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Angular distribution of photoelectrons generated in atomic ionization by twisted radiation
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Until recently, theoretical and experimental studies of photoelectron angular distributions (PADs) including
nondipole effects in atomic photoionization have been performed mainly for the conventional plane-wave
radiation. One can expect, however, that the nondipole contributions to the angular- and polarization-resolved
photoionization properties are enhanced if an atomic target is exposed to twisted light. The purpose of the
present study is to develop a theory for PADs for the case of twisted light, especially for many-electron atoms.
The theoretical analysis is performed for the experimentally relevant case of macroscopic atomic targets, i.e.,
when the cross-sectional area of the target is larger than the characteristic transversal size of the twisted beam.
For such a scenario, we derive expressions for the angular distribution of the emitted photoelectrons under the
influence of twisted Bessel beams. As an illustrative example, we consider helium photoionization in the region
of the lowest dipole 2s2p [1P1] and quadrupole 2p2 [1D2] autoionization resonances. A noticeable variation of
the PAD caused by changing the parameters of the twisted light is predicted.
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I. INTRODUCTION

Studies of photoelectron angular distributions (PADs) are
important for many applications and are a fruitful source of
fundamental information about the structure of the target and
its interaction with the radiation field. Until recently, theoreti-
cal analysis of the PADs was based, in accordance with most
conventional experimental conditions, on the plane-wave ap-
proximation for the vector potential of the radiation field.
These studies were promoted to a new level when a twisted
light became available in the vacuum ultraviolet (VUV) region
[1]. In twisted radiation beams intensity, the profile has a
nonuniform structure since the surface of the constant phase
differs from a plane and there are complex internal flow pat-
terns [2,3]. Recent developments in technology have made the
generation of twisted radiation beams a routine procedure.
They can be generated in different ways: with the use of
spiral phase plates [4,5], computer-generated holograms [6],
q plates [7], axicons [8], integrated ring resonators [9], or
on-chip devices [10]. Twisted radiation beams can be gen-
erated in a broad range of energies from the optical region
to the XUV range [1,11–19]. The following types of twisted
beams are mainly considered: Laguerre-Gaussian [20,21] and
Bessel [22,23] beams. In the present work, we consider Bessel
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beams. Experimental (see the review [24]) and theoretical
studies are being carried out on the interaction of twisted
beams with matter: atoms [25–27], molecules [28,29], and
ions [30,31]. The twisting of radiation brings new features into
the interaction of the radiation with matter, which at present
remain mostly unrevealed but are of great interest. For exam-
ple, the manifestation of nondipole effects in photoionization
may strongly differ from those in the plane-wave case. Thus,
a general theory for calculating PADs, especially for many-
electron atoms, is required. In [30], a general formalism of
ionic photoionization by twisted Bessel light was developed
with the use of hydrogenlike wave functions to describe the
target system. It allowed one to proceed very far without ex-
panding the field in multipoles. In both cases, i.e., plane-wave
and twisted beams, similar sets of field multipoles contribute
to the PAD and, despite the fact that the selection rules are
modified [32], no radiation multipoles appear in comparison
with plane waves. It is important to analyze the dependence of
the observable quantities on the geometrical characteristics of
the twisted beam and a target. It is known that in the angular
distributions of photoelectrons in atomic photoionization, the
contribution of a certain interaction multipoles is associated
with certain spherical harmonics [33,34]. In photoionization
by twisted beams, the PAD changes due to the redistribution of
contributions from different multipoles. Thus, it is reasonable
to assume that the PAD with twisted radiation exhibits the
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same structure as in the plane-wave approximation. How-
ever, it differs (as will be shown below in present work) by
some factors at the spherical harmonics, with these factors
depending on the twisted light parameters. If this is the case,
the PAD can serve as a diagnostic tool for twisted radiation
beams. The photoexcitation of atoms by Bessel beams was
already discussed in [35]. The present work is, in this sense,
its extension to the case of photoionization.

