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Recapture probability for antitrapped Rydberg states in optical tweezers
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In a neutral-atom quantum computer, the qubits are individual neutral atoms trapped in optical tweezers.
Excitations to Rydberg states form the basis for the entanglement procedure that is at the basis of multiqubit
quantum gates. However, these Rydberg atoms are often antitrapped, leading to decoherence and atom loss. In
this work, we give a quantum-mechanical description of the antitrapping loss rates and determine the recapture
probability after Rydberg excitation, distinguishing between having the laser traps turned on and off. We find
that ample time (≈30 µs, in a 88Sr system) is needed for the wave functions to expand out of the trap. Therefore,
even with traps on, ≈100% recapture probabilities can be expected for times in which significant entanglement
operations between atoms can be performed. We find that for two-dimensional radial traps with bosonic 88Sr
atoms, the time in which perfect recapture can be achieved is of the same order of magnitude for traps turned on
and off.
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I. INTRODUCTION

Neutral atoms trapped in optical tweezers are emerging as
a promising platform for scalable quantum computing. The
main advantages of these platforms are the demonstrated long
coherence time [1], the versatility of the atomic arrangements
with conservation of entanglement [2], and, generally, the
contemporary advances in laser-cooling techniques for use
in atomic clocks, allowing for accurate control of the atoms
[3–5]. To construct a quantum computer out of such a system,
an array of optical tweezers is created with individual alkali
or alkaline-earth atoms trapped inside. A consequentially log-
ical choice is to encode the |0〉, |1〉 qubit manifold in the
(meta)stable states that make up the atomic clock transition.
These states are well isolated from the other atoms and have
long lifetimes. For bosonic 88Sr, this is the 1S0 ↔ 3P0 transi-
tion, where the metastable state 3P0 has a lifetime on the order
of minutes [1]. Besides these properties, a quantum computing
platform has more stringent requirements on the few-particle
level, such as single-qubit control and the ability to entangle
neighboring atoms.

This entanglement is mediated through auxiliary Rydberg
states, which interact via van der Waals interactions [6]. These
are electronic structure states of the atom with a high principle
quantum number n and have significantly lower lifetimes than
the clock states due to losses from, e.g., photoionization,
spontaneous emission, and antitrapping from the Rydberg
states [7]. This paper will principally analyze the latter, where
antitrapping is caused by the fact that polarizability of the
Rydberg states switches signs compared to the clock states.
The resulting light-atom potential becomes concave, actively
repelling the atom [8]. Therefore, minimizing the time that the
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atom spends in the Rydberg state is important for optimizing
the pulse [9] or gate robustness [7,10].

One strategy to avoid such losses is to switch off the trap
for the duration of the entanglement procedure, then switch it
back on for recapture [11]. The antitrapping behavior will then
be mitigated because the spatial wave function evolves under a
free potential instead of a concave inverse Gaussian (i-Gauss)
potential (resulting from the Gaussian intensity pattern of the
optical tweezers [12]). Nevertheless, the atom still expands
under the free potential and eventually leaves the trap after
a longer time spent in the Rydberg state [13]. Furthermore,
there are other challenges when switching off the trap. The
blinking on and off of the traps can lead to additional losses
of the atoms in the qubit manifold and thus the entire qubit
array. On a sequential gate-based platform, this can severely
limit the depth of the gate circuit [11]. One way to avoid these
losses is to use interferometrically generated bottle beam traps
to trap both the qubit and Rydberg states [14]. However, these
are technically challenging to create and generally less deep.

Another possibility is to simply leave the trap on for the
Rydberg excitation. It was generally assumed that the anti-
trapping would lead to an exponential loss in time of the atom
[15]. However, recent experiments found that this is not the
case [10,11,16,17]. This can be understood as, despite the
repulsive potential, the atoms needing an initialization time
to start leaving the trap.

In this paper, we shed light on this discussion by research-
ing how recapture probabilities depend on the status of the
trap (on or off). The layout of this paper is as follows. Sec-
tion II describes the theory behind our quantum-mechanical
recapture probability model. There, we first look into the
relevant timescales in Sec. II A. We then consider the po-
tentials and initial states in Sec. II B. Section II C describes
the evolution methods. In Sec. II D we argue that we can
infer two-dimensional (2D) results for the trap from our
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one-dimensional (1D) trap calculations. Section III shows re-
sults for recapture probabilities based on the parameters of a
realistic 88Sr setup.

II. QUANTUM MODEL OF RECAPTURE PROBABILITIES

In this section, we discuss the underlying evolution equa-
tions and approximations necessary to calculate recapture
probabilities. Note that our method is a fully quantum me-
chanical model of recapture probabilities considering tweezer
status, whereas semiclassical methods have been considered
before [18–20]. In contrast to the semiclassical Monte Carlo
methods, our fully quantum method allows us to get a very
good analytical expression for the state evolution, greatly
simplifying the calculation of recapture probabilities. Further-
more, the quantum-mechanical approach leads to a physically
intuitive definition of recapture probability as the overlap be-
tween the evolved state and the bound states of the trap. Last,
especially where accelerations are involved in the classical
setting, the propagator formalism is, particularly under the
effect of an external potential, a more accurate method to
describe the long-term evolution than the classical dynamics,
as it follows the Schrödinger equation under which the atom
actually evolves.

