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Supersolid stacks in antidipolar Bose-Einstein condensates
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We theoretically investigate a supersolid structure taking the form of stacked, disk-shaped superfluid droplets
connected via a dilute superfluid, in an antidipolar condensate. A phase diagram is determined for varying the
particle number and scattering length, identifying the regions of a regular dipolar superfluid, supersolid stacks,
and isolated stacked disk-shaped droplets in an experimentally realizable trapping potential. The collective
Bogoliubov excitation spectrum across the superfluid-supersolid phase transition is studied, and the transition
point is found to be associated with the breaking of the degeneracy of the two lowest-lying modes. The dynamical
generation of the supersolid stacks is also investigated by ramping down the scattering length across the phase
transition. Moreover, we have studied the impact of vortex-line penetration on the phase transition. We have
found that the presence of a vortex line causes the supersolid region to move towards weaker contact interactions.
Our detailed numerical simulations highlight that an antidipolar condensate can create such supersolid stacks
within an experimentally reachable parameter regime.
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I. INTRODUCTION

Dipolar Bose-Einstein condensates (BECs) offer an in-
triguing platform [1–5] to study the supersolid state of matter
[6–13], displaying both diagonal and off-diagonal long-range
order [14–20]. In a supersolid, translational symmetry is
spontaneously broken, leading to density modulations while
partially maintaining superfluid (SF) properties. The concept
was originally introduced and debated over an extensive pe-
riod of time in the context of 4He [20–24]; however, only
recently ultracold atoms have emerged as a viable alterna-
tive setup [25–31]. Experiments involving highly magnetic
dysprosium [32–35] and erbium atoms [36,37] uncovered
the emergence of supersolidity in (quasi)one [7,35,37,38]
as well as two spatial dimensions [39–41]. The underlying
mechanism is attributed to the interplay between inter-
particle interactions and quantum fluctuations [42–44], a
mechanism similar to the one seen in binary Bose gases
forming droplets [45–47] which also have been realized
experimentally [48–50]. Owing to the unique and fascinat-
ing properties of dipolar droplets and supersolids, there has
been a recent surge in research focused on understanding
these systems [13,44,51–73], including the exploration of out-
of-equilibrium dynamics [38,74–76], vortices [77–79], and
extensions to dipolar mixtures [80–85].

The bulk of current and recent work set focus on dipole-
dipole interactions (DDIs) under a fixed magnetic field,
oriented along a particular direction, say, the z axis. However,
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by rotating the polarizing magnetic field (a technique also
demonstrated in experiments [86]) it is possible to manipulate
the dipole-dipole interaction [87,88]. A time-averaged DDI
can be utilized when the rotation frequency exceeds the trap
frequencies but is still smaller than the Larmor frequency. The
magnitude and polarity of this DDI are determined by the
angle between the dipole and the z axis [89]. By adjusting
the tilt angle, the effective interaction can be modulated from
dipolar to antidipolar regimes where the dipolar interaction
is reversed. In this case, head-to-tail antidipoles repel, while
side-by-side antidipoles attract, which is just opposite to the
behavior observed in the ordinary dipolar regime. In a single
trapped antidipolar condensate, stacks of disklike droplets
may form that can even be supersolid when the disks connect
by a dilute superfluid. These structures are quite different from
the usual linear arrays of elongated filaments found in conven-
tional dipolar condensates, as mentioned early on in the Ph.D.
work of Wenzel [90]. Stacked droplets (SDs) or supersolids
however have, to the best of our knowledge, not yet gained
much attention, despite the in principle realistic experimental
scenario, and the many interesting future prospects concern-
ing for example studies of vorticity in such systems. Similar
stacked supersolid structures were previously only discussed
for a different setting of dipolar and nondipolar mixtures [91],
where the immiscibility of the components stabilized the sys-
tem. Other theoretical [68,92] or experimental studies [93,94]
with focus on layered structures of dipolar gases required an
optical lattice potential [92–94] or an electric dipole moment
[68] for their fabrication. While Ref. [68] briefly addresses
the observation of stacked droplet crystals in a doubly dipolar
condensate with both electric and magnetic dipole moments,
it is of interest to explore in detail the possibility of generating
similar structures in a simpler system with only a single dipo-
lar ingredient. Furthermore, it is vital to investigate the range
of parameters where such droplet crystals exist in relation to
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varying particle numbers and to explore their dynamical for-
mation. Understanding these aspects is crucial for facilitating
future experimental studies.

Here, we set focus on the antidipolar single-component
condensates where, remarkably, the rather unique stack struc-
tures can arise exclusively from the combined effects of
long-range and contact forces [90]. The layers can be com-
pletely isolated from each other, or be connected by a
superfluid link, forming a different type of supersolid that
we in the following refer to as a “supersolid stack” (SSS).
We determine the ground-state phase diagram depicting the
SF phase, SSS, and isolated SDs as a function of particle
number and scattering length, with a fixed antidipolar length.
After demarcating the explicit phase boundaries, we proceed
to analyze the low-lying collective excitation spectra across
the transition using a linear stability analysis based on the
Bogoliubov–de Gennes (BdG) approach [12,95–99]. A cru-
cial finding is that the degeneracy of the two lowest modes
is broken at the transition point, serving as an indicator of
the SF-SSS phase transition. Additionally, we provide evi-
dence that the generation of layered structures can be achieved
dynamically from a superfluid state by performing an interac-
tion quench. Such a quenching technique for supersolid state
generation is frequently used for regular dipolar condensates
[6,7,41]. Quenching the interaction across the phase bound-
ary results in density oscillations that we have found to be
associated with patterns in the low-lying excitation spectra of
the system. Finally, we investigate the impact of imposing
a vortex line through the stacks. Our analysis reveals that
a higher-charge vortex shifts the supersolid phase towards
lower scattering lengths relative to the system without a vor-
tex. Intriguingly, this suggests that the presence of a vortex
affects the superfluid connection and reduces the density of
the crystal structure.

