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Field-induced time modulation and bunching effects in photodetachment microscopy
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We present a theoretical study of the image manipulation induced by an additional oscillating electric field
in traditional photodetachment microscopy. We find that the spatial electron interference image on the detecting
screen perpendicular to the field is now time modulated and it varies with the oscillating field periodically. With
the oscillating-field strength comparable to the static-field strength, we identify an electron bunching effect in
the time domain where the electrons detached in a large time window reach the detector in a very narrow time
window due to the underlying dynamics, resulting in a high concentration of detached electrons near certain
observation time windows. The spatial interference images for any observational time in the narrow window
show a high-intensity ring or center depending on the different electron sources. Furthermore, when the period
of the oscillating field is much smaller than the flight time of the detached electrons from the negative ions to
the detector, the oscillating field has a strong effect on the center of the images. On the other hand, when the
oscillating-field period is comparable to or larger than the flight time of the detached electrons, the edge and the
size of the interference images on the screen can be greatly modified. The accumulated electron images over
time are also studied and explained using Bessel functions and stationary phase approximations.
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I. INTRODUCTION

Photodetachment microscopy (PDM) has been established
as a sophisticated way to image the photoelectron wave on
a macroscopic scale [1–3]. In traditional PDM, the electron
wave is guided by a uniform electric field to a plane detector
at about a half meter away from the photodetachment source
region. Following the semiclassical picture [4], the electron
can generally reach each point on the detector along two
different classical trajectories. As a result of quantum inter-
ferences between the electron waves associated with these
two orbits, an electron image similar to Newton’s rings in
optics can be observed [4–7]. The number of rings and also
the interference details depend on the initial kinetic energy
of the electron after detached from the atomic negative ion
and therefore are directly connected to the electron affinity
of the specific atom. Benefiting from this energy dependence,
traditional PDM provides a highly accurate measurement for
electron affinities of atoms [8–13]. The quantum nature is its
inherent advantage over classical electron spectrometry.

The principle of quantum interferences in PDM is general
and it has been extensively studied in many other similar sit-
uations. For instance, the electron dynamics and interferences
have been explored in different external fields such as parallel
electric and magnetic fields [14–16], the magnetic field [17],
or a repulsive field [18]. In particular, Chaibi et al. observed a
global displacement of the photoelectron image when placing
PDM in a transverse magnetic field [19,20]. This kind of
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interesting observation was confirmed and extended in recent
theoretical work [21,22]. Furthermore, great successes have
also been achieved in parallel studies based on photoioniza-
tion microscopy of neutral atoms [23–32], which enables the
macroscopic imaging of the atomic wave function and related
stark states.

We have generalized the physical idea of PDM to temporal
interferometry [33], partly inspired by the peculiar features
of terahertz single-cycle pulses [34–38]. The main difference
from traditional PDM is that the applied external field is time
dependent instead of static. At each final time recorded on
the detector, there would be two or more electron trajectories
reaching the same point simultaneously. The time-dependent
electron waves associated with those trajectories can also in-
terfere quantum mechanically, showing an oscillatory electron
flux in the real-time domain. Following this line of study, Am-
balampitiya and Fabrikant explored the temporal interferences
in a sinusoidal oscillating field based on the time-dependent
Green’s function [39]. By replacing the weak laser pulse with
a double pulse for launching electron, Khan et al. examined
the variation of temporal interferences with the relative delay
and phases between the two pulses [40].

In comparison with traditional PDM [1,4–7], there are two
obvious features among the previous studies of temporal in-
terferences [33,39,40]. First, laser pulses with finite duration
were used to replace the usual cw laser for launching elec-
trons; otherwise the accumulated background electron may
destroy the temporal interferences. Second, without using a
static field to guide the general direction of electron motion,
only a fraction of the outgoing electron wave was collected
on the detector, which may require more experimental effort
to achieve a high-quality image. Therefore, owing to some
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FIG. 1. Demonstration of the underlying physics induced by
an oscillating electric field. (a) Total field profile, including a
static electric field F0 = 100 V/m and an oscillating field F1 sin(ωt )
with F1 = 30 V/m and ω/2π = 100 MHz. (b) Electron image at
t f = 0.6T , with T = 2π/ω. This cylindrical image is calculated for a
detector placed perpendicular to the electric field and at z = −0.5 m
away from the electron source. The initial energy of the electron
is 0.06 meV, approximately the same as in traditional PDM [1,7].
(c) Example of the arrival-time plot connecting ti when the electron
is detached and t f when it arrives at the center point (ρ = 0) on the
detector. For each position ρ on the detector, there is a corresponding
arrival-time plot. (d) Electron image modulated with time (vertical
axis) in one period T of the oscillating field. The white dashed line
cutting along the ρ direction corresponds to the image shown in
(b) at that time instant. The dotted lines crossing plots (a), (c), and
(d) illustrate the two trajectories reaching ρ = 0 at t f = 0.5T simul-
taneously, resulting in the temporal interferences between the two
corresponding electron waves. The images shown here correspond to
an s-wave source after Eq. (29), where the relative intensity of the
electron flux at each point is suggested by the color bar on the right
in (b). The bright spot in (d) and the bright ring in (b) are hints of an
electron bunching effect in the time domain.

required technical changes with other possible challenges,
we may have to wait a while to witness the experimental
realization of those predictions for temporal interferences
[33,39,40].

In this work we investigate how the photoelectron im-
age could be modulated in traditional PDM when a weak
oscillating electric field is applied. In the present model,
both the cw laser and the static electric field in tradi-
tional PDM are kept unchanged [1,4–7], which avoids those
concerns discussed above regarding the technical difficul-
ties in an experiment, and a high-quality image would be
expected. By adding an oscillating field, the static image
in traditional PDM will be modulated and vary with time
periodically. As demonstrated in Fig. 1, the quantum inter-
ferences occur between electron waves initially generated
at different time instants but finally arriving at the detector
simultaneously. Different from previous studies of temporal
interferences [33,39,40], the quantum interferences at each

temporal-spatial point are only connected with two trajecto-
ries when the static electric field dominates over the added
oscillating field. In other words, the original simple picture
based on two trajectories for each detecting point in traditional
PDM is still preserved but generalized into a time-dependent
version.