A. Relevant timescales

In this section, we analyze the relevant timescales in the
recapture probability problem. When an atom is excited to
the Rydberg state, four timescales play a role (Fig. 1). First,
we consider the excitation time τspin = 1/�R, with �R being
the Rabi frequency. This is the timescale determining how fast
one can excite an atom from the qubit manifold to the Rydberg
state. In contrast, the motional time τmot = 1/ω, with ω being
the trap frequency, which is the trap motional time determin-
ing the speed of evolution of motional states. In current 88Sr
setups, �R ≈ 10 MHz and ω ≈ 20–60 kHz [12,15,21,22],
showing that the excitation can be considered instantaneous
in the timescale of motional development. Therefore, the mo-
tional state will not evolve significantly during the excitation
from the qubit manifold. Second, we consider the interaction
time τint = 1/V = −R6/C6, where C6 is the van der Waals
coefficient and R is the interatomic distance defined by the
tweezer lattice spacing, and the time in which we recapture
with ≈100% certainty τrecap (see Eq. (10)). When making
quantum state preparations, it is important that a large part
of the Hilbert space can be reached, meaning that maximally
entangled states should also be achievable [23]. Thus, in the
Rydberg state, we want to be able to perform sufficient en-
tanglement between the neighboring atoms in the platform, as
controlled by τint. Thus, we want recapture time τrecap � τint.

B. Potentials and initial states

The potential an atom experiences in a Gaussian optical
tweezer in cylindrical coordinates (r, z) is given by

U (r, z) = U0

1 + z2/z2
R

exp

(
−2r2

w2
0

(
1 + z2/z2

R

)
)

, (1)

FIG. 1. A 3 × 3 grid of optical-tweezer traps with interatomic
separation R of the order of a few micrometers. The middle atom is
excited to the Rydberg state (blue), while all other atoms stay in the
qubit manifold (red). With the traps turned on, the excited atom is
actively forced outwards as the tweezer potential becomes repulsive
for the Rydberg state. The rest of the atoms stay trapped. With the
traps off, the drift will be less. However, all atoms expand in that
case

where w0 is the laser beam waist, zR is the Rayleigh range,
and the maximal potential U0 = −α0I0/2cε0 [24]. Here, I0 =
2P/πw2

0 is the central intensity of the laser beam, where P is
the total power of the laser. Furthermore, αv is the polarizabil-
ity of state |v〉 [25] given by

αv (ωlaser ) = 2

3(2J + 1)

∑
n

(En − Ev )|〈v|D|n〉|2
(En − Ev )2 − ω2

laser

,

where J is the angular momentum of |v〉, Ei is the energy
of state |i〉, D is the electric dipole operator, and ωlaser is the
frequency of the laser beam. The polarizability characterizes
a state’s susceptibility to an electric field. For alkali atoms
and highly excited states, polarizabilities can be determined
using an atomic structure library [26]. For low-energy states of
alkaline-earth metals, such as 88Sr, one needs to resort to more
complex methods because of the presence of two or more
valence electrons. In this work, we use the methods described
in work by Safronova et al. [27,28] to calculate polarizability
values.

We consider a 88Sr-based quantum computer using the
states forming the clock transition, 5s2 1S0 and 5s5p 3P0, as
our qubit states. For these states, a magic wavelength has
been identified at 813.4 nm, where the polarizabilities of both
states are equal to 287 a.u. [27]. Operating the traps at a
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FIG. 2. Potentials experienced by the qubit manifold states |0〉
and |1〉 and the Rydberg state |r〉 and their (inverse) harmonic oscilla-
tor approximations valid for small |x|. The difference in state-related
energies E|r〉 − E|0〉,|1〉 is not to scale

magic wavelength is preferable, as it eliminates phase buildup
between the qubit states due to ac Stark shifts. For the Rydberg
state in 88Sr, we find a polarizability of the same magnitude
but different sign [17]. Thus, the Rydberg state experiences an
inverted potential compared to the qubit states when the laser
is turned on, as illustrated in Fig. 2. Even when the laser is
turned off and the atom subsequently experiences no potential,
the wave function expands under the free-particle propagator.
This means that when an atom is excited to the Rydberg state,
it eventually leaves the trap and can no longer be recaptured
when it is deexcited back to the qubit manifold. In the rest of
this section we describe our model for calculating recapture
probabilities when we excite an atom from the qubit manifold
to the Rydberg state, let the wave function expand for a set
time t , and deexcite it back to the qubit manifold.

