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Dynamics of correlation spreading in low-dimensional transverse-field Ising models
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We investigate the dynamical spreading of spatial correlations after a quantum quench starting from a
magnetically disordered state in the transverse-field Ising model at one (1D) and two spatial dimensions (2D).
We analyze specifically the longitudinal and transverse spin-spin correlation functions at equal time with use
of several methods. From the comparison of the results in 1D obtained by the linear spin-wave approximation
(LSWA) and those obtained by the rigorous analytical approach, we show that the LSWA can asymptotically
reproduce the exact group velocity in the limit of strong transverse fields while it fails to capture the detailed
time dependence of the correlation functions. By applying the LSWA to the 2D case, in which the rigorous
analytical approach is unavailable, we estimate the propagation velocity to be Ja/(2h) at the strong-field limit,
where J is the Ising interaction and a is the lattice spacing. We also utilize the tensor-network method based
on the projected-entangled pair states for 2D and quantitatively compute the time evolution of the correlation
functions for a relatively short time. Our findings provide useful benchmarks for quantum simulation experiments
of correlation spreading and theoretical refinement of the Lieb-Robinson bound in the future.
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I. INTRODUCTION

Neutral atoms trapped in optical-tweezer arrays are
promising platforms for analog quantum simulations [1-3].
The controllability of individual atoms with laser pulses and
of interatomic interactions via Rydberg excitations enables
one to realize fast and high-fidelity quantum operations. Re-
cent rapid technological developments allow for manipulating
many Rydberg atoms in large arrays [4—6] and investigating
the ground state of quantum lattice systems experimentally
[7-15]. Such experiments have also stimulated theoretical
research on fundamental quantum many-body systems. For
instance, the ground-state phase diagrams of the transverse-
field Ising model and those of its strong Ising interaction limit,
the PXP model, have been intensively examined using the
quantum Monte Carlo method [16-19].

Rydberg-atom arrays have also given the opportunity
to study the nonequilibrium dynamics of isolated quantum
many-body systems, which are hard to simulate numerically
with classical computers. In particular, the correlation-
spreading dynamics of quantum Ising models [16,20] is one of
the intriguing topics that is likely to be further addressed. At
present, experiments with more than 200 Rydberg atoms are
feasible [4-6], allowing one to study unprecedentedly large
lattice systems in one (1D) and two spatial dimensions (2D).

These recent experiments on long-time dynamics in quan-
tum many-body systems have motivated us to quantitatively
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calculate the velocity of the correlation propagation, which
will serve as useful references for future experiments. In
general, there are two kinds of propagation velocities for
correlation spreading dynamics: one is the phase velocity and
the other is the group velocity. The former can be captured
by the first peak of the wave packet, whereas the latter can
be extracted by the envelope of the wave packet. The group
velocity is bounded from above in nonrelativistic quantum
systems, and this upper limit is known as the Lieb-Robinson
bound [21,22].

While significant progress has been made concerning rig-
orous inequalities related to the Lieb-Robinson bound, such
inequalities do not necessarily offer practical reference values
for experiments. Usually, the Lieb-Robinson bound is in-
tended to provide general conditions for arbitrary correlations.
Consequently, the bound can be too loose and sometimes
meaningless when examining the propagation velocity of
particular correlation functions that are measurable in experi-
ments. With this in mind, the Lieb-Robinson bound has been
improved very recently [23]; however, their method still gives
a looser bound than the exact solution if it is available.

In some cases, direct numerical simulations on classi-
cal computers would give much more detailed information
about correlation spreading than rigorous inequalities for
the Lieb-Robinson bound. Such numerical data would also
strengthen the validity of experimental findings through cross-
checking experimental and theoretical results. Indeed, many
numerical efforts have been made to calculate the quench
or sweep dynamics in 1D and 2D. These attempts include
the time-dependent variational Monte Carlo method with
the Slater-Jastrow wave function [24] and with more so-
phisticated neural-network wave functions [25-31], the form
factor expansions [32], the numerical linked-cluster expansion
[33-35], the tensor-network method based on matrix product
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states (MPS) [36-39], and that based on projected entangled
pair states (PEPS) [28,40-45].

In this paper, we study quench dynamics in the transverse-
field Ising model on a chain in 1D and that on a square lattice
in 2D by using several methods, including the tensor-network
method based on PEPS and the linear spin-wave approxima-
tion (LSWA). We take the initial state to be the magnetically
disordered product state, which is the ground state in the
strong-field limit, and calculate time evolution of spin-spin
correlations at equal time after a sudden quench of the trans-
verse field. We focus on the quench within a parameter region
where the ground state is magnetically disordered. We extract
the group velocity of the correlation propagation from the
spin-spin correlations for several values of the transverse field.
In the 1D case, we show that the group velocity extracted
from the LSWA results asymptotically approaches that ex-
tracted from the rigorous analytical results with increasing the
transverse field, while the agreement in the time dependence
of the correlation functions is limited to a short time before
the first peak appears. Our results indicate that the LSWA
can quantitatively predict the propagation velocity as long
as the final transverse field is sufficiently strong. In the 2D
case, using the LSWA, we estimate the group velocity to be
Ja/(2h), where J is the Ising interaction and a is the lattice
spacing. We use the PEPS method in a complementary way to
perform more quantitative calculations on the time evolution
of the correlation functions for a relatively short time.

This paper is organized as follows: In Sec. II, we intro-
duce the model and all the analytical and numerical methods
used in this study. In Secs. IIl and IV, we present the
time-dependent spin-spin correlation functions and extract the
corresponding group velocity in 1D and 2D, respectively. We
discuss the relation between our propagation velocity and
the Lieb-Robinson bound proposed recently, and draw our
conclusions in Sec. V. For simplicity, we set & = 1 throughout
this paper.

II. MODEL AND METHODS

We consider the transverse-field Ising model with the peri-
odic boundary condition defined as

H=-7) 8§8-TY 8. (1)

(i)

where S‘f and §} correspond to the z and x components of
the S = % Pauli spin, J represents the strength of the spin
exchange interaction, and I' represents the strength of the
transverse field. The symbol (i, j) means that the sum is taken
over nearest-neighbor sites. We focus on the ferromagnetic
spin exchange interaction (J > 0) on a chain in 1D and that
on a square lattice in 2D. Both ferromagnetic and antifer-
romagnetic models are equivalent under appropriate unitary
transformations for bipartite lattices. The ground state is or-
dered (disordered) for I' < I'. (I' > I'.), where I'; is the
transition point given as I'c/J = % [46] in 1D and T'./J =
1.522 [17,47,48] in 2D. Hereafter we take J as the unit of
energy. We also take the lattice constant to be unity throughout
this paper.

We investigate the quench dynamic starting from the dis-
ordered state |Yy) = Q;|—); at ' = oo to the disordered
parameter region I" € (I'¢, 00). We study the equal-time lon-
gitudinal and connected transverse correlation functions at
distance r, which are defined as

C(r, 1) = (WIS 1 1)), @

Cornected ™ 1) = (Y (OIS (1))

— (Y OISEY ONY OISy Iv @) (3)

with [y (¢)) = eiflt [Y0), respectively. Hereafter, we take the
lattice spacing to be unity (a = 1). In 1D, we obtain them by
the exact calculations via the Jordan-Wigner transformation
and by the LSWA via the Holstein-Primakoff transformation.
In 2D, we use the tensor-network method, the exact diagonal-
ization (ED) method, and the LSWA. We will summarize each
method below.

We extract the group velocity from the envelope of the
wave packet in the spin-spin correlation functions. Let us first
discuss how the correlation spreading is related to the Lieb-
Robinson bound. In a system with short-range interaction, a
commutator of any operators O, and Og in regions A and B
satisfies the relation

A A L — vt

I[OA(), OBl < const x exp (— p ) “4)
where O4 (1) = exp(iﬂt)OA exp(—iﬂt), L is the distance be-
tween the regions A and B, and x is constant [21,22]. The
velocity v corresponds to the Lieb-Robinson bound. This
relation means that the information from the region A is
transmitted to the region B up to a time ¢ &~ L/v. Then, the
inequality of the Lieb-Robinson bound ensures that, for any
operators O and Og in regions A and B having the distance
L, the expectation value for a state |y) with a finite correlation
length x satisfies [49]

(W ()IOAOBIY (1)) — (W (OOAIY () (W ()| 0¥ (1))]

_L=2u
< const x e 1, %)

where x’ is a constant that depends on x. This velocity 2v on
the right-hand side corresponds to twice the Lieb-Robinson
bound. When the correlation spreading is well described by
the quasiparticle, the group velocity (v#°"?) of the fastest
quasiparticle is often regarded as the Lieb-Robinson bound
[50-53].