Beyond the technical advantages mentioned above, the
present model promises diverse phenomena and physics.
When the oscillating field is weak enough or the field period is
much smaller than the time of flight for the electron reaching
the detector, the electron impact position on the detector is
almost the same as in traditional PDM, but the interference
structure is expected to vary with time clearly, caused by the
variation of the accumulated phases along different trajecto-
ries. When the oscillating field is sufficiently strong with a
relatively large period, the electron impact position would be
changed obviously and the photoelectron rainbow structure
is therefore breathing periodically with a large-range varia-
tion of the temporal image edge. Furthermore, a phenomenon
which we call an electron bunching effect is found when
the oscillating-field strength is comparable to the static-field
value. When it takes place, many electrons detached from
different instants reach the detector in a very narrow window
of time due to the underlying dynamics in the combined
static and oscillating electric fields. The detached electrons are
therefore highly concentrated near a certain observation time,
indicated by the bright spot near t f = 0.6T in Fig. 1(d). The
corresponding image on the detector at that time instant is an
extremely bright ring as in Fig. 1(b), where an s-wave source
is considered for demonstration.

The periodicity of modulation also makes the present
system distinctive and different from our previous work in
Ref. [33]. The temporal-interference ripples in the previous
work can be magnified in the time domain, for example, from
picoseconds to microseconds in Ref. [33], analogous to the
amplification of spatial-interference rings in traditional PDM.
However, in the present work the temporal interferences keep
varying with time periodically, though they are not magnified
in the time domain. This allows us to examine an averaged
temporal effect in the amplified spatial interferences after a
long-time accumulation. We find that some typical features
are still left in the accumulated image over time, and a good
physical understanding is also achieved quantitatively.

The remainder of this paper is organized as follows. The
theoretical model is specified in Sec. II, as well as some nec-
essary formulas for semiclassical propagation. The temporal
and spatial interferences are investigated in Sec. III, including
the electron bunching effect in the time domain. In Sec. IV we
explore the averaged image over one period, corresponding
to a long-time accumulation of electron images in an exper-
iment. A summary and brief discussion are given in Sec. V.
Atomic units are used throughout this work unless specified
otherwise.

II. THEORETICAL MODEL AND SEMICLASSICAL
PROPAGATION

The system considered here is exactly the same as in tradi-
tional PDM [1,4,7] except for a periodically oscillating field
added. The external fields F (t ) now include a static electric
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field F0 and an oscillating field F1 sin(ωt ),

F (t ) = F0 + F1 sin(ωt ), (1)

where t and ω denote the time and the field frequency, respec-
tively. The corresponding vector potential A(t ) is

A(t ) = −F0t + F1

ω
cos(ωt ). (2)

Both fields are in the positive-z direction. The total field
strength Fm = F0 + F1 is assumed not strong enough to ob-
viously affect the photoabsorption process for generating an
initially outgoing electron wave. The oscillating field, such as
a microwave or terahertz field, varies much slower than the
laser field for detaching electrons.

In the photodetachment source region, we have the inter-
action between an atomic negative ion and a weak cw laser
linearly polarized along the z axis. The loosely bound electron
is detached by absorbing one photon from the laser, which
generates an outgoing electron wave

ψ0(R, θi, φi, ti ) = ψout(R, θi, φi )e
−iE0ti (3)

at the initial time instant ti with an energy E0 = k2
0/2. The

spherical coordinates R, θi, and φi represent the electron po-
sition relative to the source point, which was selected as the
coordinate origin. The time-independent part ψout(R, θi, φi ) is
a spherically outgoing wave

ψout(R, θi, φi ) = C(k0)Ylm(θi, φi )
eik0R

R
, (4)

when the electron goes away from the rest atom. The complex
coefficient C(k0) depends on the electron energy E0 and the
spherical harmonic function Ylm(θi, φi ) represents the angu-
lar distribution of the initially outgoing wave. The quantum
numbers l and m are determined by specific negative ion. For
instance, the photodetachment of a ground state H− anion (ini-
tially in an s state) generates an outgoing pz wave with l = 1
and m = 0; the photodetachment of a ground state F− anion
(initially in a p state) corresponds to an s wave with l = 0
and m = 0, where the d-wave component of the photoelectron
is largely suppressed as a result of the Wigner threshold law
[41]. Note that the applied weak laser field has been assumed
to be linearly polarized along the z axis.

For the electron motion in external fields, the Hamiltonian
can be written as

H (ρ, z, pρ, pz, t ) = p2
z

2
+ p2

ρ

2
+ F (t )z, (5)

where ρ and z represent the electron position and pρ and pz the
momentum in the cylindrical coordinate frame. The classical
equations for ρ, z, pρ , and pz can be explicitly written as,
respectively,

pρ = k0 sin(θi ), (6)

pz(t ) = k0 cos(θi ) + �pz(ti, t ), (7)

ρ(t ) = k0(t − ti ) sin(θi ), (8)

z(t ) = k0(t − ti ) cos(θi) + �z(ti, t ), (9)

with

�pz(ti, t ) = A(t ) − A(ti ), (10)

�z(ti, t ) = − 1

2
F0τ

2 − F1τ

ω
cos(ωti )

+ F1

ω2
[sin(ωt ) − sin(ωti )], (11)

where τ = t − ti is the electron propagation time after the
electron is detached from the original negative ion. Using
the above equations, all of the classical electron trajectories
could be followed from the source point with different initial
conditions ti and θi to a certain point on the detector.

Having the information of classical trajectories, one can
easily follow the electron-wave propagation in a semiclassi-
cal way. The general idea is that there is an electron wave
associated with each classical trajectory. The quantum wave
at a certain point is a coherent superposition of electron
waves associated with all the trajectories reaching that point
simultaneously,


(ρ, z, t ) =
∑

ν

ψν (ρ, z, t ), (12)

where the subscript ν is used to label the corresponding
trajectory. The semiclassical wave along each trajectory can
be constructed in an augmented phase space by including
the time t and its conjugate momentum pt = −H (t ) as two
additional dimensions [33,42]. The details can be found in our
previous work [33].

The general form of ψν was already obtained in Ref. [33],

ψν (ρ, z, t ) = ψout(R, θi )Aei(S̃−λπ/2), (13)

where the azimuthal angle φ plays no role in our work and
it is therefore not explicitly written out. The semiclassical
amplitude A has a simple expression [33]

A =
∣∣∣∣ R2

k0(t − ti )2[k0 − F (ti)(t − ti ) cos(θi )]

∣∣∣∣
1/2

. (14)

The Maslov index λ = 0 if k0 − F (ti )(t − ti ) cos(θi ) > 0 and
λ = 1 if k0 − F (ti )(t − ti ) cos(θi ) < 0. The phase S̃ is given
by

S̃ = S − E0ti, (15)

which contains an initial phase in Eq. (3). The classical action
S follows the standard definition in the augmented phase
space,

S =
∫

pρdρ + pzdz − H (t )dt, (16)

which has been transformed into [33]

S = E0(t − ti ) + z(t )�pz(t ) − 1

2

∫
[�pz(t )]2dt . (17)

Note that the phase given by Eq. (15) contains all the time-
dependent phases. It is not directly equal to the classical action
S0 (=∫

p · dq) usually used in static external fields. Instead,

S̃0 = S0 − E0t, (18)
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where S̃0 represents the value of S̃ in a static field. However,
it does not affect the phase difference between trajectories
reaching the detector simultaneously, namely,

�S̃0 = �S0, (19)

which will be used in calculating the electron image.