Since recapture is sensitive to only radial motion [20,29],
only the radial directions of the trap are considered; we thus
take z = 0. Furthermore, in Sec. II D, we argue that we can
infer the 2D (radial) recapture probabilities from 1D results. In
the rest of this section, we thus consider a 1D optical tweezer
trap. Based on Eq. (1), we consider

VHO(x) = 1
2 mω2x2, VFree(x) = 0,

VGauss(x) = −U0 + U0 exp
(−2x2/w2

0

)
,

(2)

for the harmonic oscillator (HO), Gauss, and free poten-
tials, respectively. We also define Vi-HO = −VHO and Vi-Gauss =
−VGauss for the inverse HO (i-HO) and inverse Gauss poten-
tials. The harmonic oscillators in this case are approximations
to the Gaussian potentials for small |x| and are often used as
such (see Fig. 2). Using the approximation exp(y) ≈ 1 + y in

Eq. (3), the values of ω are related to U0, zR, and w0 as

ωx,y =
√

4|U0|
mw2

0

, ωz =
√

2|U0|
mz2

R

. (3)

When the atom is in the Rydberg state, its wave function
|ψ (x, t )〉 evolves under the time-dependent 1D Schrödinger
equation as

ih̄∂t |ψ (x, t )〉 = − h̄2

2m
∂xx|ψ (x, t )〉 + V (x)|ψ (x, t )〉,

|ψ (x, 0)〉 = |ψ0〉.
Based on Eq. (3), we transform our coordinates as

x → x̃x0, t → t̃ t0, x0 =
√

h̄/mω, t0 = 1/ω

to give the dimensionless equation

i∂t̃ |ψ (x̃, t̃ )〉 = −1

2
∂x̃x̃|ψ (x̃, t̃ )〉 + 1

h̄ω
V (x̃)|ψ (x̃, t̃ )〉,

|ψ (x̃, 0)〉 = |ψ0〉.
For convenience, we drop the tildes on the transformed

coordinates. For Gaussian laser traps, we also define the edge
of the trap Xedge as

VGauss(Xedge)

VGauss(0)
≈ 0.01 ⇒ Xedge ≈ 3.035

√
|U0|
h̄ω

. (4)

In contemporary 88Sr tweezer setups, trap depths U0 of
several hundred microkelvins can be achieved. However,
when exciting atoms to the Rydberg state, the traps are often
adiabatically lowered to minimize trap scattering (which is
especially important in 88Sr) and to increase the recapture
probability [12].

As the atoms in the trap are cooled close to the ground
state, the initial state of the system can be approximated by
the density matrix of a quantum harmonic oscillator at tem-
perature T [30], given by

ρT (0) = 1

Z

∞∑
n=0

e−βEHO,n |ψHO,n〉〈ψHO,n|, (5)

where β = 1/kBT , EHO,n = h̄ω(n + 1
2 ), Z = ∑

e−βEHO,n , and

|ψHO,n〉 = 1√
2nn!

(mω

π h̄

)1/4
e− mωx2

2h̄ Hn

(√
mω

h̄
x

)

is the nth eigenstate of the HO potential, with Hn being the
nth Hermitian polynomial. Let ρT (t ) evolve under an arbitrary
Schrödinger equation with initial state ρT,0, and let |ψHO,n(t )〉
denote the solution to this same equation with initial state
|ψHO,n〉. Then the expectation value of an observable Ô with
respect to ρT (t ) can, by the orthogonality of |ψHO,n〉, be cal-
culated as

Tr[ρT (t )Ô] = 1

Z

∞∑
n=0

e−βEHO,n〈ψHO,n(t )|Ô|ψHO,n(t )〉. (6)

We want to excite the atom to the Rydberg state, where it
experiences a potential Vi-Gauss (or zero if we switch off the
trap) for a time t . After this, we deexcite the atom back to
the qubit manifold and determine the Franck-Condon overlap
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FIG. 3. Potential and approximated eigenvalues for the nonin-
verted 1D Gauss potential, with U0 = 50 µK and ω = 25 kHz.
The edges of the trap are colored in purple. Plotted per five
eigenfunctions.

with the bound states of the potential VGauss [see Eq. (9)]. To do
so, we have to determine the bound states |ψGauss,n〉 (of which
there are only finitely many, in contrast to the HO potential
[31]). We would have to solve the equation

−1

2
∂xx|ψ〉 + U0

h̄ω
(1 − e−2x2x2

0/w2
0 )|ψ〉 = E |ψ〉

for energies E < 0. However, no analytic solution is known
for the Gauss potential [32]. As mentioned before, for |x| � 1,
VGauss resembles VHO. Therefore, we approximate solutions
to the normal Gauss potential as linear combinations of har-
monic oscillator solutions (see Fig. 3) as

|ψGauss,n〉 =
K∑

i=0

α
(n)
i |ψHO,i〉 (7)

for some K ∈ N , α(n)
i ∈ CK . As the Gauss potential resembles

the HO potential for |x| � 1 and the energies in the HO
potential increase as En = h̄ω(n + 1/2), U0/h̄ω is a rough
estimate of the number of bound states, on which the initial
choice of K is based. We note that since there are only finitely
many bound states in the Gaussian trap, there is also a finite
extent to these bound states, allowing for a value of K at which
the approximation in Eq. (7) is very good.