This article is organized as follows. In Sec. II, we review
the general procedure for calculating the PAD in the case of
photoionization by plane-wave radiation. Section III is de-
voted to the development of the mathematical apparatus for
calculating the PAD for photoionization by twisted Bessel
beams of different polarizations. In Sec. IV, we present an
application of the developed approach to the photoionization
of helium in the vicinity of the lowest autoionizing reso-
nances, together with a discussion of the PAD transformation
near the spectroscopic features of the photoionization cross
section when changing the Bessel beam parameters. Unless
stated otherwise, we use atomic units throughout.

II. PLANE-WAVE FORMALISM

Consider the atomic photoionization process

h̄ω + A(αiJiMi ) → A+(α f J f M f ) + e−(pms),

where A (A+) denotes the target atom before (after) ionization
by a photon with energy h̄ω.

Below we show that any theoretical analysis of the pho-
toionization of a many-electron atom by twisted light can be
carried out using the matrix element

M (pl)
MiλM f

(k, p) = 〈α f J f M f , pms|R̂(k, λ)|αiJiMi〉, (1)

which describes the photoionization of an atom by a plane-
wave photon with wave vector k and helicity λ = ±1. In the
matrix element (1), Ji, f and Mi, f are the total angular momenta
and their projections of the initial (before ionization) and
final (after ionization) atomic (ionic) states, and αi, f are all
other quantum numbers needed for the state specification. The
emitted electron is characterized by its momentum p and spin
projections ms onto its propagation direction.

We first recall the well-known formalism for the descrip-
tion of the PAD in the plane-wave photoionization.

Plane-wave matrix element

1. Electron-photon interaction operator

R̂(k, λ) in the matrix element (1) is the interaction operator.
In many-electron calculations, it can be written as a sum of
single-particle operators,

R̂(k, λ) =
∑

q

αquλ eikrq . (2)

Here, rq specifies the position of the qth electron, uλ is the
polarization vector, αq is the vector of the Dirac matrices for
the qth particle, and the summation is taken over all atomic
electrons. Note that the operator (2) is written in the relativis-
tic framework for the Coulomb gauge for the electron-photon
interaction.

In order to evaluate the matrix element (1) with the op-
erator (2), it is practical to expand R̂(k, λ) into electric and

magnetic multipole terms that are constructed as irreducible
tensors of rank L. For the single-particle operator, this expan-
sion is written as [36]

αuλ eikr =
√

2π
∑
LM

∑
p=0,1

iL
√

2L + 1 (iλ)p

× DL
Mλ(k̂) α a(p)

LM (r), (3)

where k̂ = (φk, θk, 0) defines the direction of the incident
(plane-wave) photon, D j

mm′ (k̂) is the Wigner D-function (see,
for example, [37]), and the magnetic (p = 0) and electric
(p = 1) multipole terms are given by

a(p=0)
LM (r) ≡ a(m)

LM (r) = jL(kr) T M
L,L,

a(p=1)
LM (r) ≡ a(e)

LM (r) = jL−1(kr)

√
L + 1

2L + 1
T M

L,L−1

− jL+1(kr)

√
L

2L + 1
T M

L,L+1. (4)

Here, jL(x) is the spherical Bessel function, k = |k|, and
the vector spherical harmonics T M

L,� are irreducible tensors
of rank L, resulting from the coupling of the spherical unit
vectors em (m = 0,±1) with the spherical harmonics,

T M
L,� = [Y� ⊗ e]LM

≡
∑

m

(�M − m, 1m | LM )Y� M−m(θ, φ) em, (5)

where we used standard notation for the Clebsch-Gordan co-
efficient and Ylm(θ, φ) is the spherical harmonic.