To estimate the group velocity of the fastest quasipar-
ticle, we calculate the slope obtained from the peak-time
dependence of the distance. In general, the maximum group
velocity is larger than the velocity associated with the largest
correlation peak location, and they do not have to be the
same. On the other hand, the latter value is easy to extract
and is often regarded as the maximum group velocity (par-
ticularly in experiments). They do coincide for the quench
dynamics in the 1D transverse-field Ising model, as we will
see later. Therefore, we regard the velocity associated with
the largest correlation peak location as the maximum group
velocity and, hereafter, call it the Lieb-Robinson velocity. To
avoid confusion, we will use the term “Lieb-Robinson bound”
to refer to the actual bound in the inequality and the term
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“Lieb-Robinson velocity” to refer to the velocity extracted
from peak positions. The Lieb-Robinson bound is larger than
or equal to the Lieb-Robinson velocity.

Under these circumstances, the Lieb-Robinson velocity
gives twice the group velocity (2v8°"P) of a fastest quasi-
particle. Intuitively, the factor 2 originates from pairs of
quasiparticles moving to the left or right from a given point.
This quasiparticle picture has been discussed intensively in
the dynamics of the Bose-Hubbard model [51,54-56]. In the
present analysis, we have presented the group velocity v&©°"P
of a certain single quasiparticle estimated from one half of the
slope obtained from the peak-time dependence of the distance.

A. Exact calculations in 1D

The analytical form of the time-dependent correlation
functions can be obtained rigorously for the 1D transverse-
field Ising model [46,57-62]. We briefly review the detailed
derivation of the time-dependent correlation functions in Ap-
pendix A and present the final results below.

The longitudinal correlation function is represented as a
Pfaffian of a 2r x 2r skew symmetric matrix:

- i) 1 S G
C*(r,t)y= (=12 (Gr 0) (6)
Here elements of the matrices S, Q, and G are defined as
Si—l,j—l lf I < j,
Sij=1-Sj-ni-1 if i>j, (7
if i=j,
Qi1 if i</,
gij =191 if i>j, (8)
0 if i=j,
8i.j = Gi1, 9)

where the time-dependent correlation functions S; ;, O, j, and
G;,j are given as

2
Sij = =7 D teoslk(r = rplIa () + [5(1)P)

k>0
— i sinlk(r; — rp)lla ()0 (¢) + O @)ig ()]}, (10)

Qij= +% > feoslk(ri — i) + (56t

k>0
+ i sin[k(r; — )]l ()T (1) + 0@ (O]}, (11)

2
Gij == D_leosl—k(ri = rpllix(®)” = [5(0)P’

k>0
— i sin[—k(r; — rp)][a ()0 (1) — @i (D]} (12)
The symbol ) ,_, means the sum taken over all k = 27wn/L
withn =1/2,3/2,...,(L —3)/2, (L — 1)/2 for even L. For

the quench starting from the disordered state (I' — ©0), the
parameters i, (¢) and U, (¢) for O < k < 7 are described as

b, tJ
() = i—’f sin <2a),’( X —), (13)
), 4
tJ a, . , tJ
Ui (t) = —i cos <2wk x Z) - aT],Z sin (Zwk X Z) (14)

with

., ar
@, = — + cosk, (15)

J
b, = sink, (16)
A \/4F2+4F k+1, (17)

w, = — cos
k J2

respectively. Parameters with prime symbols indicate physical
quantities after the quench. On the other hand, the transverse
correlation function is given as

C(/:Y())Cnnec[ed(n t) - __(QO FSQ rt G OGO r) (18)

We numerically evaluate each correlation function for suf-
ficiently large systems. We use the library for Pfaffian
computations [63] in the case of the longitudinal correlation
function.

B. Spin-wave approximation

We investigate a small quench starting from the completely
disordered point (I' — o0) to the parameter within a disor-
dered phase (I'®sical « T' < 0o, where T'dsicdl = D with
D being the spatial dimension). We focus on small quantum
fluctuations around the disordered state and map quantum
Ising spins to bosons using the linearized Holstein-Primakoff
transformation [64—68]. The equal-time correlation functions
for quantum spins can be obtained by calculating those for
bosons. They serve as a good approximation as long as the
transverse magnetization is large enough ((S7) ~ %). We give
the detailed derivation in Appendix B and show the obtained
spin-spin correlation functions below.

The longitudinal correlation function at distance r (1 <
r, < L/2withv=1,2,...,D)is given as
/

By
C% t) = tkr
r.0) = ZLDZ T+

———(cos 201 — 1), (19)

where S(= z) is the size of spin and other parameters are

defined as
Q; = sgn(ApW/A,” — B,?, (20)
AL = —%JSyk—i—F, 1)
B, = —%JSyk, (22)
1 D
7= ;cos k, (23)

with z = 2D being the coordination number. Parameters with
prime symbols correspond to physical quantities after the
quench. On the other hand, the transverse correlation function
atdistancer (1 < r, <L/2withv =1,2,...,D)is given as

Ccormected (r t )

2
1 ik-r B/ A/ . s /
= |7 Xk:ek Z_S%([Q—Z(COSZQ;I — 1)+ sm2§2kt:|
/ 2
LDZ okr B 2(coszszkr—l) (24)
2
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FIG. 1. Schematic picture of the iPEPS having a two-site unit-
cell structure. The two sublattice sites are represented by A and B.
Each ball corresponds to a rank-five tensor, which is located at a
lattice site and has four thin sticks and a thick stick. The thin and
thick sticks represent the virtual and physical degrees of freedom,
and the bond dimensions of the former and the latter are defined as
D and Dy, respectively.

We numerically calculate each correlation function for suffi-
ciently large systems.

C. 2D tensor-network method

We use the infinite projected entangled pair state (iIPEPS)
[69-76] or the infinite tensor product state [77-81] to inves-
tigate short-time dynamics in the infinite system. We choose
translationally invariant iPEPS consisting of a two-site unit-
cell structure as shown in Fig. 1. The dimension of the local
Hilbert space is Dpyys = 2 for spin § = % The initial state
|Y0) = ®;| —); is the ground state in the limit of ['/J —
0o, which can be prepared by the virtual bond dimension
Dy = 1.

We apply the simple update algorithm [73,82] to simulate
the real-time dynamics of the transverse-field Ising model.
In this algorithm, we approximate the real-time evolution
operator in a very short-time step dr using the Suzuki-Trotter
decomposition [83-85] and obtain the two-site gate e~
[T €™ with H;; = —J838% — T'(8) 4 §5)/z (z = 4) sat-
isfying H = Z(i’ i ﬁij. The gate acts on two neighboring
tensors and increases the virtual bond dimensions. We trun-
cate the bond dimensions of the local tensors using the
singular value decomposition so that the bond dimensions of
iPEPS remain D,;;. Note that the decomposition temporarily
breaks the one-site translation symmetry into a two-site one
and calls for at least a two-site unit-cell structure even when
the system is translation invariant [73,82]. In the actual cal-
culations, the second-order Suzuki-Trotter decomposition is
used, and the time step is typically chosen as drJ = 0.001
for a quench to a strong field I". Simulations using doubled
or halved dt show no significant change in the short-time
dynamics as for the present model.

We improve the accuracy of time-evolved wave functions
by increasing the dimension of the virtual bond Dy;; and con-
firm the convergence of physical quantities. Previous studies
[41,43] suggest that results for bond dimensions Dy 2= 6

L/J =50

—— PEPS, Dy =5,6.7,8

I'/J =60
A0t /

- T/J =70

[e(t]) — e(0)]/]

— o0k — 00
T O T Ul O Ut
T

- T/J =80

=

—

o
T

I/J =90

=
o
S

time tJ

FIG. 2. Bond-dimension dependence of energy density obtained
by iPEPS simulations. We consider the quench to I'/J =5, 6, 7, 8,
and 9 and subtract the energy density at + = 0. The lines correspond
to the time-dependent energy density for the bond dimensions D =
5, 6,7, and 8 (from lighter to darker). The energy is nearly conserved
for Dy > 6 in a time frame tJ € [0, 4].

already show good convergence within a short-time frame
tJ < 4 even in one of the most difficult cases, i.e., the quench
to the critical point. (Concerning the unit of time, the energy
scale is four times larger in previous studies [41,43] because
they used the Pauli spin 0% = 2§°.)

In the present iPEPS simulations, we adopt the tensor-
network library TeNeS [86—88] and increase the virtual bond
dimensions up to D,y = 8 for safety. In general, as for
numerical simulations of a quench dynamics, the obtained
correlations would be reliable in a short time that the energy is
conserved. We investigate the time dependence of the energy
density in the unit of Ising interaction J for different fields I /J
with increasing the bond dimensions Dy (see Fig. 2). The
energy density is nearly conserved for a short time (+J < 4)
when Dy > 6 regardless of the choice of the transverse field.

The corner transfer matrix renormalization group method
[74-76,78,89-95] is used to calculate physical quantities in
the thermodynamic limit. We take the bond dimensions of
the environment tensors as xvix = 2(Dyir )’ so that physical
quantities are well converged.