The remainder of the paper is structured as follows.
Section II describes the extended Gross-Pitaevskii (eGP)
equation and the BdG approach. In Sec. III, we present the
ground-state properties of an antidipolar condensate, delin-
eating the phase diagram in Sec. III A, and describing the
collective excitation properties in Sec. III B. The dynamical
formation of a layered supersolid structure is addressed in
Sec. IV A, and collective oscillations in Sec. IV B. The effect
of a vortex line on supersolidity is discussed in Sec. V. We
provide a summary of our findings, along with future perspec-
tives, in Sec. VI. In Appendix A, we discuss the impact of
a three-body loss term. Appendix B provides some details of
our numerical simulations.

II. MODEL AND METHODS

A. Extended Gross-Pitaevskii equation

We consider a dipolar BEC (dBEC) composed of
atoms with mass M and magnetic dipole moment
μm. The dBEC is confined within a three-dimensional
(3D) harmonic trapping potential of the form V (r) =
M(ω2

x x2 + ω2
y y2 + ω2

z z2)/2. For a schematic illustration
of our setup, see Fig. 1. The atomic dipoles are aligned
with a rotating uniform magnetic field B(t ) = Be(t ), where
e(t ) = cos φez + sin φ[cos(�t )ex + sin(�t )ey] points out the

Ω

FIG. 1. Schematic illustration of the spontaneous formation of
a layered structure in an antidipolar Bose-Einstein condensate con-
fined in an elongated geometry along the z axis. The system is
under the influence of a magnetic field rotating at a frequency
� and an angle φ > 54.7◦. The rotation frequency is significantly
larger than the trap frequency but smaller than the so-called Larmor
frequency.

instantaneous direction of the magnetic field [88,89]. Here,
ex, ey, and ez are the unit vectors in the x, y, and z spatial
directions, respectively, and � denotes the rotation frequency.
Furthermore, it is assumed that the distances between the
dipoles are much larger than the size of individual dipoles.
Under such condition, the general expression of the DDI

potential reads U G
dd (r, t ) = μ0μ

2
m

4π
[ 1−3(e(t )·r̂)2

r3 ], where μ0

corresponds to the permeability of vacuum. If the external
magnetic field rapidly rotates at an angle φ relative to the z
axis ωi � � � ωL = μB/h̄, where ωL and ωi (i = x, y, z)
are the so-called Larmor frequency and trap frequencies,
respectively, it becomes possible to perform a time-averaging
process on the DDI over a complete rotation cycle of the
polarizing magnetic field. Furthermore, since the rotation
frequency of the magnetic field is significantly larger
than the trap frequencies, the dynamical instabilities are
strongly suppressed [88]. The time-averaged DDI is given
by [87]

Udd (r) = 〈
U G

dd (r, t )
〉 = �

2π

∫ 2π
�

0
U G

dd (r, t )dt

= μ0μ
2
m

4π

(
3 cos2 φ − 1

2

)(
1 − 3 cos2 θ

|r|3
)

, (1)

where θ denotes the angle between r and the z axis. The DDI
is highly dependent upon the orientation of the constituent
dipoles. The interaction vanishes entirely at the so-called
magic angle, denoted by φm ≈ 54.7◦. Specifically, for φ <

φm, the preferred orientation of the dipoles is head to tail,
while for φ > φm, an antidipolar configuration with a side-by-
side arrangement of dipoles becomes energetically favorable.
At zero temperature, the system is well described by the eGP
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equation [36,42,43]

ih̄∂tψ (r, t ) =
[

− h̄2

2M
∇2 + V (r) + g|ψ (r, t )|2 + 3

4π
gdd

×
∫

dr′ 1 − 3 cos2 θ

|r − r′|3 |ψ (r′, t )|2

+ γ (εdd )|ψ (r, t )|3
]
ψ (r, t ). (2)

Here, the short-range repulsive contact interaction, g =
4π h̄2a/M, is determined by the s-wave scattering length
a. The dipolar interaction coefficient is gdd = 4π h̄2add/M
with add = μ0μ

2
mM(3 cos2 φ − 1)/24π h̄2 being the so-called

dipolar length. The final term in Eq. (2) is given by the

repulsive Lee-Huang-Yang correction with γ (εdd ) = 32
3 g

√
a3

π

(1 + 3
2ε2

dd ) [42,100,101], where the dimensionless parameter
εdd = add/a quantifies the relative strength of the DDI com-
pared to the contact interaction. The solution of Eq. (2) is
obtained by employing the split-step Crank-Nicolson method
[102,103] in imaginary time to determine the initial ground
state, and in real time to monitor the system’s dynamics. The
behavior of the system can be classified into different phases
depending on the absolute value of the parameter εdd . When
|εdd | is sufficiently small, the system exhibits a superfluid
phase. However, for larger values of |εdd |, the supersolid
phase is favored within a specific range of values of |εdd |.
Beyond this range, the system transitions into the isolated
droplet phase.

In the following, we consider a dBEC of 164Dy atoms
with a magnetic moment of μm = 9.93μB, where μB is the
Bohr magneton. The system is examined in the maximally
antidipolar regime, with φ = π/2. This particular configura-
tion leads to an overall factor of −1/2 in Eq. (1) compared to
nonrotating dipoles corresponding to φ = 0◦. Consequently,
the dipolar length becomes add = −65.5a0, where a0 is the
Bohr radius. The frequencies of the harmonic potential used
in this paper are ωx/(2π ) = 100 Hz, ωy/(2π ) = 100 Hz, and
ωz/(2π ) = 50 Hz, resulting in an elongated geometry along
the z axis. The aforementioned trapping frequencies and in-
teraction strengths can be achieved in current experiments
involving magnetic atoms [6,36,37,41,86,90].