2. Continuum electron state

Besides the electron-photon interaction operator, one needs
to expand the wave function of the emitted photoelectron into
partial waves [36,38,39],

|pms〉 =
∑
κμ

il e−i
κ [l]

(
l0,

1

2
ms

∣∣∣∣ jms

)
D j

μms
( p̂) |εκμ〉,

(6)
where the summation runs over the Dirac angular-momentum
quantum number κ = ±( j + 1/2) for l = j ± 1/2, with l
representing the orbital angular momentum of the electron
waves |εκμ〉. In Eq. (6), 
κ is the scattering phase, and the
spin projection ms is defined with respect to the propagation
direction of photoelectron p̂ = (φp, θp, 0). We also introduced
the notation [abc . . . ] ≡ √

(2a + 1)(2b + 1)(2c + 1) · · ·.
To obtain the partial-wave expansion of the many-electron

scattering states, we use Eq. (6) and apply the standard proce-
dure for coupling two angular momenta,
|α f J f M f , pms〉

=
∑
κμ

il e−i
κ [l]

(
l0,

1

2
ms

∣∣∣∣ jms

)
D j

μms
( p̂) |εκμ〉∣∣α f J f M f

〉

=
∑

κμJt Mt

il e−i
κ [l]

(
l0,

1

2
ms | jms

)

× (Jf M f , jμ | Jt Mt ) D j
μms

( p̂) |(α f J f , εκ )Jt Mt 〉. (7)

In expression (7), the proper antisymmetrization of the outgo-
ing electron with respect to all bound-state orbitals should be
ensured.
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3. Evaluation of the plane-wave matrix element

By using Eqs. (2) and (7) and applying the Wigner-Eckart theorem, we obtain the matrix element for the plane-wave photons
as

M (pl)
MiλM f

(k, p) =
√

2π
∑
LM p

∑
κμJt Mt

i−l+L ei
κ (iλ)p [l][L]

[Jt ]

(
l0,

1

2
ms

∣∣∣∣ jms

)
(Jf M f , jμ | Jt Mt )

× (JiMi, LM | Jt Mt ) D j∗
μms

( p̂) DL
Mλ(k̂)〈(α f J f , εκ )Jt ||

∑
q

αq a(p)
L (rq)||αiJi〉. (8)

For the sake of brevity, we denote the many-body reduced matrix element as

〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 = i−l ei
κ 〈(α f J f , εκ )Jt ||
∑

q

αq a(p)
L (rq)||αiJi〉. (9)

Using (9), we obtain

M (pl)
MiλM f

(k, p) =
√

2π
∑
LM p

∑
κμJt Mt

iL (iλ)p [lL]

[Jt ]

(
l0,

1

2
ms

∣∣∣∣ jms

)
(Jf M f , jμ | Jt Mt )

× (JiMi, LM | Jt Mt ) D j∗
μms

( p̂) DL
Mλ(k̂)〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉. (10)

4. Photoelectron angular distribution

We assume that the atom is initially unpolarized, and the polarization of the residual ion and the photoelectron spin are not
detected. Therefore, we average the PAD over the initial magnetic quantum numbers Mi and sum over the final magnetic quantum
numbers M f and ms:

W (pl)(θp, φp) = 1

2Ji + 1

∑
MiM f ms

∣∣M (pl)
MiλM f

(k, p)
∣∣2

. (11)

Defining the z axis as the propagation direction of the incident photons, DL
Mλ(k̂) = DL

Mλ(0, 0, 0) = δMλ. Substituting this into
Eqs. (10) and (11), we obtain

W (θp, φp) = 2π

2Ji + 1

∑
MiM f ms

λλ′

∑
Lp

L′ p′

∑
κμ

κ′μ′

∑
Jt Mt
J′
t M′

t

iL−L′
[LL′ll ′][Jt J

′
t ]−1(iλ)p(−iλ′)p′

(
l0,

1

2
ms

∣∣∣∣ jms

)(
l ′0,

1

2
ms

∣∣∣∣ j′ms

)

× (JiMi, Lλ | Jt Mt ) (JiMi, L′λ′ | J ′
t M ′

t )(Jf M f , jμ | Jt Mt ) (Jf M f , j′μ′ | J ′
t M ′

t ) D j∗
μms (φp, θp, 0) D j′

μ′ms
(φp, θp, 0)