The eigensystem of the noninverted Gauss Hamiltonian
in the basis of the first K eigenstates of the HO is calcu-
lated by diagonalizing the matrix A with matrix elements
[A]m,n = 〈ψHO,m| − 1/2∂xx + VGauss(x)|ψHO,n〉. The bound-
state approximations are then given by those states with
eigenvalues smaller than zero; the eigenvectors correspond to
the coefficients α(n). For this work, we choose K > U0/h̄ω in
such a way that if we increase K even more, the eigenvalues
and eigenvectors α

(n)
i no longer change significantly.

At low temperatures, the thermalized state in Eq. (9) has
significant contributions of only the lowest-energy eigen-
states. Therefore, we have to look at the values of

ZN

Z
=

∑N
n=0 exp(−βEn)

Z

= 2 exp

(
− h̄ω(1 + N )

2kbT

)
sinh

(
h̄ω(1 + N )

2kbT

)

FIG. 4. Levels N at which ZN/Z > 0.99 for varying temperatures
T and frequencies ω, with T0 = 1 K. For low T and high ω, it is
enough to take only the first few HO eigenstates into account for the
initial state.

for a decent cutoff of the series expansion. Here, ZN is
the cutoff partition function, quantifying how much of the
thermalized state is in the first N levels. For a specific temper-
ature T , we choose our N to be the minimal value such that
ZN/Z > 0.99. Figure 4 shows these values of N as a function
of T and ω.

C. Propagators and recapture probabilities

With the initial state and bound states defined, the next
step is to calculate the evolution of the state under various
potentials. The highly dispersive behavior of wave functions
under concave potentials [33] makes it difficult to numerically
solve the time-dependent Schrödinger equation.

Interestingly enough, analytic propagators exist for the free
and i-HO solutions [34], given by

KFree(x; x′; t − t ′)

= 1

2π

∫ +∞

−∞
exp[ik(x − x′)] exp

(
− ih̄k2(t − t ′)

2m

)
dk

=
(

m

2π ih̄(t − t ′)

) 1
2

exp

(
−m(x − x′)2

2ih̄(t − t ′)

)

for the free Hamiltonian and

Ki-HO(x; x′; t − t ′) =
√

ω

2π ih̄ sinh[ω(t − t ′)]

× exp

(
i

h̄
S(x, t, x′, t ′)

)
,

S(x, t, x′, t ′) = ω[cosh[ω(t − t ′)](x2 + x′2) − 2xx′]
2 sinh[ω(t − t ′)]

for the Hamiltonian with the inverse HO potential.
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For |ψ (x, 0)〉 = |ψHO,0(x)〉, this gives

|ψFree(x, t )〉 = − (−1)3/4

π1/4
√

t − i
exp

(
ix2

2(t − i)

)
,

|ψi-HO(x, t )〉 = π−1/4�(t )−1/2 exp

(
iS(x, t, 0, 0)

h̄

)

× exp

(
− iω

2h̄ sinh(ωt )

x2

�(t )

)
,

�(t ) = cosh(ωt ) + i
h̄

ω
sinh(ωt ).

Expressions for other initial states can be constructed sim-
ilarly. In the literature, one often defines the survival
probability Pinit(t ) [35,36] as

Pinit(t ) := |〈ψ (t )|ψ0〉|2,
i.e., the overlap with the initial state at time t . One can
show that at t = 0, its first derivative is equal to zero (see
Appendix B). Looking at the second derivative at t = 0
then gives an indication of the decay rate under a certain
potential. Because the potentials are time independent, this
quantity intuitively dictates the rate of atom loss within the
high-recapture-probability regime, which is the regime we are
interested in. We call this term P̈init,V (0) the initial quantum
spread under potential V . The expression for this is derived in
Appendix B and is given by

P̈init,V (0) = −2Covψ0

(
V − 1

2

∂2

∂x2
,V − 1

2
x2

)
. (8)

We can further extend this idea to looking at the overlap
with all bound states, called the recapture probability:

Precap(t ) :=
N∑

n=0

|〈ψ (t )|ψGauss,n〉|2, (9)

which can be interpreted as the probability of recapturing the
atom in the trap after deexciting it back to the qubit manifold
after it has evolved for a time t . Using the analytic expressions
for |ψ (t )〉 and the HO approximation of the bound states as in
Eq. (7), we can calculate Precap(t ) analytically with the integral
expression given in Appendix A. We want to define τrecap as
the maximal time spent in the Rydberg state, for which we
almost certainly recapture the atom. Based on Eq. (9), we
define

τrecap := max
t>0

Precap(t ) > 1 − 10−4, (10)

where the 4 in the exponent is taken to match recently
achieved fidelity figures for single-qubit gates in Rydberg
architectures [4,37,38].