B. BdG approach

In order to unveil the collective excitation spectrum of
the system, we perform a Bogoliubov–de Gennes analysis
[104,105]. To do so, we perturb the equilibrium solution ψ0

using the following ansatz:

ψ (r, t ) = {ψ0(r) + ε[u(r)e−i�t + v∗(r)ei�t ]}e−iμt/h̄. (3)

The parameter ε represents a small-amplitude perturbation,
while μ is the chemical potential. The eigenfrequencies and
eigenfunctions, represented by � and (u, v∗), respectively, are
the solutions of the eigenvalue problem resulting from the
substitution of Eq. (3) into Eq. (2) with terms retained up to
the first order in ε. Specifically,(

Hs − μ + X X
−X −(Hs − μ + X )

)(
u
v

)
= h̄�

(
u
v

)
, (4)

where Hs = − h̄2

2M ∇2 + V (r) is the single-particle Hamilto-
nian, and the operator X is defined by its action on q = u, v

according to

Xq(r) =
∫

dr′Udd (r − r′)ψ∗
0 (r′)ψ0(r)q(r′)

+ g|ψ0(r)|2q(r) + 3γ

2
|ψ0(r)|3q(r). (5)

Through the variable transformations f = (u + v)/
√

2 and
g = (u − v)/

√
2, Eq. (4) can be reduced to two equations with

only half the dimensions of the original ones. The resulting
reduced equations are then solved by using standard diago-
nalization methods.

III. GROUND-STATE PROPERTIES

Our investigation focuses on exploring the ground-state
properties of the antidipolar condensate, with the primary ob-
jective of identifying various density structures, determining
their region of existence in a phase diagram, and mapping the
underlying collective excitation properties during the phase
transition. Furthermore, we explore the impact of the number
of disks on the sharpness of the phase transition.

A. Identification of different phases

Figure 2 displays various ground-state density profiles
featuring the unmodulated and modulated phases. For large
scattering lengths where the contact interaction dominates the
dipolar interaction, a typical superfluid density profile elon-
gated along the z direction is formed, as shown in Fig. 2(a) for
N = 1.3 × 105 particles at a = 110a0. As the relative strength
of the dipolar interaction |εdd | increases, side-by-side config-
urations become more favored, leading to their arrangement
in the radial plane. However, the presence of a tight radial
confinement breaks the condensate into multiple segments
along the z direction as the configuration with lowest energy,
resulting in the formation of stacked disks. Examples of mod-
ulated density structures for two different particle numbers
are presented in Figs. 2(b) and 2(c), which demonstrate that
the individual disks are connected by a dilute background
density, substantiating a SSS phase.1 Note that the number
and distribution of disks along the z direction strongly depend
on the total number of particles. For instance, a four-crystal
supersolid state is favored at N = 1.3 × 105 [Fig. 2(b)], in
contrast to the three-crystal state that forms at lower particle
numbers, such as N = 105 [Fig. 2(b)]. As we will see later,
the position of the droplet crystals significantly influences the
sharpness of the SF-SSS phase transition.

Next, we determine the ground-state phase diagram, con-
sidering different atom numbers N and scattering lengths a
for a fixed add = −65.5a0. To differentiate between distinct
emergent phases, we introduce a contrast measure defined

1We remark that these multilayered structures are dynamically
stable configurations, as has been successfully confirmed through
real-time propagation.
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FIG. 2. Density isosurfaces representing (a) the regular superfluid and (b, c) the supersolid state formed by layers of four (b) and three
(c) disks for a few selected particle numbers N and scattering lengths a (see the legends). The density isosurfaces are taken at 50, 16, and 2.5%
of the maximum density. The system is confined in a harmonic trapping potential with frequencies (ωx, ωy, ωz )/(2π ) = (100, 100, 50), and
dipolar length add = −65.5a0. Units of the quantities are indicated within parentheses in the axis labels.

as [6,84]

C = nmax − nmin

nmax + nmin
, (6)

where nmax and nmin are the neighboring maximum and
minimum densities, respectively. Indeed, we can distinguish
between different phases by identifying their characteristic
density profiles, particularly through the emergence of modu-
lation in density across the phase transition. It should be noted
that the system always possesses an overall parabolic density
profile dictated by the harmonic confinement and, hence, we
refer to the periodic density modulation as an order parameter
of the system. The periodic density modulation is absent in
the SF phase, resulting in C = 0. However, it is a distinctive
characteristic feature of both the SSS and SD phases. The SSS
and SD phases can be distinguished from each other by the
values of the local minima in the density. In the SD phase,
they become zero, and the modulated density structures are
completely isolated, resulting in a density contrast of C = 1.
Conversely, in the SSS phase, the localized structures are con-
nected via dilute background densities, resulting in 0 < C <

1. The thick blue line in Fig. 3 indicates the transition from
a regular SF to SSS. Notably, the critical scattering length at
which the transition occurs increases with the particle num-
ber N . Additionally, the number and positions of disks are
sensitive to N (and hence density). When a crystal develops
at z = 0 and the remaining crystals appear symmetrically in
pairs on both sides, an odd number of crystals form. Con-
versely, if there is a density dip at z = 0, only an even number
of crystals can be formed. These distinct arrangements often
correspond to closely positioned local-energy minima. To ac-
curately determine the minimum-energy state and identify the
crystal state with an even or odd number, we have employed
different initial guesses; see the Appendix B for details.
For instance, an even number of disk-shaped droplet arrays
can form along the z direction (see the triangular markers)
for particle numbers between 1.03 × 105 < N < 1.04 × 105.
However, for a lower number of particles, an odd number
of droplets (see the circular markers) become energetically
favorable. The increasing number of odd and even droplet