III. TEMPORAL IMAGE AND BUNCHING EFFECT

In the following analysis and calculations, we choose E0 =
0.06 meV and F0 = 100 V/m, which are approximately the
parameters in traditional PDM [1,7]. A high-resolution detec-
tor is also assumed to be placed at z f = −0.5 m away from
the photodetachment source region and the detector surface
is perpendicular to the z axis. The oscillating-field strength
could be changed to examine the field-induced modulation ef-
fects when necessary. The field default frequency is 100 MHz
unless specified otherwise.

In this section we focus on how the electron image would
be modulated with time when the weak oscillating field is
applied, as well as an electron bunching effect. To be clear,
we first present a general consideration and related formulas,
followed by some representative calculations and discussion.

A. General considerations and related formulas

The electron image on the detector corresponds to a gener-
alized differential cross section dσ/ds [4],

dσ

ds
= 2πEph

c
j · n, (20)

where ds is the differential area on the detector surface, Eph

denotes the photon energy from the laser field, c is the speed of
light, j = Im(
∗∇
) is the electron flux crossing the detector
surface, and n is the exterior norm vector on the detector
surface. For clarity and convenience in applications, a reduced
flux j̃z can be defined as

j̃z = −Im

[(∑
ν

ψ̃ν

)∗
∂

∂z

( ∑
ν

ψ̃ν

)]
, (21)

which is obtained by combining Eqs. (4), (12), (13), and
(20) and getting rid of those constant factors. The minus
sign appears because the exterior norm vector n is along the
negative-z axis in our present work. The simplified form of the
wave function ψ̃ν can be written as

ψ̃ s
ν (ρ, z, t ) = Ãνei(S̃ν−λνπ/2) (22)

for an s-wave source such as the photodetachment of F−. Here
Ã = A/R. For a pz-wave source such as the photodetachment
of H−, ψ̃ν is simplified as

ψ̃ p
ν (ρ, z, t ) = Ãν cos(θi )e

i(S̃ν−λνπ/2). (23)

By counting all of the electron waves associated with each
classical trajectory, the electron flux can be calculated in prin-
ciple after Eq. (21), corresponding to the electron image on
the detector in arbitrary units.

In our present system, the weak oscillating field does
not destroy the qualitative interference picture. As shown in
Fig. 2, there are still two trajectories reaching each point on
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FIG. 2. (a) Arrival-time plot for the electron reaching the de-
tector center, with different oscillating-field strengths given in the
legend. The bold blue lines are those trajectories with θi = 0 and the
thin red lines are those with θi = π . (b) Total number of trajectories
(shown by different colors in the legend) reaching the detector center
at each final time as a function of the oscillating-field strength. The
dotted lines mark the locations of temporal caustics.

the detector simultaneously in the weak-field regime. For the
electron image involving two trajectories at each point, we
have

j̃z = −pz1 Ã 2
1 − pz2 Ã 2

2 − (
pz1 + pz2

)
Ã1Ã2 cos(��12) (24)

for an s-wave electron source and

j̃z = − pz1 Ã 2
1 cos2(θi1) − pz2 Ã 2

2 cos2(θi2) − (pz1 + pz2 )

× Ã1Ã2 cos(θi1) cos(θi2) cos(��12) (25)

for a pz-wave electron source, where

��12 = �S̃ − π/2, (26)

with

�S̃ = S̃1 − S̃2. (27)

The two trajectories have been ordered in Eq. (27) such
that the trajectory labeled by the subscript 1 has a Maslov
index of unity, while the other trajectory has a zero value
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of Maslov index. The practical calculations using Eq. (27)
involve the difference between huge values of S̃1 and S̃2. We
therefore avoid the direct calculations of S̃1 or S̃2, but combine
the formulas in Eqs. (10), (17), and (27) to an applicable form
as follows for �S̃:

�S̃ = 2E0(ti2 − ti1) + z(t )[A(ti2) − A(ti1)]

− 1

2
A2(ti1)(t − ti1) + 1

2
A2(ti2)(t − ti2)

+ A(ti1)
∫ t

ti1

A(t ′)dt ′ − A(ti2)
∫ t

ti2

A(t ′)dt ′

+ 1

2

∫ ti1

ti2

A2(t ′)dt ′. (28)

The two integrals involved in this equation can be readily
written as∫ t

ti

A(t ′)dt ′ = − F0

2

(
t2 − t2

i

) + F1

ω2
[sin(ωt ) − sin(ωti )]

and ∫ ti1

ti2

A2(t ′)dt ′ = F 2
0

3

(
t3
i1 − t3

i2

) + F 2
1

2ω2
(ti1 − ti2)

+ F 2
1

4ω3
[sin(2ωti1) − sin(2ωti2)]

− 2F0F1

ω2
[ti1 sin(ωti1) − ti2 sin(ωti2)]

− 2F0F1

ω3
[cos(ωti1) − cos(ωti2)].

The primitive semiclassical formulas in Eqs. (24) and (25)
are known to diverge at the classical boundary. They are usu-
ally repaired following some kind of uniform approximation
near the classical boundary. In this spirit and similar to the
manipulations in Ref. [18], the flux formula in Eq. (24) can be
written as

j̃z = P Ai2(ζ ) + Q Ai′2(ζ ), (29)

where Ai(ζ ) and Ai′(ζ ) are the Airy function and its first-
order derivative, respectively,

ζ = −(
3
4 S̃

)2/3
, (30)

P = − π |ζ |1/2
[
pz1 Ã 2

1 + pz2 Ã 2
2 + (pz1 + pz2 )Ã1Ã2

]
, (31)

Q = − π |ζ |−1/2
[
pz1 Ã 2

1 + pz2 Ã 2
2 − (pz1 + pz2 )Ã1Ã2

]
. (32)

The flux formula in Eq. (25) for a pz-wave source can also
be written in the same form as in Eq. (29) after replacing Ãν

in Eqs. (31) and (32) by the combined term Ãν cos(θi ). The
modified expression in Eq. (29) now behaves correctly near
the classical boundary and it could be easily extended into the
classically forbidden region by following the approximately
linear-variation property of those quantities in Eqs. (30)–(32).