D. Two-dimensional considerations

Having defined the model for a 1D trap, the radial 2D
case needs to be considered. When looking at the 2D case,
the following approximation can be made. If the trap is deep
enough, the trap can be approximated as a 2D Harmonic
oscillator, where the x and y directions are independent, and
the bound states factor as |ψGauss,n1,n2 (x, y)〉 = |ψGauss,n1 (x)〉
|ψGauss,n2 (y)〉 by separation of variables. If the expanding

TABLE I. Parameters used in the simulation and calculations.

Parameter Symbol Value Units Ref.

Trap frequency ω 25 kHz [11,12]
Trap depth U0 50 µK [12,21]
Mass m 87.90 amu
Temperature T 730 nK [12,21]
van der Waals coefficient C6/h −154 GHz/µm6 [15]
Interatomic distance R 3 µm [12,22]

wave function also were to factor as |ψ2D(x, y, t )〉 =
|ψ1D(x, t )〉|ψ1D(y, t )〉, then the recapture probability would
become

Precap,2D(t ) =
∑
n1,n2

∣∣〈ψ2D(t )
∣∣ψGauss,n1,n2

〉∣∣2

=
∑

n1

∣∣〈ψ1D(t )
∣∣ψGauss,n1

〉∣∣2

×
∑

n2

∣∣〈ψ1D(t )
∣∣ψGauss,n2

〉∣∣2

= Precap,1D(t )2.

Clearly, the bound functions of the 2D case do not exactly
factor as such, as a combination of a barely unbound state in x
with a deep bound state in y can still have negative energy
and thus be bound. Furthermore, the x and y axes are not
entirely independent since a state’s projections on the x and y
axes might be individually bound but the total state can be un-
bound because it extends significantly in a diagonal direction.
However, as the wave function extends quickly when reaching
the end of the trap, we hypothesize that this approximation
is valid for deep traps. To verify this, we also solve the 2D
Schrödinger equation in radial coordinates as

i∂t |ψ (r, φ, t )〉 = −1

2
�r,φ |ψ (r, φ, t )〉 + V (r)|ψ (r, φ, t )〉,

�r,φ =
[

1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂φ2

]
.

Bound states for the 2D Gaussian are constructed, like in
the 1D case, as linear combinations of radial 2D HO solutions
given by

|ψHO,n,l (r, φ)〉 = 1√
2π

√
2α!

(α + |l|)!e− r2

2 r|l|L(|l|)
α (r2)eilφ,

where l ∈ {−2n,−2n + 2, . . . , 2n}, α = (n − |l|)/2, and
L(|l|)

α is the generalized Laguerre polynomial. We always as-
sume a radial initial wave function such that the evolved state
|ψ (t )〉 does not have an angular dependence at all times t .
Therefore, we need to calculate only the overlap with bound
states that also do not have an angular dependence. If the ini-
tial wave function does have a radial dependence (for instance,
because of nonzero temperatures) the results will not change
significantly as thermalized states are considered [see Eq. (6)]
and the overlaps and energy differences for angular excited
states do not differ substantially from the radially symmetric
states [see Eq. (A1)].
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FIG. 5. Evolution of the |ψ (x, 0)〉 = |ψHO,0〉 initial state for different 1D potentials, with U0 = 50 µK and ω = 25 kHz. For times t < 15 µs
the i-HO approximation agrees with the i-Gauss solution. Once the atoms start leaving the trap, numerical errors start to occur [see edges of
(d)], and the i-HO approximation is no longer valid. The edges of the trap are indicated in purple.

III. RESULTS

This section shows results for the recapture probabilities
of atoms for tweezers turned on and off and varying tweezer
parameters. In all calculations, we use the parameter values
given in Table I [11,12,15,21,22] unless specified otherwise.
From these parameters, we get τint = 4.7 ns. We desire to have
recapture time τrecap � τint.

We construct the bound state for the realistic parameters
U0 = 50 µK and ω = 25 kHz, which gives U0/h̄ω ≈ 41, so
we take K = 55 and find 48 bound states (see Fig. 3) accord-
ing to the linear approximation method described in Sec. II B.
For n < 10 we then have αn ≈ 1 and thus |ψGauss, n〉 ≈

|ψHO,n〉, showing that the HO eigenfunctions are good approx-
imations of the noninverted Gauss eigenfunctions for these
low-lying states.

Figure 5 shows the (numerically calculated) evolution of a
1D |ψHO,0〉 initial state under various potentials, with U0 =
50 µK and ω = 25 kHz. We see that the i-HO potential
is a good approximation of the i-Gauss evolution for times
t < 15 µs. Note that numerical errors start to occur at times
t > 20 µs. This is due to the high dispersivity caused by the
concave potentials [33], which makes a Dirichlet or von Neu-
mann boundary problem [39] hard to solve, highlighting the
importance of the analytic propagator expressions in Sec. II C.