crystals can be identified with the growing particle number in
a similar manner. At fixed particle number, further decreasing
a results in the gradual suppression of the density between in-
dividual disks, ultimately rendering them completely isolated
from each other. The onset of the SD phase is indicated in
Fig. 3 by the thin red line. This transition also manifests by a
density maximum (circular markers) or minimum (triangular
markers) at z = 0, depending on particle number. The SSS-SD
phase transition exhibits a highly continuous nature (see also
Fig. 4) and thus, for the sake of convenience in the numerical
simulation, it is necessary to limit the contrast to a value close
to unity in order to identify the SSS-SD phase transition. The
specific scattering length at which this transition occurs is
identified when C > 0.99 [91]. In our current setup, we notice
that an odd number of disks with one situated at the center
form for particle numbers between 9 × 104 < N < 9.1 × 104.
Typical examples for isolated three- and four-disk stacks are
demonstrated for N = 7 × 104 and 105 particles, respectively,
in Figs. 3(b) and 3(c), showing integrated density profiles de-
fined as n1D(z) = ∫

dxdy|ψ (x, y, z)|2. This observable, which
we also utilize later, is experimentally detectable, e.g., via in
situ imaging [5,13].

To gain a deeper understanding of the nature of the tran-
sition, we investigate the contrast C as a function of the
scattering length a for two different particle numbers; see
Fig. 4. In addition, we use Leggett’s upper bound to estimate
the superfluid fraction fs [18,106] in the central region of
length 2L:2

fs = (2L)2

N

[∫
dz

1∫
dxdy|ψ |2

]−1

. (7)

For N = 1.3 × 105 particles, we observe the continuous for-
mation of disks on both sides of z = 0 as C( fs) gradually
approaches zero (one), indicating the formation of modulated

2The length 2L spans the central region between the first two side
minima for three disks and the first two side maxima for four disks,
along the z axis [83].
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FIG. 3. (a) Phase diagram of the antidipolar condensate in terms
of the particle number N and scattering length a. The thick blue line
separates the supersolid disk phases (light gray) from the unmodu-
lated superfluid phase (light blue), which occurs when the contrast
C = 0. On the other hand, the thin red line divides the supersolid
disks from isolated disks (light pink) where the contrast is C = 1.
The triangular markers indicate a phase transition that manifests via a
density minimum near the center of the trap, while the circular mark-
ers denote the same via a density maximum. The bottom panels show
the integrated density profiles n1D, in units of 1000 µm−1 along the z
direction for (b) N = 7 × 104 and (c) N = 105. All other parameters
are the same as in Fig. 2. Units of the quantities are indicated within
parentheses in the axis labels.

density structures with a strong superfluid connection between
them. As the scattering length a decreases, we observe that
C( fs) increases (decreases) due to a pronounced density mod-
ulation. At a = 102.1a0, the disks become completely isolated
from each other and C > 0.99. Interestingly, for N = 105 par-
ticles, the superfluid to supersolid transition is much sharper,
but it still remains continuous. We observe a disk formation at
z = 0 for this transition, unlike in the case of N = 1.3 × 105

particles. The contrast drops from C = 0.252 at a = 104.24a0

to C = 0 at a = 104.27a0. Our results are consistent with the
findings of Ref. [60], where the supersolid phase transition is
argued to be continuous (i.e., second-order phase transition)
at larger particle numbers closer to the thermodynamic limit
due to insignificant kinetic-energy contributions. A close in-
spection also reveals that the superfluid state just before the
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FIG. 4. Ground-state contrast C (blue circular markers) and su-
perfluid fraction fs (red triangular markers) as a function of the
scattering length a for two different particle numbers (a) N = 1.3 ×
105 and (b) N = 105. The insets show the integrated density pro-
files close to the supersolid and superfluid transitions at scattering
length a = 105.45a0 for N = 1.3 × 105 (a), and a = 104.24a0 and
104.27a0 for N = 105(b). All other parameters are the same as in
Fig. 2. Units of the quantities are indicated within parentheses in the
axis labels.

transition to the supersolid state does not exhibit the typi-
cal parabolic density. Nonetheless, they are still classified as
superfluid since they demonstrate a nonperiodic density mod-
ulation. For instance, for N = 1.3 × 105, n1D has a tendency
to develop a flat top (Fig. 4) profile, while for N = 105 a
sharp peak appears [Fig. 4(b)]. Turning to the SD side of the
curves, we observe that the contrast C gradually approaches
unity as the system enters the isolated droplet regime for
both N = 1.3 × 105 and 105 particles. This substantiates also
the very continuous nature of the SSS-SD phase transition.
Notably, our numerical simulations show that the superfluid
fraction, as calculated by Eq. (7), does not completely van-
ish during the SSS-SD transition. Additionally, fs gradually
decreases and becomes fs < 0.1 when C > 0.99, indicating
the transition to the SD phase. Let us emphasize that both fs

and C accurately predict the transition from the SF to SSS
phase as their respective values deviate from unity. However,
for the SSS-SD phase transition, we find that C serves as a
better indicator of the isolation of the localized droplets from
each other, as fs still has a finite value when C reaches close to
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FIG. 5. (a) Frequencies �/(2π ) of the eight lowest excitation
modes as a function of the scattering length a. The two lower panels
show the function fz(z) = ∫

dxdy f (r) for the three lowest modes
(�1, �2, and �3) in the (b) supersolid phase for a = 104a0 and in
the (c) superfluid phase for a = 104.7a0, normalized to the maximal
value f max

z . The system consists of N = 105 particles, and all other
parameters are the same as in Fig. 2. Units of the quantities are
indicated within parentheses in the axis labels.

unity (C > 0.99). It is evident that Leggett’s upper bound can
eventually approach zero deep into the SD regime. For ex-
ample, it becomes fs < 5 × 10−3 at 97a0 for N = 105, but at
a = 98.5a0 for N = 1.3 × 105 (see Fig. 4). This observation
is consistent with the findings of Ref. [91].

