogeneous condensate gets significantly
depleted, and PCVs disintegrate into independent gases of
vortices in the m = 1 and m = −1 components.

Further, we analyze the scaled spin-spin correlations,

Cα (ρ, t ) = 1

Nα

∫∫
dρ′Fα (ρ + ρ′, t )Fα (ρ′, t ), (26)

where α ∈ {x, y, z} and Nα = ∫∫
dρFα (ρ)2. Cx(ρ, t ) at an

instant well before the condensate is destroyed is shown
in Fig. 6(a). The radial correlations along the transverse
and longitudinal magnetization densities Cα (ρ) = (1/2π )∫ 2π

0 Cα (ρ)dθ are found to be governed by the Bessel function
J0(kuρ), where ρ = |ρ| and, in particular, Cx,y(ρ) ∝ J0(kuρ)
and Cz(ρ) ∝ J2

0 (kuρ) [see Fig. 6(b)]. Similar Bessel correla-
tions are predicted in spinor condensates subjected to quantum
quenches [45,56,59].

2. Nondegenerate modes

For q �= 0 or c̄1 �= c̄0, the degeneracy between the den-
sity (εk,0) and spin (εk,±1) modes is lifted, and consequently,

FIG. 7. The population dynamics for a0 modulation and q =
0. (a) c̄0n̄ = 0.2h̄ωz, c̄1n̄ = 4h̄ωz, α0 = 0.03, and ω0/ωz = 0.3.
(b) c̄0n̄ = 0.4h̄ωz, c̄1n̄ = 0.05h̄ωz, α0 = 0.25, and ω0/ωz = 0.1. In
(a) N0,k �=0 outgrows N±1, with the reverse in (b). The solid lines are
the numerical results, and dot-dashed lines are the exponential fit
provided by σ (0).

k(0)
u �= k(+)

u . First, we consider q = 0 and c̄1 �= c̄0. If σ (0)

and σ (+) are comparable, the dynamics remains qualita-
tively the same as in the case of degenerate modes. So we
consider the two extreme scenarios: c̄0 � c̄1 and c̄1 � c̄0.
For c̄0 � c̄1, the density mode is the soft one, and conse-
quently, σ (0) � σ (+). In that case, the Faraday pattern in
m = 0 forms well before the spin-mixing dynamics takes
place [see the dynamics of N0,k �=0 and N±1 in Fig. 7(a)]. The
initial growth of N0,k �=0 is determined by σ (0) [dot-dashed
line in Fig. 7(a)]. By the time the population transfer to
m = ±1 takes place, the homogeneous condensate in m =
0 is significantly altered and depleted, making our linear
stability analysis invalid. In contrast, for c̄0 � c̄1, N±1 out-
grows N0,k �=0 [see Fig. 7(b)], and the initial dynamics is
governed by σ (+). The spin dynamics leads to spin textures
and the formation of PCVs. The spin-spin correlations have
different behaviors for the two extreme cases. For c̄0 � c̄1,
Cx,y,z(ρ) decays exponentially (see Fig. 8) with a correla-
tion length of the order of a spin healing length, which is
proportional to 1/

√
c̄1n̄, whereas for c̄1 � c̄0, they exhibit
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FIG. 8. The radial transverse spin-spin correlation function
Cx (ρ ) for c̄0n̄ = 0.2h̄ωz, c̄1n̄ = 4h̄ωz, α0 = 0.03, and ω0/ωz = 0.3,
exhibiting exponential decay at the instant ωzt = 240. The dots are
obtained from the average of results from 10 different realizations of
initial noise. The solid line is an exponential fit. The corresponding
population dynamics is shown in Fig. 7(a).

a Bessel function dependence of Cx,y(ρ) = J0(k(+)
u ρ) and

Cz(ρ) = J2
0 (k(+)

u ρ).
Nonzero q. The nature of the dynamics also depends crit-

ically on the quadratic Zeeman field q. A finite q not only
lifts the degeneracy of the modes but also introduces a gap,
� = √

q(q + 2c̄1n̄), in the spin modes [see Fig. 9(a)]. This
means that there is no spin-mixing dynamics if the driving
frequency lies below the gap (ω0 < �), and the periodic mod-
ulation leads to forming only the Faraday pattern in m = 0. In
contrast, for ω0 � �, both spin and density modes contribute
to the dynamics. Since the Mathieu exponents are independent
of q [see Eqs. (24) and (25)], both modes are unstable simul-
taneously for c̄1 = c̄0. In that case, the dynamics is identical
to the case for degenerate modes, but the momenta governing
the Faraday pattern and the vortex density are different, i.e.,
k(0)

u �= k(+)
u . The spatial dependence of spin-spin correlations

is governed by k(+)
u via the Bessel function.