B. Specific calculations and discussion

To calculate the electron flux based on the semiclassical
scheme, all of those trajectories reaching a certain point (ρ, z)
on the detector at a final time t must be identified with both

their initially outgoing angle θi and the initial time ti. For
generality, one can first search all the solutions of ti after the
equation

[z(t ) − �z(ti, t )]2 + ρ2 = k2
0 (t − ti )

2, (33)

with �z(ti, t ) given by Eq. (11), and then calculate θi as

θi = arccos

(
z(t ) − �z(ti, t )

k0(t − ti )

)
. (34)

The connections between t f and ti are explored in Fig. 2
by considering those trajectories reaching the detector cen-
ter (ρ = 0) located at z f = −0.5 m. The arrival-time plot in
Fig. 2(a) shows some typical curves of ti as a function of the
final time t f . The number of solutions of ti for each t f suggests
the total number of trajectories along which the electron prop-
agates to the same imaging point. It is given by the number of
crossings between each pair of the curves having the same line
style in Fig. 2(a) with a vertical line at each t f . It is obvious
that for F1 = 150 V/m in Fig. 2(a) one can find six trajectories
in the middle of the S-shaped curves. To get a whole picture of
where the number of trajectories changes, a two-dimensional
plot is given in Fig. 2(b) by increasing the oscillating-field
strength continuously. The borders marked by the black dotted
lines are the locations of temporal caustics, given by

F (ti )(t − ti ) cos(θi ) = k0, (35)

where the semiclassical amplitude in Eq. (14) goes to infin-
ity and the semiclassical wave needs to be repaired using a
uniform approximation.

It can be learned from Fig. 2(b) that the number of con-
tributed trajectories starts to change at the emerging point of
temporal caustics near F1 = F0. For a weak oscillating field
where the field strength is less than the static-field value, we
still have the two-trajectory picture as in traditional PDM. The
studies where the oscillating field dominates over the static
field are irrelevant in this work. Furthermore, we have not
gained much useful information from our draft calculations
in the strong-field regime, except for an observation of ex-
tremely rapid oscillations. Therefore, we confine ourselves to
the modulation effects caused by a weak oscillating field in
traditional PDM, where some interesting physics is explored.

1. Temporal-spatial modulations of electron flux

In Fig. 3 the electron flux is calculated by scanning over
time at the detector center for different oscillating fields.
The modulation effects are obvious, owing to the temporal
interferences between electron waves associated with the two
trajectories reaching the detector at each final time, as illus-
trated in Fig. 1. An out-of-phase oscillation can be observed
between those results for s-wave and p-wave sources, which
has been established as a common feature in previous studies
[33]. It can be traced back to the different angular distribution
of the initially outgoing wave when generated from the two
different sources, by noting that the factor cos(θi1) cos(θi2)
contributes a minus sign in Eq. (25).

To get a picture of how the electron image at different
positions could be modulated by an oscillating field, the
temporal-spatial pattern of the whole image on the detector is
displayed in Fig. 4, corresponding to the four cases in Fig. 3.
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FIG. 3. Electron flux calculated at the detector center for different field strengths: (a) F1 = 5 V/m, (b) F1 = 10 V/m, (c) F1 = 20 V/m
and (d) F1 = 40 V/m. The bold blue and the thin red lines display the flux modulations for s-wave and p-wave sources, respectively.

One immediate observation is that the electron image near
the detector center is modulated obviously. The field-induced
time modulation becomes weak gradually with the position
moving away from the center point. In addition, the image
near the classical boundary, namely, the outermost ring on the
detector as shown in Fig. 1, shows no obvious modulation.
This can be understood by examining the difference of the
phase accumulation along each pair of trajectories reaching
different positions.

The position dependence of �S̃ is explored in Fig. 5 by
taking t f = 0.6T as an example, because the spatial modu-
lation near this time is quite obvious in Fig. 4. The value

of �S̃ decreases gradually from a finite value at the center
point to a zero value at the classical boundary. This behavior
is general and it is closely connected with the dynamic differ-
ences between the two trajectories involved. Near the center
point, both the initial time ti and the initially outgoing angle
θi are largely different between the two trajectories reaching
the same point. These differences explain the large and finite
value of �S̃static and can be easily changed when the electron
dynamics is modulated by the oscillating field. However, near
the classical boundary, the differences between the two tra-
jectories becomes small, including the initial conditions ti and
θi. More importantly, these differences eventually go to zero
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FIG. 4. Temporal-spatial pattern of the electron image on the detector. All the results shown here correspond to an s-wave electron source
after Eq. (29) for (a) F1 = 5 V/m, (b) F1 = 10 V/m, (c) F1 = 20 V/m, and (d) F1 = 40 V/m. The color bar on top of each plot suggests the
relative intensity of the electron flux at each point.
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FIG. 5. Spatial variation of �S̃/2π on the detector. The field
values are given in the legend, where F1 = 0 V/m means only the
static field applies. All the calculations are performed for t f = 0.6T
as in Fig. 4.

exactly when reaching the classical boundary, where the two
trajectories actually coincide as one trajectory, regardless of
whether the applied oscillating-field strength is zero or large.
This universal behavior explains why the interference struc-
ture near the image edge is hardly changed by an oscillating
field. On the other hand, the values of �S̃/2π at ρ = 0 in
Fig. 5 count the number of spatial interference rings in Fig. 4
at the corresponding final time. By looking at those images
shown in Fig. 4, one may notice that the spatial location
of the image edge is almost unchanged with time. This is
because the period T of the added oscillating field is much
smaller than the time of flight (τ = t f − ti) for the electron
reaching the detector [Fig. 1(c)]. After Eqs. (11) and (33), the
electron impact position on the detector is almost the same
as that in traditional PDM with only a static electric field,
as long as F1T/F0τ � 1 is satisfied. Under this condition,
the classical boundary of the electron impact position on the
detector is therefore stable against the added oscillating field,
which corresponds to those stable locations of the image edge
in Fig. 4.