B. Collective excitation spectra

Having identified the ground-state phase diagram and
showcased some density profiles, we turn to study the
behavior of the collective excitations. The low-lying col-
lective excitation spectra for the supersolid phase in
the regular dipolar condensate have been reported in
Refs. [9,12,13,37,39,107,108]. To accomplish this for the an-
tidipolar condensate, we fix the particle number at N = 105

and compute the spectrum over a range of values of the
s-wave scattering length by solving the BdG Eq. (3). The
obtained results are displayed in Fig. 5. Specifically, we have
examined the low-lying excitations that are primarily related
to excitations in the z direction. The frequencies of the eight
lowest modes are presented in Fig. 5(a), and we will primarily
focus on the three-lowest modes, denoted by �1,�2, and �3,
respectively. In the SF regime the two lowest modes (�1,�2)
are degenerate, namely, �1 = �2. We notice that as the
scattering length is decreased from a = 105a0, the two degen-
erate modes eventually split into two around a ≈ 104.26a0,

marking the transition from the superfluid to the supersolid
phase. It is interesting to note that the point at which the
degeneracy breaks coincides with the point where the contrast
drops to zero, as shown in Fig. 4(b). This implies that the
breaking of degeneracy can be used as a precise definition
of the transition point from the superfluid to the supersolid
phase. This behavior is analogous to what has been observed
for a regular dipolar supersolid in an elongated harmonic trap
[12]. To investigate the nature of these modes further, we note
that to the lowest nonvanishing order in ε, the density can be
written as

n(r, t ) = ψ2
0 (r) + 2

√
2ε f (r)ψ0(r) cos(�t ). (8)

The time evolution of the density associated with a mode is
consequently characterized by the function f , and we display
the integrated version fz(z) = ∫

dxdy f (r) of the three lowest
modes in Figs. 5(b) and 5(c). Note that the fz(z) characterizes
how the density varies along the weakly confined direction
(z axis) and thus provides information about the spatial dis-
tribution and nature of the collective excitations. The modes
in the SSS phase at a = 104a0 are shown in Fig. 5(b), while
the modes in the superfluid phase at a = 104.7a0 are shown
in Fig. 5(c). Interestingly, the two lowest modes are very
similar in both phases, although their effects are quite different
due to their different spatial distributions. For the supersolid,
the lowest mode �1 corresponds to a center-of-mass exci-
tation where the high-density regions move back and forth
but out of phase with the background supersolid. Thus it
is a Nambu-Goldstone mode (called the out-of-phase Gold-
stone mode [11]) associated with the spontaneous breaking
of translation symmetry [109]. The second-lowest mode is a
Higgs (amplitude) mode [110], where the crystalline regions
periodically increase and decrease in density in a fashion
opposite to that of the superfluid background, and thus cor-
responds to a compressional mode. As we will see in the
following, such compressional modes get activated during the
generation of the supersolid state via an interaction quench.
The third-lowest mode �3 is the dipole mode, which has a
constant frequency �/(2π ) = 50 Hz independent of the in-
teraction strength [111] and remains decoupled from other
modes, thereby serving as a gauge for numerical accuracy. It
features an overall center-of-mass motion of the system at the
trap frequency. In the superfluid phase [Fig. 5(c)], the first two
modes, �1 and �2, have the same frequency, �1 = �2, and
the third mode �3 is the dipole mode. The �3 changes char-
acter significantly as the system transitions from a superfluid
to a supersolid. The corresponding function fz of �3 in the
supersolid phase has a very prominent dipolelike structure that
is composed of a single positive and negative region; see the
thin solid green curve in Fig. 5(c). This mode in the supersolid
phase [the thin solid green line, �3, in Fig. 5(b)] acquires a
behavior that appears to be a mix of its lowest mode [the thick
solid blue line, �1, in Fig. 5(b)] and the dipole mode in the
superfluid phase [�3 in Fig. 5(c)], possessing multiple local
minima and maxima. This mode is often attributed to in-phase
(between the crystal and the superfluid background) center-
of-mass oscillation, referred to as the in-phase Goldstone
mode [11].
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FIG. 6. (a, b) Dynamical generation of supersolid states consisting of stacks of four disks via an interaction quench. The interaction quench
has been performed by linearly reducing the scattering length from a = 110a0 to 105a0 in 15/ωz ≈ 47.75 ms. The density isosurfaces, taken
at 20 and 1.5% of the maximum densities, are shown at different instants of time (see the legends). The system is composed of N = 1.3 × 105

particles with dipolar length add = −65.5a0 and is confined in a potential with frequencies (ωx, ωy, ωz )/(2π ) = (100, 100, 50) Hz.

IV. QUENCH DYNAMICS ACROSS THE PHASE
TRANSITION

After providing evidence of a supersolid state and its
underlying collective excitation spectrum within the ground-
state phase diagram, we now shift our focus to studying the
nonequilibrium dynamics of our system. To trigger these dy-
namics, we will vary the scattering length from an initial value
of a = ai to a final value of a = a f . A particular focus will be
on examining how the layers of disks can be generated dynam-
ically, and such interaction quench is also a well-established
protocol in experiments [6,7,41] to generate a supersolid state
from an initially unmodulated state. We will also illustrate the
emergence of excitations that manifest as density oscillations
and how the excitation frequencies relate to those calculated
via the BdG analysis at a = a f .