D. Exact diagonalization method

The ED method is often used to get insight into the dy-
namics of small quantum many-body systems [96—100]. We
use the QUSPIN library [101,102] for ED calculations. We
consider the system sizes up to 28 sites under the periodic
boundary condition. In the present setup, both the Hamilto-
nian and the initial state are translationally invariant, and the
total momentum of the initial and time-evolved states remains
zero. We restrict ourselves to the zero-momentum sector [103]
and follow the dynamics of the state. Instead of generating
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matrix elements on the fly to reduce the memory cost, we
keep all the elements of sparse matrices in the compressed
sparse row format to accelerate calculations. To compute the
matrix exponential applied to a vector, we use the Taylor
series expansion with error analysis proposed by Al-Mohy
and Higham [104,105].

We confirm that the ED results (up to 28 sites) reproduce
the exact analytical results in 1D (not shown). We mainly
show the ED results in 2D (for 5 x 5 sites) hereafter.

III. RESULTS IN 1D

We first present the time dependence of spin-spin correla-
tions in 1D using the exact analytical approach and the LSWA.
We extract the group velocity after a sudden quench to a strong
field from these data.

A. Exact results

We show the exact equal-time longitudinal correlation
functions in Fig. 3. At an early time (+J < r), the intensity
of correlation is nearly zero. On the other hand, when tJ 2 r,
the correlation starts to develop and exhibits rapid oscillations.
For each distance, the earliest peak in the envelope of the
wave packet has the largest intensity. The peak time of the
largest envelope peak moves almost linearly with the distance,
suggesting the light-cone-like spreading of correlations.

We also show the exact equal-time transverse correlation
functions in Fig. 4. In contrast to the longitudinal correlations,
the rapid oscillations appear only for short distances (r < 3)
and are negligibly small for most of the distances. Besides,
the intensity of the transverse correlation is much smaller
than that of the longitudinal one. On the other hand, the peak
time of the transverse correlation almost coincides with that of
the largest envelope peak in the longitudinal correlation. The
transverse correlation decays rapidly just before and after the
peak time.

To estimate the propagation velocity, we first extract the
peak time of the envelope of correlations as a function of
distance. We show the corresponding time and distance in
Fig. 5. The data for longitudinal and transverse correlations
overlap very well. The distance is nearly proportional to the
peak time for both correlations. For each field I'/J and size
L, we estimate the group velocity v#°"? from one half of the
slope so that it corresponds directly to the speed of one of
quasiparticle pairs moving to the left or right. Since the data
points are slightly out of the straight line at the very short and
long distances, we discard those for r <Sand r > L/2 -5
when extracting the velocity.

To see how the group velocity behaves as a function of
the transverse field, we first examine a sufficiently large sys-
tem (L = 256) as shown in Fig. 6. Both velocities estimated
from longitudinal and transverse correlations are nearly 0.5/
for all fields I'/J > 3. The group velocity of the spin-spin
correlations agrees with the exact Lieb-Robinson velocity in
the 1D transverse-field Ising model (see Appendix A5 for
the derivation of the exact value). This fact suggests that the
quasiparticles with the fastest propagation velocity among
the various correlation functions are directly responsible for
the spreading of spin-spin correlations.

x 1072

Ut
o

T/J =30

C*(r =1,1)

T

.0
.0 i T i

CZZ(’I" = 2,t> 0.0 )

1.0F ¢« )
C:z(r = 37 t) 0.0 /\/\/\/\Af\/\/\d\/\/\/\l\—‘vw
—1.0F
1.0} ( \
C#(r=4,t) 0.0 ’\/\/\/V\/\/\/\/\/V\N\/\A/v
—-1.0F
1.0 ‘
C“(T =5, t) 0.0 4\/\/\/\/\/\/\/\ﬁ4\/\/\/\/\f—\
—-1.0}
1.0
C#(r=6,t) 0.0 "\/\/\/\/\/\/\J\/\/\—/\/\/\/\/\A
—1.0¢ et

1o} .
CH(r="1,t) 0.0
—1.0} e .

1.0F B
C*(r =8,1) 0.0“4/\“\/\/%/\/\/\’\/%
—1.0F -
1.0F ‘ ‘
C#(r =9,t) o.O‘A/\/\/\]\/\AmMN\A
—1.0F e
1.0F
C*(r = 10,1) o.o—-vxl\/WW\/"\/ \\
~1.0t ;

0 5 10
time t.J

FIG. 3. Exact equal-time longitudinal correlation functions in
1D. We consider the quench to I'/J = 3 for a system size L = 256
and show the short-time dynamics for distances r =1, 2, ..., and
10. The envelope of each correlation function is a guide to the eye.
The upper (lower) part of the envelope at each distance is obtained
by first searching all the local maxima (minima) in the correlation
and then interpolating them using a one-dimensional cubic B-spline
curve [106].

Although the estimated velocity is very close to 0.5/, it is
slightly smaller than the exact value in finite-size systems. To
check the size dependence and confirm the convergence, we
perform the finite-size scaling of the estimated velocity.

For this purpose, let us first discuss how the finite-size
effect appears. The spin-spin correlation functions in the
1D transverse-field Ising model are described by the single-
particle correlation functions of fermionic quasiparticles. In
the thermodynamic limit, they are given by the Bessel func-
tions [59]. The size dependence of the Bessel functions has
been carefully investigated in the case of long-time dynamics
of the 1D Bose-Hubbard model [54], as well as in that of
the 1D transverse-field Ising model [107]. The distance r
dependence of the peak time ¢ is given as

1
1~ —(r+er'h), (25)

Voo
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FIG. 4. Exact equal-time transverse correlation functions in 1D.
The parameters are the same as those in Fig. 3.

where v, is the velocity at large distances, and € is a con-
stant related to the peak position of the Bessel function [54].
The instantaneous velocity v(r) = [t(r + 1) —t(r)]~! at each
time ¢ is independent of distances and becomes v, if € = 0,
but it is slightly modified in the presence of finite €. For € # 0,

100

50

distance r

O  longitudinal
D transverse

50 75 100 125
first peak time tJ

FIG. 5. First-peak time dependence of distance for exact correla-
tions in 1D. We show data points when the distance is a multiple of
four. The group velocity is estimated from one half of the slope.

0.8
0.6
~
o
£ 04r
= —— Lieb-Robinson I 1
0.2 ic t 0.1115011 hound
L = 256 m longitudinal
7 m transverse
0'00 2 4 6 8 10
r/J

FIG. 6. Field dependence of the group velocity in 1D. The exact
Lieb-Robinson velocity v'R/J = % is shown as a reference. For
I'/J < 3, we only show the group velocity estimated from the trans-
verse correlations because the envelopes of longitudinal correlations

become unclear for a weaker field.

the instantaneous velocity is obtained as
v(r) ~ oo (1 - %fzﬂ). (26)

Since the farthest distance for a chain of length L is r = L/2
(x L), we may safely assume that the deviation between
the finite-size and infinite-size velocities Av(L) follows the

relation
L L
v(—) — lim v(—)‘ o L72/3 27)
2 L—oo 2
for L > 1.

We then extrapolate the finite-size group velocities to
the thermodynamic limit using Eq. (27). We estimate the
error bars using the covariance obtained from weighted least-
squares regression. As shown in Fig. 7, all the data points
lie on an expected straight line for both correlations. The ex-
trapolated group velocity at I'/J = 3 is v#°P /J = 0.5005(4)
[ve'P /] = 0.4999(3)] for the longitudinal (transverse) cor-
relations and almost converges to the exact Lieb-Robinson
velocity (v'R /J = 0.5) of the 1D transverse field Ising model
within the error bar of the extrapolation. We have also con-
firmed that the estimated velocity converges to the exact
one for all the other transverse fields that we have studied
(I'/J = 1). Therefore, the fastest correlation spreading can be

Av(L) :=

0.50

0.45

Ugr()up/J

——— Lieb-Robinson bound
O longitudinal

r/J =30
040 F

transverse

0.00 002 004 006 008 0.10
1/L%3

FIG. 7. Size scaling of the group velocity in 1D. The group
velocity is well fitted by 1/L%? with L being the length of a chain
and is extrapolated to the value of the exact Lieb-Robinson velocity
Ry =1

2
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FIG. 8. Equal-time longitudinal correlation functions obtained
by the LSWA in 1D. The parameters are the same as those in Fig. 3.
We show the exact correlations (dashed line) for comparison.

measured by the spin-spin correlations in the 1D transverse-
field Ising model.

B. Results by the LSWA

To examine how good the LSWA is as for the correlation
spreading, we calculate the equal-time spin-spin correlation
functions by the LSWA and compare the results with those
of the exact analysis. In general, the LSWA gets better with
increasing spatial dimensions [108—110] because it takes into
account a correction to the leading order of the mean-field ap-
proximation. Here we will demonstrate that the group velocity
of the correlation propagation obtained by the LSWA agrees
well with the exact one even in the lowest 1D.