The electron impact position would be different if a lim-
iting case were considered where the added oscillating field
is sufficiently strong with a larger period T compared with
τ . A typical image is shown in Fig. 6 for both s-wave and
p-wave sources, where F1 = 40 V/m, the same value as in
Fig. 4(d), but the field frequency has been changed from
100 MHz to 1 MHz. Now T is about four times τ on average.
With ω/2π = 1 MHz, the terms caused by the oscillating field
in Eq. (11) are not negligibly small, and the electron impact
position on the detector is therefore obviously different from
that in traditional PDM according to Eq. (33). The resulting
effect can be seen in the temporal variation of the classical
boundary, as depicted by the white dashed curves in Figs. 6(a)
and 6(b). Note that the electron image is still modulated
periodically, which originates in the periodicity of the field.
However, the intensity of flux imaged in the first half period is
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FIG. 6. Limiting case where ω/2π = 1 MHz and F1 = 40 V/m,
so that the field period is longer than the time of flight for the electron
reaching the detector, for the temporal-spatial pattern of the electron
image from (a) s-wave and (b) p-wave sources. The relative flux
intensity at each point is indicated by the color bar to the right of each
plot. The white dashed curves mark those locations of the classical
boundary at each time instant.

apparently higher than that recorded in the second half period.
This is attributed to the relatively strong field affected by the
electron when flying to the detector in the first half period
[Fig. 1(a)].

2. Bunching effect and localized coherent electron pulses

Another important feature exhibited by Figs. 3 and 4 is
the visual clustering of the quantum oscillations. With the
oscillating-field strength increased gradually, the enriched
quantum modulations tend to be localized in a narrower range
of time, where an approximate symmetrical distribution is
observed. As a straightforward way to understand these pe-
culiar features, we plot in Fig. 7 the phase difference �S̃/2π

between the two trajectories involved in the quantum interfer-
ences, as well as the semiclassical amplitudes Ãi accumulated
along the two trajectories. Based on the local values sym-
metrically distributed in Fig. 7, the symmetric distribution of
those modulations in Figs. 3 and 4 seems to be understood.
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FIG. 7. (a) Temporal variation of the phase difference �S̃/2π

between the two trajectories reaching the detector center simulta-
neously. (b) Temporal variation of the semiclassical amplitude Ãi

accumulated along each trajectory, divided by the corresponding
amplitude Ã0 in the static field only. The results for different field
strengths are shown in both (a) and (b), as specified in the legend.
The group of lines on the right-hand side in (b) are those amplitudes
accumulated along the trajectory from θi = 0 and the other group on
the left-hand side corresponds to the trajectory from θi = π .

The actual question now is what kind of dynamics makes
those local distributions. The rapidly increasing behavior of
the semiclassical amplitude in Fig. 7(b) gives us a hint to
find the answer. Note that the accumulated amplitude actually
suggests the relative density of the electron at different places
when moving along classical trajectories [18]. The locally
large amplitude tells us that the electrons are concentrated
around that local time range. Keeping this in mind, the shape
variation of the arrival-time plot in Fig. 2 draws our attention.

It turns out that the visual clustering of those rich oscil-
lations in Figs. 3 and 4 can be graphically explained based
on the arrival-time plot in Fig. 2. When the oscillating-
field strength is close to a critical point of temporal caustics
near 100 V/m in Fig. 2(b), the two curves for each pair of

trajectories in Fig. 2(a) bend up locally in the vertical direction
in the arrival-time plot. The direct consequence of this vertical
curve bending is that the electron from a large range of initial
detaching time will reach the detector in a very narrow range
of final time, inducing an electron bunching dynamics in the
time domain, and large values of the accumulated amplitudes
are expected. Meanwhile, in the process of curve bending, the
two curves separate from each other as shown in Fig. 2(a), and
the difference between ti becomes large. The phase difference
�S̃ between the two trajectories is therefore largely increased,
resulting in rapid oscillations with large amplitudes.

Based on the above physical picture, the electron bunch-
ing effect should be more obvious when the oscillating-field
strength gets closer to the critical point of temporal caustics.
As shown in Fig. 8, almost all of the temporal oscillations are
bunched together within a small part of one period. In particu-
lar, for an s-wave source, since the quantum interferences are
limited near the classical boundary, a bright spot appears in
Fig. 8(b), which means that in an experiment one may record a
bright electron ring on the detector periodically. For a p-wave
source as in Fig. 8(c), the interference rings are folded into a
small time window, and a periodically breathing of the bright
rings would be observed in a similar experiment.

The interplay between the electron bunching effect and
quantum interferences produces a train of periodic intense
electron pulses impacting on the detector, and these electron
pulses have their own temporal-spatial interference structure.
To be clear, a series of the visual images expected near the
bunching regime is shown in Fig. 8(d) which assumes a tem-
poral resolution of 1 ns in a real experiment. Each visual
image recorded at the time t f in Fig. 8(d) is an average of
those corresponding images from Figs. 8(b) and 8(c) in the
time interval between t f − 0.5 and t f + 0.5 ns. The coherent
electron pulses can be clearly observed as those localized
bright rings on the detector, flashing periodically like that
recorded at t f = 0.6T in Fig. 8(d). Within a feasible range
of experimental resolution, one can properly increase the
oscillating-field strength to make the bunching effect stronger
so that the localized electron-flux intensity becomes larger,
which would make it much easier to achieve a high-quality
image.

The bunching effect as shown in Fig. 8 cannot be achieved
with a single oscillating electric field (without a static field).
By examining the arrival-time plots for the photoelectron in
a single oscillating field, we find that a similar curve bending
may exist for some special trajectories (such as θi = 0 and π )
when F1 is around 250 µV/m, which can be estimated from
Eq. (35). However, with such an extremely weak oscillating
field only, the trajectories cannot even reach the detector on
the same side and the electron current is extremely weak
with no quantum interference. Therefore, the combination of
the static and the oscillating electric fields is essential for
observing the phenomena discussed above.

IV. ACCUMULATED IMAGE OVER TIME

Since the spatial image is modulated with time, it is natural
to ask what kind of features could be left after a long-time
accumulation. For this purpose, an averaged image over one
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FIG. 8. Electron bunching effect when the oscillating-field strength F1 is comparable to the static-field strength. (a) Temporal electron flux
calculated at the detector center for an s-wave source after Eq. (29). The temporal-spatial pattern of the electron image when F1 = 60 V/m is
shown for (b) s-wave and (c) p-wave sources. The color bar on top of each plot suggests the relative intensity of the electron flux at each point.
(d) Visual images expected at each time instant with a temporal resolution of 1 ns. The time axis is in units of both nanoseconds and T for a
comparative understanding. The images above and below the time axis correspond to the finite-resolution slices from (b) and (c), respectively,
with the relative flux intensity at each point suggested by the color bar to the right of each row.

period can be defined as

Jz = 1

T

∫ T

0
j̃zdt, (36)

corresponding to an experimental accumulation on a detec-
tor for many cycles of the oscillating field. Although some
kind of temporal features would generally be expected to be
weakened after an operation of averaging, we find that several
peculiar phenomena can still be observed in the accumulated
image over time. To study this kind of accumulated effect, we
choose to first integrate the temporal image directly over one
period and then find a quantitative understanding based on a
perturbation theory and the stationary phase approximation,
respectively. A simple semiclassical picture is finally estab-
lished for those rest interferences observed in the accumulated
electron image over time.