Even though the Mathieu exponents are independent of q,
the above results indicate an implicit dependence of q on the

FIG. 9. (a) The Bogoliubov spectrum for c̄0n̄ = c̄1n̄ = 0.2h̄ωz,
ω0/ωz = 0.3, and q = 0.1h̄ωz. The unstable momenta as a function
of ω0 map the spectrum in the limit α → 0. (b) The Mathieu expo-
nents of density and spin modes as a function of q for c̄0n̄ = 0.4h̄ωz,
c̄1n̄ = 0.05h̄ωz, ω0/ωz = 0.3, and α0 = 0.3. � is the gap of the spin
modes at k = 0. In (b), the primary resonance associated with the
spin mode changes from εk,±1 = h̄ω0 to εk,±1 = 2h̄ω0 as a function
of q, leading to a significant decrease in the Mathieu exponent σ (+).

FIG. 10. The results for a2 modulation. σ (0)/σ (+) as a function
of ω2 for c̄0n̄ = 0.2h̄ωz and q = 0 with different c̄1/c̄0. For c̄0 = c̄1,
we get σ (0)/σ (+) = 2 (dashed line), and for c̄1 < c̄0 (solid line), the
value of σ (0)/σ (+) crosses 1, which indicates there is a change in the
behavior of dynamics above and below a critical driving frequency
(ω2 ≈ 0.18ωz ).

dynamics for a fixed ω0. For instance, for sufficiently small
q such that � < ω0, both modes are unstable simultaneously,
whereas for sufficiently large q such that � > ω0, only the
density mode is unstable. A similar scenario, as shown in
Fig. 9(b), also emerges for c̄1 � c̄0. For small q, the spin
dynamics dominates (σ (+) � σ (0)), and for large q, only the
Faraday pattern is formed. When the spin-mixing dynamics
dominates (c̄1 � c̄0), the spin-spin correlations are again gov-
erned by the Bessel functions as before.

B. a2 modulation

For a2 modulation, the Mathieu equations (14) and (15)
become

d2u0

dt2
+ 1

h̄2

[
ε2

k,0 + 8n̄Ekα2ḡ2

3
cos(2ω2t )

]
u0 = 0, (27)

d2u+
dt2

+ 1

h̄2

[
ε2

k,±1 + 4n̄(Ek + q)α2ḡ2

3
cos(2ω2t )

]
u+ = 0.

(28)

The Mathieu exponents for the density and spin modes are
obtained as

σ (0) = 2α2n̄ḡ2

3h̄2ω2

[√
(n̄c̄0)2 + h̄2ω2

2 − n̄c̄0
]
, (29)

σ (+) = α2n̄ḡ2

3h̄2ω2

[√
(n̄c̄1)2 + h̄2ω2

2 − n̄c̄1
]
. (30)

In comparison to the case with a0 modulation [Eq. (24)],
an additional factor of 2 appears in Eq. (29). Therefore, we
expect different dynamics for a2 modulation for a given set of
interaction parameters. The results of a2 modulation for q = 0
are summarized in Fig. 10, where we show the ratio of Math-
ieu exponents associated with the density and spin modes as
a function of the driving frequency. For degenerate modes,
i.e., when c̄1 = c̄0 (dashed line in Fig. 9), σ (0) = 2σ (+), which

023308-7



SANDRA M. JOSE, KOMAL SAH, AND REJISH NATH PHYSICAL REVIEW A 108, 023308 (2023)

means the Faraday pattern emerges well before the spin-
mixing occurs. That is also the case for c̄1 > c̄0 (dot-dashed
line in Fig. 9). Interestingly, for c̄1 < c̄0/2, the nature of the
dynamics depends on ω2. For smaller ω2, σ (0)/σ (+) < 1; that
is, spin mixing dominates the density modulations, and the
opposite occurs for large values of ω2. Making q nonzero
would lead to an explicit dependence of ω2 on the dynamics
for any value of c̄0 and c̄1, but qualitative features remain the
same.