We show the longitudinal correlation functions in Fig. 8.
As in the case of the exact analysis, the correlations are sup-
pressed for tJ < r and begin to develop for #J 2 r at a given
distance r. The LSWA quantitatively reproduces the period of
oscillations and the intensity of exact correlations up to about
tJ =~ r. In the short time (¢J < r), a very small number of
quasiparticle excitations would come into play, and the LSWA
becomes more accurate in this dilute regime.

x107%
I'/J=3.0
=10 O\ 2 /
0020, : '
L =256
CLL<T = 27 t)
Cmm(r = 37 f)
Cl‘l(r = 47 t)
C'T'T(T = 67 t)
)
(e = 8,1)
OII(T = 97 t)
C‘,m.(r — 107 t) ,,/ \\
0.0 i B i
- (‘,X'{l(’,t 0 5 10 15 20
— LSWA time ¢.J

FIG. 9. Equal-time transverse correlation functions obtained by
the LSWA in 1D. The parameters are the same as those in Fig. 3. We
show the exact correlations (dashed line) for comparison.

On the other hand, the transverse correlation functions ap-
pear to be accurate up to the point where they begin to increase
(see Fig. 9). In contrast to the exact analytical result, where the
earliest peak has the largest intensity, the LSWA predicts that
the second earliest peak has the largest intensity. Nevertheless,
the time of maximum intensity does not differ significantly
between the exact and approximate results. The first-peak
time is typically about 2¢J early, while the time of maximum
intensity is typically about 2¢J late for all distances in the case
of the LSWA. These effects do not change the propagation
velocity significantly. Therefore, the group velocity estimated
by the LSWA is expected to be close to the exact one.

As in the case of exact analysis, we observe the sup-
pression of rapid oscillations in the transverse correlations
using the LSWA. This phenomenon can be easily understood
in the magnon picture. The original transverse correlation
corresponds to the density-density correlation of magnons.
The density operator is less susceptible to the effects of
phases. On the other hand, the original longitudinal correla-
tion corresponds to the single-particle correlation of magnons,
which directly feels the effects of phases. Therefore, the trans-
verse (longitudinal) correlation tends to exhibit less (more)
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FIG. 10. First-peak time dependence of distance for correlations
obtained by the LSWA in 1D. We show data points when the distance
is a multiple of four.

oscillations. Such effects have been intensively examined
in the correlation spreading of the Bose-Hubbard model
[51,54,55,111,112].

Likewise, the LSWA also predicts that the intensity of
the transverse correlation is smaller than that of the longi-
tudinal one. They are approximately given as |C%(r,t)| =
O(J/T) and |CX . .(r,1)| = O(J?/T?), respectively (see
Appendixes B 2 and B 3).

Having assessed the accuracy of the LSWA, we extract the
group velocity from the 1D correlations. We first investigate
the distance dependence of peak time for a sufficiently large
system (L = 256), as shown in Fig. 10. Again, both correla-
tions show almost the same result, and the distance is nearly
proportional to the peak time. We estimate the velocity using
the datafor5 <r < L/2 —5.

We summarize the field dependence of the group velocity
in Fig. 11. Both group velocities estimated from the longitu-
dinal and transverse correlations are nearly 0.5/ irrespective
of the choice of the transverse field for I'/J 2 3. Note that the
LSWA group velocity is expected to deviate from the exact
one at I'/J < 2 because too many quasiparticles are created
due to such a large quench.

Finally, we have confirmed the size dependence of the
estimated group velocity. As shown in Fig. 12, the LSWA

0.8

0.6 g
> —\E:E‘—ﬂ-w
P
£ 04y
CHD; === from spin-wave dispersion

0.2 —— Lieb-Robinson bound

. L =256 m longitudinal
M transverse
0.0 1 1 1 1 1
0 2 4 6 8 10
r/J

FIG. 11. Field dependence of the group velocity obtained by the
LSWA in ID. The exact Lieb-Robinson velocity v'®/J =1 and
the maximum group velocity vSV/J = [1 4+ /1 — (J/T)2]"2//2
estimated from the spin-wave dispersion (see Appendix B4) are
shown as references. For I'/J < 3, we only show the group velocity
estimated from the transverse correlations because the envelopes of
longitudinal correlations become unclear for a weaker field.

0.50 w
~
-~
5 0451
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I

0.00 0.02 004 006 008 0.10
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FIG. 12. Size dependence of the group velocity estimated by the
LSWA in 1D. The size dependence is smaller than the exact case (see
Fig. 7).

shows much smaller size dependence than the exact analysis
in Fig. 7. The velocity is nearly converged for L > 48 and
is extrapolated to 0.5J, corresponding to the Lieb-Robinson
velocity.

IV. RESULTS IN 2D

Next, we examine the time-dependent correlations in 2D
using the ED method, the tensor-network method based on
iPEPS, and the LSWA. As in the case of 1D, we estimate the
group velocity after a sudden quench to a strong field.

A. Results by the LSWA

We apply the LSWA to calculate the spin-spin correlation
functions and to extract the group velocity. In the case of
the 1D transverse-field Ising model, the LSWA reproduces
the exact results to the extent that the group velocity of the
correlation propagation quantitatively agrees at a sufficiently
strong field. We will demonstrate that it reproduces the 2D
correlations obtained by the nearly exact simulations much
better than in 1D. It also allows us to estimate the group
velocity from the correlations at farther distances than the ED
and iPEPS simulations, as we will demonstrate below.

We compare the longitudinal correlation functions ob-
tained by the ED method and the LSWA in Fig. 13. The LSWA
well reproduces the correlations obtained by the ED method
up to the point where the second peak of the envelope appears
[see, e.g., C*(r = 2, ¢t) in Fig. 13]. The period of oscillations
almost coincides between the ED method and the LSWA. As
expected in the LSWA in higher spatial dimensions, the agree-
ment in 2D looks much better than in 1D (compare Figs. 8
and 13).

The longitudinal correlations exhibit rapid oscillations as
in the case of 1D. On the other hand, in contrast to the 1D case,
where the earliest envelope peak has the largest intensity, it
does not always exhibit the largest intensity in 2D. The order
of the envelope peaks with the largest intensity varies with
distance in 2D, which would make it more difficult to extract
the group velocity. This observation may be ascribed to the
complex interference effects in 2D.

The transverse correlation function obtained by the LSWA
also qualitatively reproduces the ED result (see Fig. 14). In
contrast to the longitudinal correlations, the rapid oscillations
are much weaker for r > 3.
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FIG. 13. Equal-time longitudinal correlation functions obtained
by the LSWA, the ED method, and the tensor-network method in 2D.
We consider the quench to I'/J = 9 for a finite system of N, = L2,
L = 128 by the LSWA (solid line), for a finite system of N, = L?,
L =5 by ED simulations (small circles), and for the infinite system
with the bond dimensions D,;; = 8 by iPEPS simulations (dashed

line).

To clarify how the correlation develops for a longer time
and to examine the complex interference effects in 2D, we
depict the normalized intensity of the transverse correlations
as a function of time and distance in Fig. 15. In general, the
LSWA performs better in the dilute regime, corresponding to
the region r 2 tJ. Within this range, we observe a stronger
intensity near the line satisfying r &~ tJ. However, areas of
high intensity are not continuously connected and are rather
separated in small pieces. Such pieces are bundled together
forming the boundary of the light cone. When we focus on
the short-time and short-distance regions, we can only look at
the first small area of high intensity. If we use such data, we
would incorrectly estimate the group velocity. Indeed, as we
will see later in Sec. [V B, the velocity obtained by the iPEPS
method for a relatively short time has a considerable degree
of ambiguity.

To estimate the group velocity in 2D, we collect the peak
times and distances in Fig. 16. Both correlations exhibit the
consistent results. Although the jagged behavior caused by
the complex interference effects is observed in the data points,
the distance becomes nearly proportional to the peak time for
sufficiently large systems. We extract the group velocity from
one half of the slope so that it corresponds directly to the
velocity of one quasiparticle.