The integrated electron image on the detector center is
first examined in Fig. 9 as a function of the oscillating-field
strength. The thin solid curves are given by the direct in-
tegration after Eq. (36). Both curves have been divided by
the electron image with only a static field. Accordingly, both
curves start from one on the y axis in Fig. 9, as they should. It
can be observed that the flux intensity in the averaged image
is still modulated obviously by the oscillating field. The aver-
aged spatial images from the direct integration are also shown
in Figs. 10–13. Some interesting features can be observed in
Figs. 10–13, such as the amplitude weakening effect in Fig. 10
and the rest oscillations in Figs. 11–13. To reveal the physics
behind the data, further analysis is presented in the following
sections with the guidance of intuitive insight. Although the
direct integration cannot provide a satisfactory explanation, it
is thought to be accurate and will be used as a reliable data
reference in the following analysis.
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FIG. 9. Averaged image modulation at the detector center: the
averaged temporal image over one period divided by the electron
image in a static field only for (a) an s-wave source and (b) a p-wave
source. The thin solid lines are calculated by direct integration over
time. The open points result from using perturbation theory with a
Bessel function [see Eq. (41)]. The bold dashed lines are obtained
from stationary phase approximation in Eqs. (46) and (47).

A. Perturbation in the Bessel function

When the oscillating-field strength is weak enough, the
electron dynamics is only weakly perturbed. The dominant
change would come from the variation of the phase difference
between the two trajectories reaching the detector simultane-
ously, since a small fractional change of the phase may cause
an obvious modulation in the electron image. Therefore, it
would be helpful to derive the formulas based on a pertur-
bative expansion of �S̃ .

Following an action perturbation theorem in Ref. [42], the
first-order expansion of �S̃ in F1 can be written as

�S̃ = �S0 − F1|�Z̃s(ω)| sin(ωt f + β̃ ), (37)

where β̃ = arg[�Z̃s(ω)],

Z̃s(ω) = z̃s(ω)Tse
−iωTs (38)
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Bessel function modulation
Image in static electric field
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FIG. 10. The averaged image in the perturbation regime with
F1 = 5V/m for (a) an s-wave source and (b) a p-wave source. The
light thin solid lines are the electron flux in traditional PDM, shown
here as a guidance for the weakening effect induced by the oscillating
electric field. The calculation methods are indicated in the legend by
the heavy red solid lines and the blue dotted lines.

is defined using the complex ac dipole moment z̃s(ω) of the
trajectory zs(τ ) in the static electric field, namely,

z̃s(ω) = 1

Ts

∫ Ts

0
zs(τ )eiωτ dτ, (39)

and Ts is the time of flight of the electron in the static field.
The integral in Eq. (39) is simple and the whole expression in
Eq. (38) has the explicit form

Z̃s(ω) = −1

2
F0

(
2Ts

ω2
− 2

ω3
sin(ωTs)

)

+ k0 cos(θs)

(
1

ω2
− 1

ω2
cos(ωTs)

)

+ i

2
F0

(
T 2

s

ω
− 2

ω3
+ 2

ω3
cos(ωTs)

)

+ ik0 cos(θs)

(
− Ts

ω
+ 1

ω2
sin(ωTs)

)
, (40)

where θs represents the initially outgoing angle of the corre-
sponding trajectory in the static electric field.
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FIG. 11. Averaged image when the oscillating-field strength is
increased: (a) F1 = 20 V/m and (b) F1 = 40 V/m, both for an s-
wave source. The calculation methods are indicated in the legend
by the different line styles. The pictures in each plot give the visual
images one would see directly on the detector. The color bars suggest
the relative intensity of the electron flux at each point.

Using the standard form of integral connected with a
Bessel function J0 of the first kind,

1

T

∫ T

0
e−iF1|�Z̃s (ω)| sin(ωt f +β̃ )dt f = J0(F1|�Z̃s(ω)|),

the averaged result of cos(��12) in Eqs. (24) and (25) can be
expressed as

1

T

∫ T

0
cos(��12)dt f = J0(F1|�Z̃s(ω)|) cos

(
�S0 − π

2

)
.

Therefore, the flux expression in Eq. (24) for an s-wave source
can be approximated by

Jz = − (pz1 Ã2
1 + pz2 Ã2

2)static − [(pz1 + pz2 )Ã1Ã2]static

× J0(F1|�Z̃s(ω)|) cos

(
�S0 − π

2

)
(41)

FIG. 12. Same as in Fig. 11 but for a p-wave source: (a) F1 =
20 V/m and (b) F1 = 40 V/m. The significance of lines is the same
as in Fig. 11.

in the perturbation region where the perturbation expansion
of the phase difference is considered. The perturbed flux as in
Eq. (41) for a pz-wave source can also be obtained by inserting
the Bessel function into the interference term in Eq. (25)
and replacing all the other quantities by those corresponding
values in a static electric field. To make it applicable near the
classical boundary, the primitive form as in Eq. (41) should
be repaired using Airy functions as in Eq. (29) by including
the Bessel function in the prefactor and then extended into the
classically forbidden region.

As shown in Eq. (41), the field-induced modulation of the
averaged image is simply represented by the Bessel func-
tion when the applied oscillating field is weak enough in
the perturbation region with respect to the static field. The
calculations based on the perturbation formulas are displayed
in Fig. 9 as a function of the oscillating-field strength. It can
be observed that the averaged image with small values of F1 in
the perturbation region is described very well by the first-order
perturbation theory in terms of the Bessel function. When
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FIG. 13. Averaged image with ω/2π = 1 MHz and F1 =
40 V/m for (a) s-wave and (b) p-wave sources. The heavy red
solid lines are calculated by integrating the temporal image in
Figs. 6(a) and 6(b) after Eq. (36). The visual images on the de-
tector are displayed in the insets, with the flux intensity at each
point indicated by the color bar. The results from stationary phase
approximations are shown by the dotted lines, where the classical
static-field background in Eqs. (46) and (47) has been replaced by
an averaged background over time using the time-dependent ampli-
tude in Eq. (14). The light gray solid lines are the electron flux in
traditional PDM.