FIG. 6. (a) Recapture probabilities of the 1D free, i-HO, and i-Gauss potentials at T = 0 K for U0 = 50 µK and ω = 25 kHz. The free
and i-HO values are calculated analytically using the propagators in Sec. II C. The i-Gauss solutions are calculated numerically. The dashed
red lines in the insets indicate the recapture probability bound for τrecap. i-HO is seen to be a relatively tight lower-bound approximation of the
i-Gauss recapture probabilities. (b) Recapture probabilities of the free and i-HO potentials at T = 0 K and T = 730 nK for U0 = 50 µK and
ω = 25 kHz. Higher temperatures lower the recapture probabilities; however, for realistic temperatures this effect is relatively small.
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FIG. 7. (a) Recapture times τrecap,i-Gauss and (b) recapture time ratio τrecap,i-Gauss/τrecap,Free for varying U0 and ω in the 1D case. The recapture
times increase with increasing U0 and decreasing ω0. Since contour lines are relatively straight, the ratio U0/ω and, through Eq. 8, the trap
edge Xedge can thus be used as predictors of the recapture times. From (b) we note that the recapture times for the i-Gauss potential stay in the
same order of magnitude as the free potential.

Figure 6 shows the recapture probabilities of the U0 =
50 µK and ω = 25 kHz trap for the free, i-HO, and i-Gauss
potentials. Note that because of numerical error, the i-Gauss
evolution is fully accurate only up to 30 µs. From this, we
again confirm that the i-HO potential is a good approximation
to the i-Gauss evolution for low enough evolution times. From
Eq. (8), we get initial quantum spreads of P̈init,i-HO(0) = −1
and P̈init,i-Gauss(0) = −0.98. The inset in Fig. 6 indeed con-
firms these results by showing that the initial loss rates for
an i-HO potential are higher than for an i-Gauss potential.
Furthermore, as hypothesized in Sec. I, a plateau of ≈100%
recapture probabilities exists for repelling potentials. We see
values of τrecap,i-Gauss/τrecap,Free ≈ 0.33. When switching off

FIG. 8. Recapture probabilities for U0 = 50 µK and ω = 25 kHz
for two dimensions (radial) under the i-Gauss potential, together with
the i-HO 2D lower bound and the i-HO 1D squared approximation.
The dashed red line in the inset indicates the recapture probability
bound for τrecap. The i-HO 2D case is a lower bound for the i-Gauss
2D case, and the i-HO 1D case squared finely approximates the i-
Gauss 2D case.

the traps, all atoms expand under the free potential, whereas
when the traps are kept on, only the atom that has been excited
to the Rydberg state will expand under the i-Gauss potential.
These results then indicate that the overall heating would be
significantly lower when the traps are kept on. The blinking
heating and control issues, persisting when repeatedly switch-
ing the traps on and off, further support the strategy of leaving
the traps on [12].

To further investigate this statement, we vary the trap pa-
rameters U0 and ω and calculate τrecap,i-Gauss and τrecap,Free.
Note that ω ∼ √

U0, but we can independently vary U0 and
ω by varying the width of the laser w0 as in Eq. (4). The
results in Fig. 7 show that τrecap increases with decreasing
ω and with increasing U0. For ω, this behavior is logical as
traps become tighter for increasing ω [see Eq. (4)], resulting in
fewer bound states. For U0, the traps become deeper, resulting
in faster expansion but also more bound states, which for this
range of parameters seem to be the dominating factor. We see
that the contour lines in Fig. 7(a) are approximately straight
lines for our considered range of parameters. We can therefore
take the trap edge Xedge of Eq. (8) to be a predictor of the
recapture time τrecap. Figure 7(b) shows the values of the ratio
τrecap,i-Gauss/τrecap,Free for the range of parameters, and we see
that the values lie in the interval [0.3,0.6], indicating that the
recapture times stay in the same order of magnitude.

Figure 8 shows the recapture probabilities for the 2D case
compared to the squared 1D approximation. We see indeed
that the squared 1D approximation follows the 2D recapture
probability. As we are mostly interested in the point τrecap, this
approximation is satisfactory.

IV. CONCLUSION

This work outlined the development of a robust quantum-
mechanical model for the calculation of recapture prob-
abilities under various potentials. The squared recapture
probabilities of a 1D i-HO potential (for which an analytical
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expression exists) nicely approximate the 2D i-Gauss poten-
tial recapture probabilities. From the results in Sec. III, we see
that for relevant trap parameters, the recapture time τrecap is of
the same order of magnitude under a free potential as under
an i-Gauss potential. This indicates that for a large array of
atoms, it is more beneficial to keep the traps on, thus heating
up only a single atom, than to heat up the entire array when
switching the traps off.

Future studies could incorporate other loss rates, such as
blackbody radiation, stimulated emission in the Rydberg state,
and trap scattering caused by off-resonant excitations. Fur-
thermore, the consideration of reachable atom temperatures
given the trap parameters U0 and ω should be taken into
account. A treatment of bottle beam traps [14] using this
quantum-mechanical model would also be of great interest.
Last, the 1 µK temperatures treated in this work are mostly
relevant for Sr and Yb systems. In higher-temperature systems

(10 µK for Rb, Cs, etc.), often, higher values of ω are possible
as well, leading to values of ZN/Z > 0.99 of around N = 9
[40]. This would mean more terms are relevant in the sum of
Eq. (6).