We show the field dependence of the group velocity along
the horizontal axis for a large system (N, = L?, L = 128) in
Fig. 17. At a very strong transverse field, the velocity turns out
to be nearly 0.5J. The velocity is likely to increase with de-
creasing the transverse field. This observation is qualitatively

x107°
T/J =90
C.’L‘fl}(,r. — 1’ t) 1000 e v,-,l\.f
0'0‘ U U u!:u UIU A JIV ;‘.lﬂé."'.
) 10.0
Cr(r=2,1) T TNy
0.0 M\:’{_‘!M
C.Il(,r. — 37 t) 25 B "5\\\

time t.J

~—=PEPS, Dyye =8 ® ED, N,=5x5 LSWA, N, = 128 x 128

FIG. 14. Equal-time transverse correlation functions obtained by
the LSWA, the ED method, and the tensor-network method in 2D.
The parameters are the same as those in Fig. 13.
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FIG. 15. Contour plot of normalized intensity of equal-time
transverse correlation functions as a function of time and distance
obtained by the LSWA in 2D. The parameters L = 128 and I'/J =9
are the same as those in Fig. 13. We show the normalized correlation
function Crlf(frm (r’ l) = ngnncctcd (r’ [)/ maxXqe(o,L/(2/)] ngnncctcd (r’ t) (6

[0, 1]) along the horizontal axis [r = (r, 0)] for each distance up to
r=32.
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FIG. 16. Dominant-peak time dependence of distance for corre-
lations obtained by the LSWA in 2D.
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FIG. 17. Field dependence of the group velocity obtained by the
LSWA in 2D. The maximum group velocity vSV/J = (1 — J/T +
JT=2J/T)"/2//2 estimated from the spin-wave dispersion (see
Appendix B 4) is shown as a reference. For I'/J < 3, we only show
the group velocity estimated from the transverse correlations be-
cause the envelopes of longitudinal correlations become unclear for
a weaker field.

consistent with the result obtained in perturbation theory (see
Appendix B4). The velocity estimated from correlations is
basically on the curve represented by vSV/J = (1 — J/T +
VT =2J/T)~'2//2, which is determined by the derivative
of the spin-wave dispersion (see Appendix B 4).

We finally check the size dependence of the estimated
group velocity in Fig. 18. As in the case of 1D, the velocity
does not depend on the size significantly for L > 48 and
converges to the value close to 0.5J. Therefore, the LSWA
predicts that the speed of spin-spin correlation spreading
is v&°% =~ 0.5J for a small quench to I' > J in the 2D
transverse-field Ising model.

B. Tensor-network results

As a complementary method to the LSWA, we use the
tensor-network method based on the iPEPS to calculate
the spin-spin correlation functions. We will see that the
tensor-network method has an advantage in calculating the
time dependence of correlations more accurately than the
LSWA.

Before presenting the correlations obtained by the iPEPS
simulations, let us comment on the time range of the appli-
cability of the method. As we have discussed in Sec. II C, as
for numerical simulations of a quench dynamics, the obtained
correlations would be reliable in a short time that the energy

1.00
0.75F
H
P
£ 0.50 eEEE e m® % _______
0.95 l()Hl. S| 1%1-\’»‘21\(‘ dispersion
m longitudinal T =90.0
m transverse /J 9
0'08.00 0.01 0.02 0.03 0.04

1/L

FIG. 18. Size dependence of the group velocity estimated by the
LSWA in 2D.

x1072
T/ =90

5% 5 time t.J

FIG. 19. Equal-time longitudinal correlation functions in 2D. We
consider the quench to I" /J = 9 for the infinite system with the bond
dimensions Dy = 5, 6, 7, and 8 (solid lines from lighter to darker)
by iPEPS simulations and for a finite system of N, =L, L =5
(small circles) by ED simulations. We show the short-time dynamics
for distances r =1, 2, ..., 5, and /2. Both data agree very well for
t/J < 4.

is conserved. In our case, the energy density is found to be
nearly conserved for a short time (tJ < 4) when Dyiy > 6 (see
Fig. 2). Therefore, we will present the correlations within this
time frame hereafter.

We show the longitudinal correlation functions obtained by
the ED and iPEPS simulations in Fig. 19. The ED method
can deal with small systems in 2D and gives the correlations
up to r &~ 2 at the farthest. For these distances (+ < 2) and
short times (¢J < 4), the data by the ED and iPEPS methods
completely overlap. Since the iPEPS method directly han-
dles the infinite system, the ED method appears to provide
the correlations that can almost be regarded as those at the
thermodynamic limit in this regime. The iPEPS method can
predict the peak positions of correlations at slightly farther
distances and still conserve the energy for tJ < 4. The peak in
the envelope of correlation hits #J =~ 4 when r = 5, and thus
the correlations up to r = 5 would be reliable for the velocity
estimation.

As in the case of the LSWA, the longitudinal correlations
exhibit rapid oscillations. Moreover, in 2D, the tensor-network
method also predicts that the earliest envelope peak does not
always correspond to the peak having the largest intensity
(see Fig. 19). This observation suggests that the complex
interference effects in 2D are not the artifact of the LSWA.

We also examine the transverse correlation functions in
Fig. 20. The ED and iPEPS methods provide almost the same
correlations for r < 2 and ¢tJ < 4. Again, the iPEPS method
is applicable to farther distances up to r = 5. The rapid os-
cillations are quickly suppressed for r 2 3, as in the case of
1D and also as in the LSWA for 2D. The peak positions of
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FIG. 20. Equal-time transverse correlation functions in 2D. The
parameters are the same as those in Fig. 19.

the transverse correlations are nearly the same as those of the
envelope peak in the longitudinal correlations.

The qualitative behavior of correlations obtained by the
tensor-network method and the LSWA is similar (see Figs. 13
and 14). The peak time of the correlations does not differ sig-
nificantly between the two methods. Although the first-peak
time is a little ahead in the LSWA, the peak-time difference
is typically 0.5¢J in 2D, which is smaller than 2¢J in 1D.
Because the LSWA is applicable to a much longer time, it
is more suitable for estimating the group velocity. On the
other hand, the time dependencies of correlations agree well
between the ED and tensor-network methods, whereas they
slightly differ between the ED method and the LSWA. There-
fore, the tensor-network method is more appropriate to obtain
quantitative data.

To estimate the group velocity, we pick up the peak time
for each distance from these correlations obtained by iPEPS
simulations, as shown in Fig. 21. Since the data obtained by
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FIG. 21. Dominant-peak time dependence of distance for corre-
lations obtained by iPEPS simulations (D.;y = 8) in 2D. The group
velocity is estimated from the value r/[2¢(r)] for distances r = 3, 4,
and 5.
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FIG. 22. Field dependence of the group velocity estimated from
iPEPS simulations (D, = 8) in 2D. For I'/J < 5, we only show the
group velocity estimated from the transverse correlations because the
envelopes of longitudinal correlations become unclear for a weaker
field.

the bond dimensions Dy;x = 6, 7, and 8 are well converged,
we present the result for the largest bond dimension Dy =
8. Within the range of time where the iPEPS simulations
are considered to be reliable, it is hard to tell whether the
light-cone-like spreading of correlations exists or not in 2D.
However, as we have shown by the LSWA in Sec. IV A, such
behavior is caused by the complex interference effects in 2D;
it is highly probable that the light cone exists. Therefore, we
may assume that the distance eventually grows linearly with
the peak time also in the iPEPS results. We then extract the
group velocity as v&"P = r/[2¢(r)] for each distance r. We
mainly focus on the data for farther distances (r = 3, 4, and
5) because data for short distances tend to be off the light-cone
behavior in general.

The field dependence of the group velocities along the hor-
izontal axis for distances » = 3, 4, and 5 are given in Fig. 22.
They do not vary significantly for I'/J € [2, 9]. Since the ve-
locity increases with increasing the distance, we estimate the
group velocity as the average of the smallest and largest values
with the ambiguity given by one half of their difference.
It is given as v#°"/J € [0.43, 0.65] for all transverse fields
that we have studied using the iPEPS method. As we have
discussed in Sec. IV A, the LSWA also predicts the similar
velocity v&°" /J ~ 0.5. The velocities obtained by the LSWA
and those obtained by the tensor-network method agree within
the ambiguity.

V. DISCUSSION AND SUMMARY

Let us compare our group velocity estimated from the
spin-spin correlations with the recent Lieb-Robinson bound.
In 1D, our estimate of the group velocity is v&°'P = J/2.
This is the same as the exact Lieb-Robinson velocity v'R =
J/2 in the 1D transverse-field Ising model, indicating that
the spin-spin correlations propagate at the speed of fastest
quasiparticles. On the other hand, the recent Lieb-Robinson
bound for general lattice systems provides the speed v™" =
1.51J [23]. As was already pointed out in Ref. [23], it is
approximately three times as large as the exact Lieb-Robinson
velocity.

In 2D, the group velocity along the horizontal axis is esti-
mated to be "M@l & 7 /2 as well. We do not know the exact

023301-11



RYUI KANEKO AND IPPEI DANSHITA

PHYSICAL REVIEW A 108, 023301 (2023)

excitation velocity in the 2D transverse-field Ising model so
far. However, for a small quench within a disorder phase, we
might expect that the fastest quasiparticles are responsible
for spin-correlation spreading also in 2D. We come to this
conclusion because the dispersion corresponding to the fastest
quasiparticles obtained in perturbation theory [113] turns out
to be the same as the dispersion estimated in the LSWA
(see Appendix B 4), and the LSWA reproduces the spin-spin
correlations obtained by the exact analysis in 1D and those
obtained by the nearly exact simulations in 2D fairly well
(see Secs. III and IV). Therefore, as for the transverse-field
Ising model, even in 2D, it is natural to regard the group
velocity of the spin-spin correlations obtained by the LSWA
as the Lieb-Robinson velocity. From the comparison between
this value (the horizontal v"7n@l ~ j/2 or the diagonal
pdiazonal ~ 7/ /2 velocity) and the best currently available
estimate (vrecent,horizomal — JXy:2 ~ 2.836J or vrecent,diagonal —
2JX,_1, ~ 3.787J, where X\ is the solution to the equa-

tion x arcsinhx = +/x2 + 1 +y) [23], it is likely that there
is still much room for improving the Lieb-Robinson bound
in 2D.