A. Dynamical generation of supersolid disks

We present our results for a system composed of N =
1.3 × 105 particles by showing the 3D density isosurfaces
in Figs. 6(a)–6(f). Our investigation begins with an initial
state prepared at ai = 110a0. We then introduce a very small
amplitude noise [Fig. 6(a)] to the ground state, followed by
a gradual decrease of the scattering length to a f = 105a0

over a time span of 47.75 ms.3 As the system dynamically
enters the SSS phase within the ground-state phase diagram

3This time span is chosen such that we can adiabatically produce
the states which have the same number of droplets as those in the

[Fig. 3(a)], a modulational instability sets in, resulting in the
onset of density modulation. This can be observed by careful
inspection in Fig. 6(b). Subsequently, for t > 47.75 ms, the
system quickly forms four prominent circular disks arranged
in layers, connected by a dilute superfluid background as
depicted in Fig. 6(c). A more precise analysis of the tem-
porally resolved dynamics leading to the SSS phase can be
done by invoking the integrated density n1D(z, t ). The time
evolution of n1D for two different particle numbers is shown
in Fig. 7. Indeed, the formation of four disks, with the central
two having the highest densities from an initial nonmodulated
state, is evident in Fig. 7(a), corresponding to N = 1.3 × 105

particles. Similarly, an odd number of disks can be formed
dynamically. An example of the formation of a state with
three disks is illustrated in Fig. 7(b) for N = 7 × 104. The
final scattering length a f = 102a0 is achieved from an initial
ai = 110a0 in the same time span of 47.75 ms as before. The
superfluid connection remains more robust for N = 1.3 × 105

particles when compared to N = 7 × 104. We remark that the
value of contrast at the ground state corresponds to C = 0.356
at a = 105a0 for N = 1.3 × 105, and C = 0.54 at a = 102a0

for N = 7 × 104, implying a weaker background for the latter,
which also becomes evident in the dynamically generated SSS
phase [see Figs. 7(a) and 7(b)]. Another important observation
from Figs. 6(d)–6(f) is that the thickness of each individual
crystal changes during the dynamics, implying particle flow

ground state of the system. A sudden quench would typically produce
more droplets than the ground state [6].
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FIG. 7. Generation of supersolid states for two different particle
numbers (a) N = 1.3 × 105 and (b) N = 7 × 104, utilizing the dy-
namic ramp of the scattering length a from an initial value a = 110a0

to the final value a = 105a0 (a) and a = 102a0 (b). The colorbar rep-
resents the integrated density n1D in units of 1000 µm−1. The duration
of the dynamic ramp is 15/ωz ≈ 47.75 ms. All other parameters are
the same as in Fig. 2.

among them as well as the emergence of density oscillations.
This particle flow causes a persistent alteration of the density,
radial width, and thickness [see Figs. 7(a)–7(f)], thereby trig-
gering compressional dynamics, which we will expound on
next.

B. Collective oscillation during dynamics

Here we evaluate the extent to which the density of the
system during the time evolution remains similar to that of
the ground state at the same scattering length. This can be
monitored by analyzing the observable �n(t ), as given by

�n(t ) = (1/N )
∫

dr(|ψ (r, t )|2 − |ψ0(r)|2), (9)

where ψ0 represents the ground-state wave function at a f .
When the value of �n(t ) approaches zero, it indicates that
the dynamically generated supersolid state is very similar to
the ground state. However, any deviation from zero arises due
to the collective excitations triggered during the dynamics.
The behavior of �n(t ), which relates to the density evolution
displayed in Fig. 7(a) and 7(b), has been presented in Fig. 8(a).
Note that �n(t = 0) is higher for N = 7 × 104 than for N =
1.3 × 105 due to a stronger superfluid connection in the final
state, ψ0, of the former, making it much closer to the initial
superfluid ground state. As the scattering length is gradually
ramped down to the final value, �n(t ) gradually decreases
and eventually reaches a minimum, as shown in Fig. 8(a).
This minimum value indicates the generation of a density-
modulated state that closely resembles the ground state at
the final scattering length a f . Subsequently, �n(t ) exhibits
an oscillatory behavior that involves multiple oscillation fre-
quencies. The oscillation amplitude is larger for N = 7 × 104

than N = 1.3 × 105 because the change in scattering length
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FIG. 8. (a) Time evolution of the integrated density difference
with respect to the ground state ψ0 at the final scattering lengths
is quantified via �n(t ) = (1/N )

∫
dr(|ψ (r; t )|2 − |ψ0(r)|2) for two

different particle numbers (see the legends). The dynamics is trig-
gered by ramping the scattering length from a = 110a0 to 105a0

(N = 1.3 × 105), and a = 102a0 (N = 7 × 104). The real and imag-
inary parts of the collective excitation spectra � are presented in
(b) for N = 1.3 × 105 and (c) for N = 7 × 104, calculated by BdG
analysis at a = 105a0 and 102a0, respectively. The BdG frequencies
are shown in units of 2π × Hz.

a f − ai is larger in the same time span, making the quench
less adiabatic in the former case.

As mentioned earlier, such oscillations in �n(t ) stem from
the continuous particle flow between the crystal and back-
ground, leading to compressional dynamics. The two domi-
nant frequencies of oscillations are calculated by performing a
Fourier transformation of �n(t ),4 yielding ω f1/(2π ) ≈ 36 ±
0.5 Hz and ω f2/(2π ) ≈ 72 ± 0.5 Hz for N = 1.3 × 105, and
ω f1/(2π ) ≈ 28 ± 0.5 Hz and ω f2/(2π ) ≈ 72 ± 0.5 Hz for
N = 7 × 104. Next, we check whether these frequencies are
related to the low-lying excitations of the ground state at the
final scattering length, a f . It should be noted that the exci-
tation spectra at scattering lengths other than the final value
may also be triggered during the quenching process. However,
their contribution to the oscillation of �n(t ) is expected to be
negligible, as the system spends most of the time at a f . The
frequencies of the low-lying collective excitation spectra cal-
culated at a = 105a0 and 102a0 are presented in Figs. 8(b) and
8(c) for N = 1.3 × 105 and 7 × 104, respectively. Notably, the
dominant oscillation frequency in �n(t ) is very close to the
second frequency (excluding the zero frequency) that corre-
sponds to the Higgs amplitude mode, as depicted in Figs. 8(b)