F1 = 0 V/m without an oscillating field applied, J0(0) = 1
and Eq. (41) therefore represents the electron image in tra-
ditional PDM with only a static electric field [4,5,7].

Specific calculations for the averaged spatial image are also
displayed in Fig. 10 for both s-wave and pz-wave sources,
where the applied oscillating-field strength (F1 = 5 V/m) is
5% of the static field (F0 = 100 V/m). The perturbation cal-
culations with the Bessel function are in excellent agreement
with the direct integration of the temporal image over time.
Those observations can be fully understood now based on the
perturbation formulas as in Eq. (41). The immediate observa-
tion in Fig. 10 is that the interference amplitude in traditional
PDM is weakened by the added oscillating field, but the rain-
bows near the classical boundary are hardly affected. These
observations can be understood very well by examining the
behavior of the Bessel function. Note that the Bessel function

J0(x) is a monotonically decreasing function with x when x is
small. By increasing the oscillating-field strength F1 but still
in the perturbation region, the Bessel function J0(F1|�Z̃s(ω)|)
decreases monotonically and the oscillation amplitude of the
electron image is weakened following Eq. (41). Near the clas-
sical boundary, the phase difference goes to zero gradually
(Fig. 5) and the Bessel function J0(F1|�Z̃s(ω)|) therefore goes
to a unity, which explains the relative stability of the averaged
image near the classical boundary in Fig. 10.

B. Stationary phase approximation

Although the perturbation theory discussed above is quite
successful in explaining the amplitude weakening effect and
the monotonic behavior in the perturbation region, it fails to
describe the oscillatory structure from the direct integration
when the field strength becomes large. Hence, we proceed
further to get a full understanding of the oscillatory behavior.
Note that a large field strength causes a large variation of the
phase difference �S̃ over one period, resulting in many oscil-
lations of the temporal image as in Fig. 3. For the averaged
image as an integration of these oscillatory image, stationary
phase approximation is a natural and important technique to
grasp the dominant physics which is responsible for the main
features in the averaged image.

Inspired by the stationary phase approximation, the dom-
inant contribution to the integration of the temporal image is
from the stationary phase points, namely, the extrema of �S̃ .
Using the definition in Eq. (16), we have

∂ (�S̃ )

∂t f
= −�E (t f ), (42)

where the partial derivative is taken by fixing the starting
and ending positions of the trajectory. The stationary phase
points correspond to �E (t f ) = E1(t f ) − E2(t f ) = 0, suggest-
ing that the two trajectories involved must have the same final
energy when reaching the detector simultaneously. There is
usually a limited number of pairs of trajectories satisfying this
equal-energy condition. For our calculations in this work, we
generally have two pairs of these trajectories over one period.

The averaged modulation part of the image can be readily
expressed as

1

T

∫ T

0
(pz1 + pz2 )Ã1Ã2 cos

(
�S̃ − π

2

)
dt f =

∑
SP

MSP (43)

for an s-wave source based on the stationary phase approxima-
tion, where the summation is over all those pairs of trajectories
having the same final energy. For each stationary point,

MSP =
√

2π

T
√∣∣ ∂[�E (t f )]

∂t f

∣∣ [(pz1 + pz2 )Ã1Ã2]SP

× cos

[
�S̃SP − π

2
− π

4
sgn

(
∂[�E (t f )]

∂t f

)]
, (44)

where the subscript SP indicates that the values of variables
are calculated at the stationary phase point. The partial deriva-
tive

∂[�E (t f )]

∂t f
= ∂E1(t f )

∂t f
− ∂E2(t f )

∂t f
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should also be calculated at the stationary phase point, with

∂Ei(t f )

∂t f
= −[F0 + F1 sin(ωt f )]pz(t f ) + ωF1z f cos(ωt f )

− k0[A(t f ) − A(ti )]2 sin2(θi )

(t − ti )[k0 − F (ti )(t − ti ) cos(θi )]

+ 2Ek (t f )F (ti ) cos(θi )

k0 − F (ti )(t − ti ) cos(θi )
, (45)

where Ek (t f ) is the final kinetic energy when reaching the
detector.

The background part of the image, like the term −pz1 Ã 2
1 −

pz2 Ã 2
2 in Eq. (24), corresponds to the classical distribution

without the quantum-interference oscillations. With the oscil-
lating field applied, the original electron distribution in a static
field would be redistributed as indicated by the arrival-time
plot in Fig. 2 and the accumulated amplitudes in Fig. 7(b).
However, when this new distribution is integrated over one
period, the averaged distribution is expected to have little
difference from the averaged background in a static field.
Therefore, for a satisfied approximation, one can simply take
the image background in a static field as the averaged back-
ground of the image with an oscillating field.

Finally, we arrive at the simple expression

Jz = − (
pz1 Ã 2

1 + pz2 Ã 2
2

)
static −

∑
SP

MSP (46)

for an s-wave source and

Jz = − [
pz1 Ã 2

1 cos2(θi1) + pz2 Ã 2
2 cos2(θi2)

]
static

−
∑
SP

MSP[cos(θi1) cos(θi2)]SP (47)

for a pz-wave source. After Eqs. (46) and (47), the ac-
cumulated image over time contains a background plus a
summation of oscillatory terms and each oscillatory term cor-
responds to a pair of two trajectories arriving at the same point
simultaneously with the same final energy.

Specific calculations using Eqs. (46) and (47) are shown in
Figs. 9, 11, and 12. One may notice that the semiclassical cal-
culations fails in two regions. When F1 goes to zero in Fig. 9,
the formulas in Eqs. (46) and (47) fail because ∂[�E (t f )]/∂t f

goes to zero. Near the classical boundary in Figs. 11 and 12,
the semiclassical results diverge because the amplitudes Ã1

and Ã2 go to infinity at the caustic. By comparing the averaged
images obtained in Figs. 11 and 12, it can be found that a
pz-wave source as in Fig. 12 might be a superior choice to
observe the averaged electron image in an experiment. This
is because the node structure in the initially pz-wave angu-
lar distribution makes most of the electrons naturally avoid
the classical boundary on the detector. Most of the electrons
therefore arrive at the inner region where the averaged image
is to be studied.

Except for those intrinsic defects of the semiclassical
approximation, excellent agreement is achieved almost every-
where in Figs. 9, 11, and 12 by comparing with the direct
integration of the temporal image over time. This confirms
the physical picture established above from the stationary

phase approximation: The field-induced averaged modula-
tion is dominantly contributed by the quantum interferences
between each pair of trajectories arriving at the same spatial-
temporal point with the same final energy. This semiclassical
picture provides a simple and intuitive understanding for those
modulations left in the averaged image, which represents a
generalized version of the semiclassical picture established for
traditional PDM in the early days [4].