In conclusion, we have studied the correlation-spreading
dynamics in the transverse-field Ising model on a chain and
that on a square lattice. We have calculated the longitudinal
and transverse spin-spin correlation functions after a sudden
quench starting from the disordered state to a strong field
within a disordered phase. We have applied several analytical
and numerical methods and cross validated all data.

In 1D, we have compared the time-dependent correlations
using the exact analytical formulas and the LSWA. We have
found that the group velocity of the correlation propagation
extracted from the LSWA results asymptotically approaches
that from the exact analytical formulas as the transverse field
increases. In addition, the transverse correlation tends to ex-
hibit less oscillations than the longitudinal one. This fact
makes it easier to extract the propagation velocity without
drawing the envelope of the wave packet of the correlation
when we measure the transverse one. Moreover, the 1D spin-
spin correlations are found to propagate at the speed of fastest
quasiparticles corresponding to the exact Lieb-Robinson
velocity.

In 2D, we have calculated the correlations using the ED
method, the tensor-network method based on iPEPS, and the
LSWA. As in the case of 1D, we have confirmed that the
three methods reproduce nearly the same correlations within a
short-time frame. The tensor-network method and the LSWA
allow us to calculate the correlations for much farther dis-
tances than the ED method can deal with. In particular, the
LSWA is convenient for estimating the propagation velocity,
whereas the tensor-network method is advantageous in cal-
culating the time dependence of correlations accurately. We
have extracted the group velocity by these two methods and
obtained the value which is nearly equal to one half of the
magnitude of the Ising interaction. The group velocity of the
spin-spin correlations in 2D turns out to be much smaller than
the best currently available estimate for the Lieb-Robinson
bound [23].

Our findings on the group velocity would be helpful
for future analog quantum simulations of Rydberg-atom ar-
rays and stimulate further research on the Lieb-Robinson

bound. The present tensor-network method, which can accu-
rately calculate the dynamics in one of the most fundamental
two-dimensional quantum many-body systems, opens the pos-
sibility of future applications to other systems.
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APPENDIX A: DETAILS OF EXACT CALCULATIONS IN 1D
1. Hamiltonian

We review the derivation of the exact form of two-body
correlation functions after a sudden quench [46,57-62]. For
simplicity, we consider the Hamiltonian

H=->6i6},-8) 6 (Al)
i i

which corresponds to the Hamiltonian in Eq. (1) with J =4
and I' = gJ/2. To get the correlation functions for the original
Hamiltonian, we have to use g = 2I"/J and replace time 4¢
with ¢J.

After the Jordan-Wigner transformation

65 =2¢el¢ — 1, (A2)
i—1
&f =] —2&iepn@ +e) (A3)
j=1
and the Fourier transformation
1 i
éi=— e Mgy, (A4)
J ﬁ Xk: k
27n
k=——, AS
7 (A5)
where n = —(L —1)/2, —(L—-3)/2, ..., —1/2, 1/2, ...,
(L-3)/2, (L—1)/2 foreven L or n=—(L —1)/2, (L —
3)/2,...,-2,—-1,0,1,2,...,(L—3)/2, (L —1)/2 for odd
L, we obtain
y AT A Eik —il;k Cr
ay = g+ cosk, (A7)
by = sink. (A8)
Using the Bogoliubov transformation
Cr we v\ ( Vi
R =|. e B A9
()= W)6) e
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2. Longitudinal correlation functions

3
= =, A10 . oo .
e = €08 2 (410) We evaluate the time-dependent longitudinal correlation
.6 functions defined as
v = sin —, (A11) B H H
2 C=(r,t) = (Pole™ 6767, e o)
sin k
tan 6 = Tt oosk (A12) itr—1
cos 't AT | A N
& = (ole™" @ +en| [ —2elep | a1
j=i
satisfying u_; = u; and v_; = —uv;, we get . )
X (&, + Cere™ o). (AI18)
A 1 Using th lity 1 — 2¢%¢; = (&1 + &,)(¢} — ¢;) and defin-
_ fta 1 sing the equality g . J
H=2 ; @k <y" Yk 2)’ (Al3) ing the operators ! ! !
— Ai=éveo, Bi=¢ —¢, (A19)
Wy = /8 +28 cosk + 1. (A14)
Ait) =A™ Bit) = e Bie ™, (A20)
The coefficients u; and v, can be described by ay, by, and wy we obtain the correlation function
as _ IO R . o
C=(r, 1) = (YolBi(1)Air1(1)Biy1 (DAi2()Bisa(t) - - -
dr — wp (G — wi)or + ax ALS) X Aisr1(OBigr1 (DA (Do) (A21)
U = = = )
k 2w (wr — ay) 2w | by It can be evaluated by the Pfaffian of a 2r x 2r skew symmet-
~ ~ _ ric matrix A using the Wick’s theorem:
o — by _ sgn(b)vor + ay (A16) & "
CT oo —arn) 2op C(r,1) = (=1)"7 PfA. (A22)
The matrix A is given as
In this paper, we mainly consider the quantum quench from s G
g = go to g = g < oo within the disordered phase. We write A= (_ G7 Q> (A23)
the Hamiltonian before (after) the quench as H (H’). For g —
0o, we have u; — 0 and vy — sgn(sink). with matrices
|
0 So.1 So.2 So.r-2 So0,r—1
—So0.1 0 S12 St.r-2 Str-1
—S ) 0 Sy Sy
g_ '0,2 .1,2 : 2,. 2 z,' 1 ’ (A24)
=Sor—2 —Str2 =S, 0 Sr—2,r-1
=Sor—1 —=Sir-1 =821 —Sr—2.r-1 0
0 Qo1 Qo2 Qo.r—2 Qo,r—1
—0Qo.1 0 Oi2 01,2 O1.r-1
0= —Qo,2 —Ql,z 0 Q2,.r—2 Q2,.r—l ’ (A25)
—Qor—2 —0Oi1r—2 —02,2 0 Or—2.,r-1
—Qor-1 —CQ1r—1 —02,-1 =0 2,1 0
Go,1 Go Gos Go,r—1 Go,r
G, G Gi3 G Gi.r
g=| G O (426)
G211 Grap Grooj G 21 Gy
Grfl,l Gr71,2 Gr71,3 Grfl,rfl Grfl,r
[
Here we define time-dependent correlation functions
Gij = (Bi(1)A;(1)) = —(A;(1)Bi(1)) (A29)
Sij = (Bi()B;(1)), (A27)
A a and use that they are translational invariant. We will obtain the
Qij = (Ai()A; (1)), (A28) explicit form of evaluating S; ;, Q;, j, and G; j in Appendix A 4.
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3. Transverse correlation functions

We evaluate the time-dependent transverse correlation
functions defined as

C¥(r, 1) = (Wole™"6767,, 7" o) (A30)
= (Yole™" 22 e; — 122, e — e ™" |yg).
(A31)

Using the equality 1 — 2¢}¢; = (¢} + ¢)(&] — ¢;) and the ex-
pressions for A; and B;, we obtain
C¥(r, 1) = (YolAj(1)Bi(t)Ai (1B (1) 1)
=G;; — QiitrSiitr + (—=Giri)Giir-
Subtracting the correlation of the local transverse magneti-
zation, which is given as (67(t)) = (Yole"6Fe M ) =
—{¥olA;@)B;()|¥0) = —G; ;i = —Go,0, we get the connected
correlation function
Cconnecled(r t) = Cxx(r, t) - (61)(0))( er(l))
GitriGiiyr.

(A32)
(A33)

(A34)
= —QiirrSiitr — (A35)

The explicit form of evaluating S; ;, Q; ;, and G; ; will be given
in Appendix A 4.