4To compute the frequencies, we have propagated �n(t ) until the
time Tf = 1′s, and as a result the maximum frequency error is esti-
mated to be 1/Tf = 1 Hz.
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FIG. 9. Density isosurfaces within a supersolid state in the pres-
ence of a vortex line with charge (a) S = 1 and (b) S = 2. (c) The
contrast C as a function of scattering length a in the presence
(S = 1, S = 2) or absence (S = 0) of a vortex line. The density
isosurfaces represent 20 and 2.5% of the maximum density. The
164Dy system is composed of N = 105 particles with dipolar length
add = −65.5a0, and confined in a trapping potential with frequencies
(ωx, ωy, ωz )/(2π ) = (100, 100, 50) Hz. Units of the quantities are
indicated within parentheses in the axis labels.

and 8(c). Additionally, the second dominant frequency close
to 72 Hz is also evident in the spectrum. Finally, it should
be noted that we have illustrated the intricate connection dis-
cussed above by considering these two particle numbers as
representative of three- and four-crystal states. However, the
discussion is generally valid for all states in the SSS phase,
where the nonequilibrium dynamics induced by the quench
indeed emanates from triggering the low-lying excitations of
the system.

V. IMPACT OF A VORTEX LINE

Let us finally briefly illustrate the effect of a nonlinear
defect on the formation of multiple-disk structures and the as-
sociated superfluid background. As the disks are relatively flat
structures, they offer an opportunity to investigate quasi-two-
dimensional (2D) physics, particularly in relation to vortices.
Hence, it is crucial to examine the influence of vortex line
penetration on the phase transition. To realize a vortex line of
charge S passing through the center of the disks, we perform
the transformation

ψ (x, y, z) = ψ (x, y, z)eiS tan−1(y/x) (10)

to the wave function during the imaginary time evolution,
which ensures a vanishing density at the center.

Figures 9(a) and 9(b) depict the 3D isosurfaces represent-
ing the supersolid state for S = 1 and 2, respectively, realized

at a = 103a0 for N = 105 particles. The vortex line has a
larger radial thickness in the dilute superfluid background
than in the localized crystal structure, which varies between
S = 1 and 2. This suggests that the superfluid connection
between the crystal changes due to the presence of a vortex.
To investigate this further, we explore whether imprinting a
vortex line changes the supersolid region, as shown in Fig. 9.
The contrast C is plotted as a function of the scattering length a
in both the presence and absence of a vortex line. The results
show that a higher-charge vortex shifts the supersolid phase
towards a lower scattering length compared to the vortex-free
system. However, the contrasts asymptotically approach each
other towards the isolated droplet phases, indicating that the
SSS to SD transition is not affected by the presence of a
vortex. Between the SF and SSS phase, the contrast decreases
sharply towards lower values for higher vortex charges. It
is energetically costly for a vortex to dig a hole within the
highly localized crystal compared to the dilute superfluid, and
therefore it increases superfluid connection, minimizing the
crystal density.

In addition, we remark that we have analyzed the stability
of vortex lines in real-time dynamics. It is observed that a sin-
gle charge vortex remains stable, but the double-unit charged
vortex line eventually bends and breaks. However, the detailed
discussion of their dynamics is beyond the scope of this paper.

VI. CONCLUSIONS

In this paper, we have reported a supersolid state formed
in the form of stacked disklike droplets connected by a dilute
superfluid in an antidipolar condensate [90]. Considering an
elongated geometry with experimentally relevant trapping fre-
quencies we have presented a phase diagram in the parameter
space of particle number N and scattering length a, identifying
the regions of existence for a superfluid, supersolid disks, and
isolated disks.

We have utilized a contrast measure and superfluid fraction
to differentiate between different emergent phases. As the
scattering length decreases, the contrast (superfluid fraction)
increases (decreases) due to a pronounced density modulation,
leading to the formation of disk-shaped density modulations.
The critical scattering length for the transition from a regu-
lar superfluid to a supersolid stack phase increases with the
particle number. The number and distribution of disks along
the z direction are strongly dependent on the total number of
particles.

Building upon the phase diagram, we have studied the
collective excitation spectrum across the superfluid-supersolid
phase transition in the antidipolar condensate. Specifically,
we have computed the frequency of the eight lowest modes
and characterized the density of the first three modes. The
breaking of degeneracy of the two lowest-lying modes marks
the transition point from the superfluid to the supersolid
stack phase. Additionally, the third lowest mode, the so-called
dipole mode, also changes significantly as the system under-
goes a phase transition. We have also examined the influence
of vortex line penetration on the phase transition, with the
supersolid region shifting towards weaker contact interaction
upon imprinting a vortex line.
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As a next step, we have studied the nonequilibrium dy-
namics triggered by ramping down the scattering length
across the superfluid and supersolid phase transition. We have
demonstrated the dynamic generation of four and three disks
connected by a dilute superfluid, considering two different
particle numbers. The particle flow between the disks triggers
a collective oscillation in the density. We have identified two
dominant frequencies of oscillations, which can also be found
in the low-lying collective excitation spectra of the ground
state at the final scattering length.

The present paper has the potential to pave the way for
numerous promising research directions for future endeavors.
To further enhance our understanding, it would be fascinat-
ing to investigate the response of the disks and background
superfluid to external rotation and dynamically observe how
vortex lines penetrate through the disklike density modula-
tions. Currently, vortices are being sought actively in dipolar
supersolids, and the recent creation of vortices in an unmodu-
lated dipolar condensate presents optimistic prospects in this
area [112,113]. The 2D nature of the crystal makes the an-
tidipolar condensate an intriguing setup along that direction.
Further exploration will be undertaken to examine supersolid
stacks and isolated stacked droplets in the context of binary
mixtures [114]. Direct formation of such a supersolid struc-
ture via evaporative cooling along the line of Ref. [41] and
investigating the thermal properties [115] would be highly
interesting.
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APPENDIX A: THREE-BODY ATOM LOSS

In experiments, the lifetime of the supersolid state is
limited by three-body losses, which has been previously dis-
cussed in the context of dBECs with positive dipolar lengths
[6–8]. This type of losses is caused by highly localized den-
sity arrays, making it crucial to understand how it affects
the formation and persistence of the SSS in anti-dBECs. A
comprehensive understanding of this phenomenon is nec-
essary for the successful experimental realization of SSS
states. In simulations, the loss can be modeled by adding
an imaginary contribution, represented by (−ih̄K3/2)|ψ (r)|4,
to Eq. (2), where K3 denotes the three-body recombination
rate.