C. Modulation of both a0 and a2

As we have seen in the previous cases, an implicit
competition exists between the density modulations (Fara-
day patterns) and spin mixing. By controlling interaction
strengths, quadratic Zeeman field, or the driving frequencies,
we can access different scenarios in which one dominates
or both co-occur in the dynamics. Further, we show greater
controllability is achieved by simultaneously modulating a0

and a2. To do so, we assume a phase difference φ between
a0 and a2 modulations, i.e., a2(t ) = ā2[1 + 2α2 cos(2ω2t +
φ)]. Strikingly, taking ω0 = ω2, α2 = α0ḡ0/ḡ2, and φ = 0 is
equivalent to modulating c̄0 while keeping c̄1 constant. In that
case, Eqs. (14) and (15) become

d2u0

dt2
+ 1

h̄2

[
ε2

k,0 + 4n̄Ekα0ḡ0 cos(2ω0t )
]
u0 = 0, (31)

d2u+
dt2

+ 1

h̄2 ε2
k,±1u+ = 0. (32)

The above equations convey that Faraday patterns are formed
in m = 0, but spin mixing does not occur. The numerical cal-
culations of NLGPEs also confirm this. If we take φ = π and
α2 = α0ḡ0/2ḡ2, c̄1 becomes periodic in time, and c̄0 remains
a constant. The corresponding equations of motion are

d2u0

dt2
+ 1

h̄2 ε2
k,0u0 = 0, (33)

d2u+
dt2

+ 1

h̄2

[
ε2

k,±1 + 2n̄(Ek + q)α0ḡ0 cos(2ω0t )
]
u+ = 0.

(34)

In this case, the spin mode is unstable, leading to the pop-
ulation transfer from m = 0 to m = ±1. The latter causes
local depletions in the homogeneous density of m = 0
and random density peaks that emerge in m = ±1 compo-
nents [see Figs. 11(a) and 11(b)]. The momentum ring in
the momentum density of m = ±1 [see Fig. 11(d)] arises
from the spin-mixing process, (0, 0) + (0, 0) ↔ (k,±1) +
(−k,∓1). In contrast, the process in which a pair of atoms,
each in m = +1 and m = −1 with momenta (ku,−ku) or
(±ku,±ku), scatters into (+k,−k) or (k, k′) with |k +
k′| = 2ku populates the nonzero momenta in m = 0 [see
Fig. 11(c)] at a later time. It is starkly different from
Fig. 4(b) with the pure a0 modulation where the primary
unstable momenta come from the resonance with the density
mode.

1. Competing instabilities

We show that by modulating a0 and a2 with ω0 �= ω2

and carefully choosing the modulation amplitudes α0 and α2,
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FIG. 11. Results for simultaneous modulation of a0 and a2 with a
phase difference of φ = π . Real-space condensate density of (a) m =
0 and (b) m = ±1 for q = 0, c̄0n̄ = c̄1n̄ = 0.2h̄ωz, α0 = 0.2, α2 =
0.05, and ω0/ωz = ω2/ωz = 0.2 at ωzt = 800. The corresponding
momentum densities are shown in (c) and (d).

the intriguing scenario of competing instabilities emerges. In
particular, two distinct momenta of the density or spin mode
compete. To see the competing instabilities among the density
modes, we take c̄0 � c̄1 such that σ (0) � σ (+). The primary
resonances that emerge from modulating a0 and a2 are εk,0 =
h̄ω0 and εk,0 = h̄ω2 and let the corresponding unstable mo-
menta and Mathieu exponents be (k(0)

u0 , k(0)
u2 ) and (σ (0)

0 , σ
(0)
2 ).

The relevant equation of motion is

d2u0

dt2
+ 1

h̄2

[
ε2

k,0 + 4Ekn̄

3
(α0ḡ0 cos 2ω0t

+2α2ḡ2 cos 2ω2t )

]
u0 = 0, (35)

which is generally a quasiperiodic Mathieu equation. The
stability regions in Eq. (35) studied using different approxi-
mation methods reveal a very complex structure [60]. When
ω0/ω2 is a rational number, Eq. (35) exhibits an overall pe-
riodicity, and the Floquet theorem becomes valid. Then, the
instability regions are just a union of those arising from the
independent modulations of a0 and a2. In Fig. 12(a), we show
the two primary instability tongues associated with a0 and a2

modulations for ω0/ω2 = 1/3 and ω2 = 0.3ωz. The modula-
tion amplitudes are taken such that the peak of σ

(0)
0 and σ

(0)
2

are approximately the same. In the dynamics, we observe an
oscillation between the patterns of two different wavelengths
1/k(0)

u0 and 1/k(0)
u2 with k(0)

u0 < k(0)
u2 [see Figs. 12(b) and 12(c)].