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: INTEGRALS

For the approximation of the bound states in Sec. II B, one needs to construct the matrix with matrix elements
〈ψHO,n|HGauss|ψHO,m〉. Numerical integration algorithms show significant errors at high values of n and m. Therefore, analytic
expressions are used:

〈ψHO,n|HGauss|ψHO,m〉 = 〈ψHO,n|HHO − 1
2 x2 + VGauss|ψHO,m〉

= 〈ψHO,n|HHO|ψHO,m〉 − 〈ψHO,n| 1
2 x2|ψHO,m〉 + 〈ψHO,n|VGauss|ψHO,m〉.

The first two terms are fairly standard and can be found in most introductory quantum mechanics textbooks [33]. The last term
involves terms of the form [41]

∫ ∞

−∞
e−ax2

Hn(x)Hm(x)dx =
√

π

a
n!m!

min(n,m)∑
k=0

2k (n + m − 2k)!

k!(n − k)!(m − k)!
(

n+m
2 − k

)
!

(
1 − a

a

) n+m
2 −k

.

For the 2D case, the same decomposition is applied to calculate〈
ψHO,n1,l1

∣∣HHO

∣∣ψHO,n2,l2

〉 = (n1 + 1)δn1=n2δl1=l2 .

For the other two terms

〈ψHO,n|1

2
r2|ψHO,m〉 =C0

∫ 2π

0

∫ ∞

0
re− r2

2 r|l1|L|l1|
α1

(r2)e−l1φ
1

2
r2e− r2

2 r|l2|L|l2|
α2

(r2)e+il2φdrdφ

= 1

2
πC0δl1=l2

∫ ∞

0
x

|l1 |+|l2 |
2 +1e−xL|l1|

α1
(x)L|l2|

α2
(x)dx,

〈ψHO,n|VGauss|ψHO,m〉 =C1

∫ 2π

0

∫ ∞

0
re− r2

2 r|l1|L(|l1|)
α1

(r2)e−l1φ
U

h̄ω
e

1
2 r2 h̄ω

U e− r2

2 r|l2|L(|l2|)
α2

(r2)e+il2φdrdφ

= πC1δl1=l2

∫ ∞

0
x

|l1 |+|l2 |
2 e−x(1− h̄ω

2U )L(|l1|)
α1

(x)L(|l2|)
α2

(x)dx,

where Ln
α is the generalized Laguerre polynomial, Ci ∈ R+ are normalization constants, and the substitution r2 → x was made.

These integrals can be calculated using the following identity [42]:

∫ ∞

0
t a−1e−pt Lλ

m(at )Lβ
n (bt )dt = �(α)(λ + 1)m(β + 1)n p−α

m!n!

m∑
j=0

(−m) j (α) j

(λ + 1) j j!

(
a

p

) j n∑
k=0

(−n)k ( j + α)k

(β + 1)kk!

(
b

p

)k

. (A1)

Here, � is the gamma function, and (a)i is the Pochhammer symbol. Note that these symbols are highly discontinuous at negative
integers. Therefore, sufficient care should be employed when calculating these expressions.
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APPENDIX B: INITIAL QUANTUM SPREAD

We show the derivation of the expression of the initial quantum spread as in Eq. (8). Let l indicate a certain potential and
consider the function

Pl (t ) := |〈ψ0|ψl (t )〉|2.
In order to analyze its behavior, we need the following relations:

i∂t |ψl (t )〉 = −1

2

∂2

∂x2
|ψl (t )〉 + Vl |ψl (t )〉, −1

2

∂2

∂x2
|ψ0〉 + Vl |ψ0〉 = E0|ψ0〉.

The first derivative can be expressed as

Ṗl (t ) = 〈ψ0|∂tψl (t )〉〈ψ0|ψl (t )〉 + 〈ψ0|ψl (t )〉〈ψ0|∂tψl (t )〉

= i〈ψ0| − 1

2

∂2

∂x2
+ Vl |ψl (t )〉〈ψ0|ψl (t )〉 − i〈ψ0|ψl (t )〉〈ψ0| − 1

2

∂2

∂x2
+ Vl |ψl (t )〉

= i

[
〈ψl (t )| − 1

2

∂2

∂x2
+ 1

2
x2|ψ0〉 + 〈ψl (t )|Vl − 1

2
x2|ψ0〉

]
〈ψ0|ψl (t )〉

− i〈ψl (t )|ψ0〉
[
〈ψ0| − 1

2

∂2

∂x2
+ 1

2
x2|ψl (t )〉 + 〈ψ0|Vl − 1

2
x2|ψl (t )〉

]

= i〈ψl (t )|E0|ψ0〉〈ψ0|ψl (t )〉 − i〈ψl (t )|ψ0〉〈ψ0|E0|ψl (t )〉 + i〈ψl (t )|
[
Vl − 1

2
x2, |ψ0〉〈ψ0|

]
|ψl (t )〉

= i
〈
ψl (t )

∣∣[Vl − 1

2
x2, |ψ0〉〈ψ0|

]∣∣ψl (t )
〉
.