To demonstrate our findings, we examine the formation of
a supersolid state in a system composed of N = 70 000 164Dy
atoms by reducing the scattering length from a = 110a0

to 102a0 over a period of 47.78 ms. Realistic three-body
losses are considered in simulations using the experimen-
tally measured loss coefficient, K3 = 1.5 × 10−40 m6/s [6].
Figure 10(a) shows the time evolution of the integrated
density n1D(z). The maximum atom loss is ≈5.6% of the
initial population in 250 ms, as displayed by the blue line
in Fig. 10(b). After t > 47.75 ms, the initially unmodulated

FIG. 10. (a) The time evolution of the integrated density n1D

for a quench from an unmodulated state to a supersolid state, in-
cluding three-body atom loss with a three-body coefficient K3 =
1.5 × 10−40 m6/s. The quench has been performed by ramping off
the scattering length from a = 110a0 to 102a0 in 48 ms. (b) The
time evolution of the atom number N for different loss coefficients
(see the legends), considering the same quench protocol. The system
consists of N = 70 000 164Dy atoms confined in a harmonic trapping
potential with frequencies (ωx, ωy, ωz )/(2π ) = (100, 100, 50) Hz,
with add = −65.5a0. The colorbar represents the density in units of
1000 µm−1.

state deforms into three disks. Despite continuous population
loss [see Fig. 10(b)], a dilute background density always
connects the disks throughout the dynamics. We have also in-
vestigated the population loss and supersolid state generation
with larger three-body loss coefficients, K3 = 7.5 × 10−40 and
1.5 × 10−39 m6/s, respectively. As expected, larger K3 leads
to more atom losses, and N (t ) exhibits oscillatory behavior
[Fig. 10(b)]. This tendency is caused by the atom losses being
influenced by the severe changes in density distribution (via
the term |ψ (r)|4), which also undergoes periodic expansion
and contraction after the quench. Nonetheless, the supersolid
state remains robust in long-time dynamics even for K3 =
1.5 × 10−39 m6/s, as evidenced, for example, by the density
isosurface at time t = 240 ms.

APPENDIX B: COMPUTATIONAL DETAILS

Here, we provide a detailed account of the numerical sim-
ulations used to obtain the results described in the main text.
The extended Gross-Pitaevskii equation, Eq. (2), is cast into
a dimensionless form in our simulations by rescaling the
length, the time in terms of the harmonic oscillator length
scale losc = √

h̄/mωz = 1.11 μm, and the trap frequency ωz,
respectively. Then the wave function is scaled accordingly
as ψ (r′, t ) = √

l3
osc/Nψ (r, t ). We solve the resulting dimen-
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sionless equation using the split-step Crank-Nicolson method;
see Ref. [102]. The stationary (lowest-energy) states of the
dBEC are obtained through imaginary time propagation. Fur-
thermore, we apply the transformation ψ (r,t )

‖ψ (r,t )‖ → 1 at each
imaginary time step of this procedure. This preserves the nor-
malization of the wave function, while convergence is reached
until relative deviations of the wave function (at every grid
point) and energy between consecutive time steps are smaller
than 10−5 and 10−7, respectively. This solution is then used
as an initial state for the dynamical simulations, where the
eGP equation is propagated in real time. It should be noted
that calculating the stationary state solution of Eq. (2) is an
involved task due to many close-lying local minima in the
energy surface, which necessitates extensive sampling over
many different initial conditions to identify the most probable
lowest-energy solutions. Our simulations are carried out in a
3D box characterized by a grid nx × ny × nz corresponding to
(128 × 128 × 256). The employed spatial discretization (grid
spacing) refers to �x = 0.12losc, �y = 0.12losc, and �z =
0.08losc, while the time step of the numerical integration is
�t = 10−5/ωz.

Let us remark that systems involving long-range interac-
tions possess highly nonconvex energy landscapes. Therefore,
regardless of the numerical methods employed, simulations

tend to converge to different local minima depending on the
initial guess. As a result, it is imperative to use different
initial guess wave functions and examine which converged
state produces the lowest-energy state, corresponding to the
ground state of the system.

In our system, we observe droplet-shaped droplets for-
mation along the weakly confined z direction, indicating its
one-dimensional nature. Consequently, the remaining task
is to accurately determine the distribution of crystals with
respect to z = 0, which corresponds to the lowest-energy
state. To accomplish this, we have employed two different
guesses: ψsin = Asine−ω2

z (κ2x2+λ2y2+z2 )/2 sin2(kz) and ψcos =
Acose−ω2

z (κ2x2+λ2y2+z2 )/2 cos2(kz), where κ = ωx/ωz and λ =
ωy/ωz. The prefactors A j , with j ∈ [sin, cos], represent the
normalization constants. The ψsin guess produces a density
minimum at z = 0 in the converged state, resulting in an
even number of droplets, while the ψcos guess creates an
odd number of droplets. We have also varied the value of k,
the distance between the droplet arrays, and found that the
converged solution is insensitive to its value for both ψsin and
ψcos. In the phase diagram, for each particle number N , we
have utilized the aforementioned guesses to determine which
one yields the lower energy, thus identifying whether an odd
or even number of crystals can form in the ground state.
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