Those rainbow structures near the image edge also exhibit
distinctive features. The flux intensity near the image edge
in Figs. 11 and 12 is almost the same as that in traditional
PDM. This is readily understood following the same argument
for the vanishing of temporal interferences near the classical
boundary based on Fig. 5. It is also related to the stability
of those locations of the temporal image edge. However, the
situation will be different if the image edge is distorted obvi-
ously as in Fig. 6. The averaged image corresponding to Fig. 6
is shown in Fig. 13. The temporal images in Figs. 6(a) and
6(b) are integrated after Eq. (36), given by the heavy red solid
curves in Figs. 13(a) and 13(b). The main difference of the
image in Fig. 13 from those in Figs. 11 and 12 is that the sharp
image edge as in traditional PDM is broadened on average,
corresponding to the large-range distortion of the classical
boundary in Fig. 6.

The semiclassical interference picture established above
is actually general, also applicable for the case in Fig. 13.
The rest of the interferences observed in Fig. 13 are also
contributed by those pairs of trajectories reaching the detector
simultaneously with the same final energy, which are quan-
titatively given by those terms of summation in Eqs. (46)
and (47). Note that the static-field approximation used for the
classical background in Eqs. (46) and (47) is now invalid; one
should replace it as a direct integration over time using the
time-dependent amplitude in Eq. (14). The corresponding cal-
culations are shown by the dotted lines in Fig. 13, which agree
well with those heavy solid lines. The imperfect background
of the dotted lines for the broadened edge is caused by the
divergence of the semiclassical amplitude at each classical
caustic, while for a p-wave source this divergence is largely
suppressed by the term cos θi, with θi ≈ π/2, at the caustic
[see Eq. (25)] when the detector is far away from the electron
source.

V. CONCLUSION

We have systematically explored the field-induced modu-
lations of the electron image in traditional PDM when a weak
oscillating electric field is applied. Compared to previous
studies with only a static field [1,4–7] or a pure oscillating
field [33,39,40], the present system provides periodic modula-
tion in time and bunching effects in PDM. Both the temporal
and the accumulated images have been examined in detail.
All of the phenomena and related features can be understood
based on the established physical pictures. The present work
represents an effort to generalize the concept of spatial inter-
ferences in traditional PDM to temporal-spatial interferometry
from a theoretical perspective. It represents a step towards
future studies on quantum imaging spectrometry, especially
for generalizing traditional PDM by including the temporal
effects. Similar ideas can be extended to study photoionization
microscopy.
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Once the oscillating field is applied, the photoelectron
dynamics oscillates with the field periodically, and the pho-
toelectron image is therefore modulated in both the temporal
and spatial dimensions. The variation of the spatial image
with time depends on specific locations on the detector. The
electron flux near the image center can be easily modulated.
The photoelectron rainbow structure near the image edge is al-
most unchanged as long as the oscillating-field period is much
smaller than the time of flight for the electron reaching the
detector or the oscillating field is weak enough. If the added
oscillating field is sufficiently strong and its period is also
large enough that the electron could reach the detector within
a fraction of the period, the photoelectron rainbow structure is
distorted with time obviously owing to a large-range variation
of the classical boundary.

The interference oscillations are generally enriched by in-
creasing the oscillating-field strength. The electron tends to
be clustering in the time domain, where the number of oscil-
lations increases gradually. When the oscillating-field strength
is comparable to the static-field value, an electron bunch-
ing effect has been observed. Many electrons from a large
range of initial time instants arrive at the detector in a very
narrow window of time, resulting in a locally high electron
intensity on the detector. The electron flux forms a train of
intense coherent pulses impacting on the detector. Depending
on different electron sources, one can observe a periodic flash
of an extremely bright ring near the image edge or bright
oscillations near the image center. The combination of the
static and the oscillating electric fields is essential for these
temporal phenomena.

The averaged image over one period has been investigated,
corresponding to the accumulated image in an experiment
over many cycles of the oscillating field. We find that the
locations of those interference rings in traditional PDM are
stable if the oscillating field is weak enough, but their os-
cillation amplitudes are weakened. It can be approximately
described by a Bessel function in the perturbation regime.
This pure weakening effect also indicates the stability of
traditional PDM in measuring the electron affinities against
any weak noises of an oscillating field, because the number
of interference rings remains unchanged. By increasing the
field strength, some typical oscillations are formed and left
in the averaged electron image. A semiclassical picture is
established based on stationary phase approximations. It turns
out that the oscillations are contributed by the quantum inter-
ferences between electron waves propagated along different

classical trajectories which arrive at the same point on the
detector simultaneously with the same final energy.

Ultimately, a practical question is how difficult it is to ob-
serve the temporal phenomena in a real experiment. From our
theoretical perspectives, the applied field frequency should
be much smaller than the laser frequency for detaching the
electron. An upper limit of the field period T is also restricted
by the time of flight τ for the electron reaching the detector.
The time-dependent measurement is meaningless if T � τ

where the total field strength is approximately static for each
electron flying to the detector. The value of τ in traditional
PDM with the parameters we used is about 0.24 µs. Therefore,
the field period can be tuned in a range from picoseconds to
microseconds for a meaningful temporal experiment.

The main challenge would be related to the temporal res-
olution required for collecting the time-dependent images.
The oscillating-field frequencies of 100 and 1 MHz we used
for demonstration correspond to field periods of 10 ns and
1 µs, respectively. A resolution around 1 ns is sufficient to
observe most of those time-dependent features in the electron
image. We note that the up-to-date detector with microchannel
plates has been pushing the temporal resolution to tens of
picoseconds [43–46]. This resolution is already high enough
to detect the effects discussed in the present work. Once those
temporal phenomena could be realized in experiments, many
possibilities may be opened from a time-dependent viewpoint.

It is helpful to briefly recall the long history of develop-
ments of traditional PDM. It took decades to go from the early
theoretical discussions of the quantum interferences [4–6]
to the experimental observations [1–3] and applications for
extracting accurate electron affinities of atoms [8]. The key
element is the quantum interferences of a photoelectron in-
duced by external fields. In the present work we explored the
spatiotemporal dynamics of the electron pulses manipulated
by an additional external oscillating field, revealing the time
modulation and bunching effect as shown in the images. Our
theoretical study may also inspire various applications in the
future.
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