Similarly, for c̄1 � c̄0, the competing instabilities arise
among the two different spin-mode momenta. In that case, the
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FIG. 12. Competing instabilities among the density modes.
(a) The two primary peaks in the Mathieu exponent vs k from the
simultaneous modulation of a0 and a2 for c̄0n̄ = 0.2h̄ωz, c̄1n̄ = 4h̄ωz,
q = 0, α0 = 0.024, ω0 = 0.1ωz, α2 = 0.01, and ω2 = 0.3ωz. The
solid line is for a0, and the dashed line is for a2 modulations. (b) and
(c) show the density of the m = 0 component at ωzt = 420 and
ωzt = 460, respectively, exhibiting the change in the wavelength
of patterns in time. (b) has a wavelength of 1/k(0)

u0 , and (c) has a
wavelength of 1/k(0)

u2 with k(0)
u0 < k(0)

u2 .

relevant Mathieu equation is

d2u+
dt2

+ 1

h̄2

[
ε2

k,±1 − 4(Ek + q)n̄

3

× (α0ḡ0 cos 2ω0t − α2ḡ2 cos 2ω2t )

]
u+ = 0. (36)

Again, for a rational ratio of ω0/ω2, we obtain the instability
tongues from the union of instabilities, as shown in Fig. 13(a).
The effect of competing instabilities is directly visible in the
behavior of the spin-spin correlation functions during the tran-
sient stage, and they are of the form

Cx,y(ρ, t ) = D(t )J0
(
k(+)

u0 ρ
) + [1 − D(t )]J0

(
k(+)

u2 ρ
)
, (37)

Cz(ρ, t ) = J0
(
k(+)

u0 ρ
)
J0

(
k(+)

u2 ρ
)
, (38)

where k(+)
u0 and k(+)

u2 are unstable momenta of the spin mode
from modulation frequencies ω0 and ω2 and D(t ) is the time-
dependent amplitude.

FIG. 13. Competing instabilities among the spin modes. (a) The
two primary peaks in the Mathieu exponent vs k from the simultane-
ous modulation of a0 and a2 for c̄0n̄ = 0.4h̄ωz, c̄1n̄ = 0.05h̄ωz, q =
0, α0 = 0.205, ω0 = 0.1ωz, α2 = 0.1, and ω2 = 0.3ωz. The solid line
is for a0, and the dashed line is for a2 modulations. (b) shows the
spin-spin correlation functions Cx (ρ ) and Cz(ρ ). Fit-1 and Fit-2 are,
respectively, Eqs. (37) and (38). The numerical results in (b) are
obtained by taking the average over 10 realizations of noises.

VI. EXPERIMENTAL CONSIDERATIONS

Now, we briefly examine the experimental possibilities.
As discussed above, the emergent spin textures leading to
PCVs can be observed except when c̄0 � |c̄1|, for which the
spin mode is completely outplayed by the density mode in
the instability dynamics. In the state-of-the-art experimental
setups of spin-1 condensates, for instance, in 23Na, 87Rb, and
7Li, the ratio c̄1/c̄0 is, respectively, 0.036, −0.004 [36], and
−0.46 [61], which supports the formation of spin textures
and PCVs. For 87Rb and 7Li, since the spin-dependent in-
teractions are ferromagnetic, preparing the initial polar phase
requires a quadratic Zeeman field. We numerically verified
all three cases and confirmed the formation of spin textures
and PCVs is identical to the case with degenerate modes.
In a given atomic setup, Feshbach resonances are required
to access the different regimes of interaction strengths we
consider, and in particular, independent control of a0 and a2 is
needed. The latter has been proposed via combining magnetic
and rf-field-induced Feshbach resonances [53]. Longitudinal
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and transverse spin-spin correlations are computed once the
corresponding magnetizations are measured, as demonstrated
in Ref. [62].

VII. SUMMARY AND OUTLOOK

In summary, we analyzed the density patterns and spin
textures in a parametrically driven Q2D spin-1 condensate for
two initial phases: ferromagnetic and polar. An initial ferro-
magnetic condensate is immune to periodic modulation of a0,
whereas for a2 modulation, it exhibits dynamics similar to that
of a scalar condensate. An initial polar phase revealed inter-
esting dynamics; for instance, a gas of polar core vortices and
antivortices is seen, with its density determined by the mo-
mentum of the unstable spin mode. Also, there is competition
between Faraday patterns and spin-mixing dynamics which
can be controlled by tuning the interaction strengths, quadratic
Zeeman field, or driving frequencies. When spin-mixing dy-
namics dominates, the spin-spin correlation functions exhibit
a Bessel function behavior as a function of the relative dis-
tance. Otherwise, they decay exponentially with a correlation
length of the order of a spin healing length. Modulating both
scattering lengths creates an exciting scenario of competing
instabilities among density or spin modes. It produces the
superposition of Faraday patterns or spin correlation functions
of two distinct wavelengths.

Our studies open up several perspectives for future studies.
For instance, one could select an appropriate initial state to
engineer exotic spin textures or vortices via periodic modu-
lation. The same analyses can be extended to condensates of
higher spin in which the availability of three or more scatter-
ing lengths may lead to complex scenarios. Another exciting
aspect would be to analyze the effect of harmonic confinement
and the role of transverse excitations.
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