× 〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 〈(α f J f , εκ
′)J ′

t ||Hγ (p′L′)||αiJi〉∗. (12)

We can further proceed as follows: evaluate the product of two Wigner D-functions; sum over MiM f Mt M ′
t by using the first

equality given in (A.91) of [37]; sum over μμ′ using the unitarity of the Clebsch-Gordan coefficients; and sum over ms using
Eq. (A.90) of [37]. After these steps, we finally obtain

W (θp, φp) = 2π

2Ji + 1

∑
kq

Dk
q0(φp, θp, 0)

∑
LpL′ p′
Jt J′

t κκ′

iL−L′
[LL′ll ′ j j′Jt J

′
t ](iλ)p(−iλ)p′

(−1)λ+Ji−Jf + 1
2 (Lλ, L′ − λ | kq)(l0, l ′0 | k0)

×
{

j j′ k
l ′ l 1

2

}{
Jt J ′

t k
L′ L Ji

}{
Jt J ′

t k
j′ j Jf

}
〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 〈(α f J f , εκ

′)J ′
t ||Hγ (p′L′)||αiJi〉∗, (13)

where constructions in curly brackets are Wigner 6 j-symbols.

The term with k = 0 in (13) gives us

W0 = 2π

2Ji + 1

∑
LpJt κ

|〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉|2,

which, in turn, allows one to calculate the total photoioniza-
tion cross section as

σ0 = 8π2

2Ji + 1

∑
LpJt κ

|〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉|2. (14)

III. TWISTED-WAVE FORMALISM

This section is devoted to the discussion of photoionization
by twisted light.

A. Evaluation of the twisted-wave matrix element

We assume that the light is prepared in a so-called Bessel
state. In our analysis, the Bessel photon beam propagates
along the (quantization) z axis. For this case, the Bessel state
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FIG. 1. The overview of the Bessel beam parameters and posi-
tion of a target atom.

is characterized by the well-defined projections of the linear
momentum kz and the total angular momentum (TAM) onto
the z axis, mtam. The absolute value of the transverse momen-
tum, κ⊥ = |k⊥|, is fixed; together with kz, it defines the energy
of the photons ω = c

√
κ2

⊥ + k2
z . As shown in [30], this Bessel

state is described by the vector potential

Atw
κ⊥mtamλ =

∫
uλeikraκ⊥mtam (k⊥)

d2k⊥
4π2

, (15)

where

aκ⊥mtam (k⊥) = (−i)mtam eimtamφk

√
2π

k⊥
δ(k⊥ − κ⊥). (16)

These expressions present the Bessel state in momentum
space as a coherent superposition of plane waves with their
wave vectors k = (k⊥, kz ) lying on the surface of a cone with
opening angle tan θc = k⊥/kz (see Fig. 1). Below we charac-
terize the kinematic properties of the Bessel beams by this
opening angle.

Using the vector potential (15) and (16), we can derive
the matrix element for the photoionization of a many-electron
atom by twisted light,

M (tw)
Miλ mtamM f

(p; θc, b)

=
∫

aκ⊥mtam (k⊥) e−ik⊥b⊥ M (pl)
MiλM f

(k, p)
d2k⊥
4π2

, (17)

where M (pl)
MiλM f

(k, p) is the conventional plane-wave matrix
element (1). We introduced an additional exponential factor
e−ik⊥b⊥ to specify the lateral position of the target atom with
regard to the beam axis of the incident light, where the impact
parameter b⊥ = (bx, by). This parameter is essential since, in
contrast to a plane wave, the Bessel beams have a much more
complex internal structure. In particular, their intensity distri-
bution in the transverse direction (the xy plane) is not uniform,
but consists of concentric rings of high and low intensity.
The direction of the local energy flux also varies significantly
within the wavefront. Therefore, one may expect that the prop-
erties of the photoelectrons strongly depend on the position b⊥
of the target atom with respect to the Bessel beam axis.