Note that at t = 0 this object is always equal to zero. For the second derivative, we get

P̈l (t ) = i〈∂tψl (t )|
[
Vl − 1

2
x2, |ψ0〉〈ψ0|

]
|ψl (t )〉 + i〈ψl (t )|

[
Vl − 1

2
x2, |ψ0〉〈ψ0|

]
|∂tψl (t )〉

= i〈ψl (t )|
(

1

2

∂2

∂x2
− Vl

)[
Vl − 1

2
x2, |ψ0〉〈ψ0|

]
|ψl (t )〉 − i〈ψl (t )|

[
Vl − 1

2
x2, |ψ0〉〈ψ0|

](
1

2

∂2

∂x2
− Vl

)
|ψl (t )〉

= i〈ψl (t )|
[

1

2

∂2

∂x2
− Vl ,

[
Vl − 1

2
x2, |ψ0〉〈ψ0|

]]
|ψl (t )〉.

Looking at t = 0, we get

P̈l (0) = i〈ψ0|
(

1

2

∂2

∂x2
− Vl

)[(
Vl − 1

2
x2

)
|ψ0〉〈ψ0| − |ψ0〉〈ψ0|

(
Vl − 1

2
x2

)]

−
[(

Vl − 1

2
x2

)
|ψ0〉〈ψ0| − |ψ0〉〈ψ0|

(
Vl − 1

2
x2

)](
1

2

∂2

∂x2
− Vl

)
|ψ0〉

= 〈ψ0|
(

1

2

∂2

∂x2
− Vl

)(
Vl − 1

2
x2

)
|ψ0〉 − 〈ψ0|

(
1

2

∂2

∂x2
− Vl

)
|ψ0〉〈ψ0|

(
Vl − 1

2
x2

)
|ψ0〉

− 〈ψ0|
(

Vl − 1

2
x2

)
|ψ0〉〈ψ0|

(
1

2

∂2

∂x2
− Vl

)
|ψ0〉 + 〈ψ0|

(
Vl − 1

2
x2

)(
1

2

∂2

∂x2
− Vl

)
|ψ0〉

= −2〈ψ0|V 2
l |ψ0〉 + 2〈ψ0|Vl |ψ0〉2 + 2〈ψ0|Vl

1

2

∂2

∂x2
|ψ0〉 + 2〈ψ0|1

2
x2Vl |ψ0〉 + 2〈ψ0| − 1

4
x2 ∂2

∂x2
|ψ0〉

+ 2〈ψ0|1

2
x2|ψ0〉〈ψ0|1

2

∂2

∂x2
|ψ0〉 − 2〈ψ0|1

2
x2|ψ0〉〈ψ0|Vl |ψ0〉

− 2〈ψ0|Vl |ψ0〉〈ψ0|1

2

∂2

∂x2
|ψ0〉 + 〈ψ0|1

2

∂2Vl

∂x2
|ψ0〉 − 〈ψ0|1

2
|ψ0〉 − 2〈ψ0|V 2

l |ψ0〉 + 2〈ψ0|Vl |ψ0〉2

= 2

(
1

2
〈ψ0|

{
1

2

∂2

∂x2
+ 1

2
x2,Vl

}
|ψ0〉 − 〈ψ0|1

2

∂2

∂x2
+ 1

2
x2|ψ0〉〈ψ0|Vl |ψ0〉

)

+ 2

(
1

2
〈ψ0|

{
1

2

∂2

∂x2
,−1

2
x2

}
|ψ0〉 − 〈ψ0|1

2

∂2

∂x2
|ψ0〉〈ψ0| − 1

2
x2|ψ0〉

)
.
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We define

Varψ (A) := 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2,

Covψ (A, B) := 1
2 〈ψ |{A, B}|ψ〉 − 〈ψ |A|ψ〉〈ψ |B|ψ〉

and note that Covψ (A, A) = Varψ (A). We then have

P̈l (0) = −2Varψ0 (Vl ) + 2Covψ0

(
1

2

∂2

∂x2
+ 1

2
x2,Vl

)
− 2Covψ0

(
1

2

∂2

∂x2
,

1

2
x2

)
.

Using the linearity of the covariance, we can also write this as

P̈l (0) = −2Covψ0

(
Vl − 1

2

∂2

∂x2
,Vl − 1

2
x2

)
.

We can now calculate this term for the i-HO and i-Gauss potentials, with |ψ0〉 being the HO ground state, to get P̈init,i-HO(0) = −1
and P̈init,i-Gauss(0) = −0.98 (U0 = 50 µK and ω = 25 kHz), indicating faster decay for i-HO than for i-Gauss.
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