4. Single-particle correlation functions for fermions

Let us focus on ¢t = 0 operators. For simplicity, we restrict

ourselves to the case of even L. Using the Fourier transforma-
. A 1 —ikr: A . .

tion &; = >, e ™i¢ and the Bogoliubov transformation

& = wiPr + v P, and then splitting the sum ), into the
positive and negative parts Y, o+ ,_o, We rewrite A; and
B,‘ as

(A36)
(A37)
with

a; = «/_ Z[élkr’(uk )P+ €% (g + i) il

k>0
(A38)
L1 . o o
=7 g{;[e”‘wuk + i) + e F e — i) Pl
(A39)
The operators &; and 13,~ satisfy
(@i, a;3) = (b, bj}) = ({au, b)) = (A40)
({ai, 1)) = (b, BT)) = 8ij, (A41)
({ai, b)) = ({a], b;)) = -G, (A42)
with
G, = Z [ e — ive)?
k>0
+ e Dy +- v ). (A43)

After the quench, the Heisenberg equation for & (¢) is given
as

d
i C(t) = =28,8(1) — 2ibe’ (1), (A44)
@, = g+ cosk, (A45)

b, = sink, (A46)

where the prime symbols indicate the parameters after the
quench. As in the static case, we can introduce i, (t ) and D (¢)
for the Bogoliubov transformation at time ¢

&0 () —5(0)
(é"'k(t)) - <f)k(t) () )( ) (A47)
satisfying
ik (1) = fig (1), (A48)
D_g(t) = — Ui (1), (A49)
lii (1)1 + |0 ()] = (AS50)

Here $ corresponds to the Bogoliubov excitations before the
quench. From Eqgs. (A44) and (A47), ii;(¢) and 9 (¢) should
satisfy

d (ak(r)> B (—253; —2iE;> <ﬂk(z))
di\ve@®)) — \ 2ib,  2a, J\v(@))

Then, for the sudden quench (gy — g), @ (¢t) and Uy (¢) are
explicitly given as

(AS1)

akuA +h Uk

ii uy cos 2wt + i sin 2wyt

(lfk(t)> - : ' D ug—av y . (A52)

U () —ivg cos 20t 4+ “=—= sin 20

where each variable is represented as

ay = go + cosk, (A53)
by = sink, (A54)
on = /g + 2go cosk + 1, (A55)
= /g +2gcosk +1, (A56)

and Eqgs. (A45) and (A46). The parameters u; and v; are
defined in Eqgs. (A15) and (A16).

As in the case of + = 0, the Heisenberg representation of
each operator satisfies

Ait) = al (1) + ai(e), (AS7)
Bi(t) = bl(t) — bi(r) (A58)
with
a(t) = {1 g (1) + V(]9
2D
+ e ® Gy () — Te(t)]P—i ) (A59)
R 1 .
bi(r) = 7 ;{e""f[ﬁka) — TP
+ e i (1) + TP} (A60)
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Note that a;(1) # ¢ a;e='" and by(t) # ™" b;e=™ " in our
notation. Then, the commutation relations for the operators
are

({ait), a;(0))) = ({bi(1), b;(1)}) = {ai(t), b;(1)}) = 0,

(A61)
({ai(). aj(0)}) =: =G (1), (A62)
{bi(1), b)) =: =GP ), (A63)
({ai(). By} = ({af (1), b)) =1 =G (1) (A64)
with
2
G = -1 g{cos[k(ri — Il + 19 (0)]
+ i sin[k(r; — r)][i ()T} (1) + Bt (0]},
(A65)
2
Gl =—7 ;{cos[km — rp i P + 190
— i sin[k(r; — r)][a ()0 (1) + Oe(0)ig (]},
(A66)
2
Gl =—7 ;{cos[k(r,- — )l OF = 150
— i sin[k(r; — )] (OB () — De(O)itp ()]}
(A67)

Using these results, we obtain

So.r = (Bo)B, (1)) = —(tbo(t), bl (1)}) = +G™.(t), (A68)
0o, = (AoA, (1)) = +{{ao(1), &l (1)}) = —G“.(t), (A69)

Go,r = (Bo(OA, (1)) = —({bo(t), &} (1)}) = +GL.(t). (A70)

5. Maximum group velocity

In the 1D transverse-field Ising model, the Lieb-Robinson
velocity is obtained as the maximum group velocity deter-
mined from the derivative of the band dispersion [50-53]. It is
given as

dwy 28 if g<1
LR _ Gl _ )48 §x by
v —Inlflx = {2 i 3> 1 (A71)
for the Hamiltonian defined in Eq. (A1), and it is obtained as
wr_ T it T <J/2,
ve= {J/Z it T>J2 (A72)

for the original Hamiltonian given in Eq. (1).

APPENDIX B: DETAILS OF THE LSWA

1. Bosonic quadratic Hamiltonian

We consider a sudden quench within the disordered phase
for the Hamiltonian in Eq. (1). We investigate the effect of
small quantum fluctuations around the completely disordered
state at ' — oo using a linear spin-wave expansion [64—68].
As long as we consider a quench to a strong transverse field so
that the transverse magnetization is large enough ((S7) ~ 3),

this approach should be a good approximation. We specif-
ically study the parameter region I' € (I'ési¢dl o0) where
the classical transition point obtained by the mean-field ap-
proximation [17,114,115] is [¢lassieal — D with D being the
spatial dimension. We review the derivation of the longitudi-
nal correlation functions [65] and then calculate the transverse
correlation functions, which have not been investigated in
previous studies.

We apply the linearized Holstein-Primakoff transforma-
tion, which is given as

V28

S8 =S—blb;, §= T(EH&) (B1)
before the quench and is represented as

o/ A V28

S =s—ala;, §= 5 @ +a) (B2)

after the quench. The prime symbols indicate operators
after the quench. After the Fourier transformation (13,- =
\/LLT) e by, a; = x/;LT’ >, e *rigy) and the Bogoliubov
transformation, we obtain the Hamiltonian for free bosons
before the quench (up to constant terms) as

=" upp. (B3)
k
bi = skPr + By, (B4)
and that after the quench (up to constant terms) as
A = Z Q4] ., (B5)
k
a = sy + Q. (B6)

Here the corresponding dispersions and coefficients are de-
fined as

Qr = sgn(Ax),/A; — By, (B7)

- 1( 1Al
Sk = sgn(Ax) 3 —k (B3)

0
+
\;/

i = —sgn(Bo) |+ (1A ), (BY)
2\ [€2|
Q = sgn(A;)\/W, (B10)
s = sgn(Ay) LA LY, (BI1)
PANToA
= sy L) @i
2\|2]
where
Av=—SISp+T. Bu=—3JSn. (B13)
Ay = —%J'S)/k +I', B, = —%J’Syk, (B14)
1 D
ne=g ;coskv (B15)

with z = 2D being the coordination number. We add the prime
symbols to distinguish parameters after the quench.

023301-15



RYUI KANEKO AND IPPEI DANSHITA

PHYSICAL REVIEW A 108, 023301 (2023)

At t = 0, the vacuums of both Hamiltonians are the same,
and lzosons before the Holstein-Primakoff transformation sat-
isfy by = ay. Then, these operators should fulfill

ék _ (S ﬁk

bi_k I Sk ,Bik
N ARAYE AN
“\n os)\ely) T\, )

This means that Bogoliubov excitations before and after the

quench are connected by
ar _ S;(Sk — t,él‘k S;ctk — Skt]; Bk
&ik S;ctk - Skllé S;CSk - t]él‘k 'Bl—k

(B16)

we v\ ( B
= A , B 1 7
(vk ”k) <ﬂk> BID
where the coefficients satisfy
wp—vi=s -t =st — 1 = 1. (B18)

2. Longitudinal correlation functions

We evaluate the time-dependent longitudinal correlation
functions defined as

C(r, 1) = (Yole™ 8285~ ysy) (B19)

S N 7
= 5 Wole™ " (B] + br)(by + bo)e ™™ [Yro). (B20)
Writing them in the Fourier space (b; = ﬁ Dk e~ *7ip) and
in the Heisenberg picture, we obtain

S . ~ ~ ~ ~
CHr1) = 575 3 WollBB 1) + B()be(r)
k

+ bk (BT (1) + b (b (D]IY0).  (B21)

We then replace all operators bi(t) by pBx. Because

b(t) = spou(t) + a7, (1), ax(t) = e W'q, and @ =
Uy ,3k + v Bik, the following relation holds:
l;k(l‘) = (efm;f's,'cuk + eHQ;ftl‘,ka),Bk

+ (7 M sfug + e ) BT (B22)

After straightforward calculations using Bglyo) =0, we
obtain

S .
CEr0) = 575 ) (s + 1)
k

x (u + v + 2ugvy cos 2Qt). (B23)

Substituting uy and vg with sg, s, #, and #; using Eq. (B17),
we get

S .
C5(r.0) = 575 ™ (si + 1) (ue + i)’ (B24)
k

S )
S5 2 1, (B25)
k

C%(r, t) := C*(r,t) — C*=(r, 0)

S A
Y7 Z e*T (s, + 1) 2upvr(cos 2t — 1)
k

(B26)

(B27)
S )
= 575 2 DLk + @)tk
k

— (54 + 1) skt ] (s} + 1) (cos 22 — 1),
(B28)

Using the relations defined in Egs. (B7)—(B15), we finally get
[65]

. S o
CZ@ ’0 _ ik-r , B29
r.0) ZLD;e Py (B29)
3 S . AxB, — ALB
CEr 1) = o5 3 R hTEE (cos 204t — 1).
2P £ QA + B})
(B30)

For I' — oo before the quench, Q/(Ax+ By) =1 is
satisfied and, hence, C*(r,0) = S/2 X &, m (m,: integer,
v=1,2,...,D) holds. This means that C¥<(r, t) = C%(r, t)
for 1 <r,<L/2 (v=1,2,...,D). Besides, when J =0
and J' < TV < T, the intensity of the correlation would be
approximately |C¥(r,t)| = O[S/LP x Y, B;/(A; + B})] =
0(z8%J')T).

3. Transverse correlation functions

We evaluate the time-dependent transverse correlation
functions defined as

C™(r, 1) = (Wole™" 8:85e ™" |y) (B31)
= (Yole™"(S — bib,)(S — Bbo)e ™" |y) (B32)
and the connected one defined as
ot pectea (- 1) = C¥(r. 1) — (Yol Se ™™ |y
x (Pole™ " S5e My,

Writing them in the Fourier space (l;i = ﬁ Dk e i Ek) and
in the Heisenberg picture, we obtain

(B33)

28 R
C¥(r, 1) =% = 25 3 S (Wolb (b))
k
1 ) N
+ 735 2 €T ol Obi (OB} 1)
kl.p

X br_14p()¥0) (B34)

and
1 2
C():rc))cnnected(r’ 1)=— |:L_D Z(W0|th(f)5k(t)|lﬂo>:|
k

I ‘ T
+ 5 2 ¢TI W lB b (0B (1)
k,l.p

X bi4p()]%0)- (B35)
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As in the case of longitudinal correlation functions, we replace bi(t) by i and use B |Y¥0) = 0. Nonvanishing terms contain
(VolB kB BpB )1 V0) = Sk, (W0l BkBIBIBL 411 py W0} = 8k —p + 81.p, and (Yol B4 BT ([ ¥h0) = 1. After straightforward
calculations, we get

1D Z W0|b b () Y0) = 7D Z s;‘zv,% + t,ézu,% + 25}t U Vg COS ZQ}CI) (B36)
1
=5 3" [ + 25itiunvi(cos 22t — 1) (B37)
k
and
2
1 ik-r 2 2 ’ .. , )l 2
Ceonnectea > 1) = i Ze {[(sk + 1 )cos 28t 41 sin Zth]ukvk + sktk(uk + Uk)}
k
1 .

+ ] Z D[ 4 25t (cos 2Qt — D] [s7 + 2sjt{uyvi(cos 2t — 1)] (B38)

k.l

2
= LLD > e*T{[(s3” +1,7) cos 29t + i sin 282t |ugvi + syt (uf + v7))

2

1
+ 75 [1¢ + 2sjtpurvi (cos 2@t — D] X 8. 1m  (B39)
k

LD Ze’k' 12 4 25}ty ugvg (cos 29t — )]

withm, (v = 1,2, ..., D) being integer. Substituting the parameters ug, Vg, Sk, t, s,’c, and t,; with the parameters Ay, By, 2%, A;c,
By, and ©;, we finally get

A’ AkA — ByB; 1 B, AxB, — A/ By
T ik-r k k k k ’

) E (Wolby (b)) = — E [( —r —k_ —) — 5 ———5— €08 29,(;} (B40)

L L QR 2 2

B, AxB, — A, By

ik-r k k k /

E — — 1) — K=t " (cos2Qt — 1) (B41)
LD [ < 2 gzkgz;cz

and

2

Cconnected (r t ) -

1 5 ,-k{ B, AwAl, — ByB,  AwB|, — A\By (A’
L
k

20t 2Q0t
D > QkQ}f ZQkQ;( o Ccos28,1 + i sin " >:|

2
+

i Z et A A—kA/ BiBy - 1 - B—;‘A—kB;c L cos 282t
LP 2 /2 2] 2 /2 k
p %, %,

1 A; AxA, — BB, 1 B, AxB, —AB
+ L Do Dk = OhPk ) 26D T Tk 00000 | X b (B42)
LP & 2 9 2 2

2

1 . B A B/ A.B Ay
L_Dzelkr{ 25 _i_W[Q/ (COSZle—])+lSln29kti|}
& k kRéay

2

| T1/4 B, AyB, — A'B
1 Zezk-r (2 _ ) = _kkk—zkk(cosxz;(t -1
LD p 2\ 2 QkQ;c

1 1 (Ak 1) B;( AkB/ A/ Bk( 20 ¢ 1) S (B43)
+ — -\ = - — =X X (cos2Qut — X Op
D) . k k ,Lm

withm, (v = 1,2, ..., D) being integer.
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When J =0 and J' < I < T, the intensity of the corre-
lation would be approximately |CX . (r,1)| = O[|1/LP x
Zk B/A;c/(Q/ )2|2] _ O(Z2SZJ/2/F/2)

4. Dispersion relation and maximum group velocity

Within the LSWA, the dispersion relation for S = % is
expressed as

Q= T2 %FJyk (B44)
1zl 1(J\, a0\
0D Sy (i ol (=
{ 2or 8<2F> Vi [<2r>
(B45)

This result is consistent with the dispersion relation

1 zJ 1/ z27\? 2
S2perturb —_rl1 - Rl 2 _ =
k 22r % glar ) M T

_;6(%)3(%3# (6]

(B46)
obtained by the perturbation calculation [113] up to
O{[(zJ)/(2T)1?} terms.

It is widely believed that the Lieb-Robinson velocity
should be the maximum group velocity determined from
the derivative of band dispersion [50-53]. Although the dis-
persion obtained by the LSWA does not necessarily offer
the exact Lieb-Robinson velocity, we calculate the reference
value using the dispersion. In 1D, the maximum group veloc-
ity of the spin-wave dispersion is given as

—1/2
| AN
SW
= — | =—|1 1—|= B47
e | T AT (r) B4D
For T' — oo, the group velocity satisfies vSV — J/2 =

v'R, reproducing the exact maximum group velocity. On

the other hand, for I' € (I'ésicdl 00), the LSWA always
gives vSW > J/2 = v!R_ Its worst (largest) estimate vSW =
J/N220.707] at T = [élassical 1D(— J) jg still tighter than
the recent bound 1.51J obtained by the general formula for
the Lieb-Robinson bound [23].

In the same manner, we can extract the group velocity as
vV = max; Vi Q; from the spin-wave dispersion in higher
dimensions. In 2D, the horizontal and diagonal velocities are
given as

-1/2
. J J 2J
SW horizontal
~ =—|1-Z+ /1-2) ., (B48
v ﬁ( T + T ) (B48)

1.25
i === from spin-wave dispersion
L 5 —— from serie nsion (fourth order)
100 5 I| — from se nsion (third mdu)
~ g \ from series expansion (second order)
-~ 0.75F \\\ from series expansion (first order)
gﬁ i =
2 0.50
0.25F
0.00 ! ; ! ! ;
0 2 4 6 8 10
r/J

FIG. 23. Field dependence of the group velocity along the hor-
izontal axis estimated from the dispersion relation obtained by the
LSWA and the series expansion up to fourth order [116-118] in 2D.
The group velocity is represented by the solid (dotted) lines above
(below) the critical transverse field I'./J &~ 1.522 [17,47,48]. Both
velocities increase with decreasing the transverse field.

5 —1/2
{acon: 2J
USW,dlngndl =J|1+ /1= (F) ,

respectively. The maximum velocity along the horizontal
(diagonal) axis is estimated to be vSW-horizonal . j/3
(vSWodiagonal _ 7/ /2y for T — oo. On the other
hand, for both axes, it approaches the value J
(vSW,horizomal’ USW,diagonal N ]) forT — Fglassical,2D(= 2])

The group velocity in 2D obtained by the LSWA increases
with decreasing the transverse field (see also Sec. IV A). As
we will see below, this behavior agrees with that obtained by a
high-order series expansion [116—118]. We extract the group
velocity from the dispersion relation obtained by the series
expansion up to fourth order of A = J/(2I') [116-118]. The
dispersion relation is described as

(B49)

4 5
le‘erles =T |:)» (=) + A2 (_2)sz + A3 <§7/k - 43/](3)

+ 247y — 10p8) + 0(,\5)} +const,  (B50)

where the constant term does not depend on k (but depends
on A and I'). Note that this relation is consistent with that
in Eq. (B46) for z = 4 on a square lattice. We calculate the
velocity v*®s = maxy Vj Q;f“es numerically and compare it
with our result obtained by the LSWA. As shown in Fig. 23,
at a fixed transverse field, the velocity along the horizontal
axis obtained by the series expansion increases monotonically
as higher-order terms are taken into account. They are always
slower than the velocity obtained by the LSWA. On the other
hand, both velocities obtained by the LSWA and the series
expansion nearly coincide for strong transverse fields. They
increase with decreasing the transverse field.
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