B. Differential cross section for ionization by twisted light

With the help of the “twisted” matrix element (17), one can
evaluate the angle-differential photoionization cross section.
This cross section depends on both the polarization state of
the incident photons and the spatial arrangement of the target.
We start our analysis from the simplest case of a homogeneous
macroscopic target that consists of atoms which are randomly
and uniformly distributed within the xy plane. Below we
consider the differential cross section for various polarization
states of the incident light for such a target.

1. Circularly polarized light

To evaluate the angle-differential cross section for ioniza-
tion of the macroscopic atomic target by twisted light, we have
to average the squared matrix element (17) over the impact
parameter,

dσ (tw,circ)

d�p
(θp, φp; θc)

= N 1

2Ji + 1

∑
MiM f ms

∫ ∣∣M (tw)
Miλ mtamM f

(p; θc, b)
∣∣2 db⊥

πR2
. (18)

Here, R defines the “size” of the target, which is assumed to be
much larger than the characteristic size of the intensity rings
in the Bessel beam. We assume that the atom in the initial state
is unpolarized and the polarization state of neither the ion nor
the electron spin is detected. The evaluation of the prefactor
N is not a trivial task since it requires the redefinition of
the concept of a cross section for the case of twisted light.
Here we will follow the concept of the cross section defined
in Ref. [40].

By inserting the matrix element (17) into Eq. (18) and car-
rying out the necessary algebra (see Appendix A for details),
we obtain the expression for the differential cross section in
the case of circularly polarized Bessel light,

dσ (tw,circ)

d�p
(θp, φp; θc) = N 2π

2Ji + 1

∑
J

PJ (cos θp)PJ (cos θc)
∑

κκ ′Jt J ′
t

∑
LL′ pp′

iL−L′
[ll ′Jt J

′
t LL′ j j′]

× (iλ)p−p′
(−1)λ+Ji−Jf + 1

2 (Lλ, L′ − λ | J0) (l0, l ′0 | J0)

{
j j′ J
l ′ l 1

2

}{
Jt J ′

t J
L′ L Ji

}{
Jt J ′

t J
j′ j Jf

}

× 〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 〈(α f J f , εκ
′)J ′

t ||Hγ (p′L′)||αiJi〉∗, (19)

where Pn(x) is the Legendre polynomial of the nth order.
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The limiting case of plane waves may be obtained from
(19) by putting θc = 0. Then, PJ (cos θc) = 1 and, comparing
with (13), we see that these equations coincide. Thus, we
obtain a result, which can be formulated as a statement.

Statement 1. For circularly polarized Bessel beams and a
homogeneous macroscopic target that consists of atoms which
are randomly and uniformly distributed within the plane per-
pendicular to the beam propagation direction, the effect of
twisting on the photoelectron angular distribution is expressed
by multiplying each coefficient of the Legendre polynomial
Pk (cos θp) by a factor Pk (cos θc), where θc is the opening angle
of the twisted radiation cone. This result is independent of the
field multipoles and the target structure.

2. Linearly polarized light

In the previous section, we considered the ionization of
an atom by a twisted light, characterized by the well-defined
values of the TAM projection mtam and the helicity λ. The
paraxial limit with additional condition k⊥ → 0 corresponds
to the well-known case of circularly polarized plane-wave
light. Now we turn to the case that can be considered as a
twisted analogon of plane-wave linearly polarized light. The
vector potential of twisted light that is “linearly polarized” in
the xz plane can be written as [41]

Atw
κ⊥ ‖ = i√

2

(
Atw

κ⊥mtam=m+1, λ=+1 − Atw
κ⊥mtam=m−1, λ=−1

)
, (20)

i.e., as the difference of two vector potentials (15), obtained
for different TAM projections and different helicities. The
physical meaning of Eq. (20) becomes more transparent if one

writes this expression in the paraxial regime,

Atw
κ⊥ ‖ ≈ ex Jm(κ⊥r⊥) eimφ eikzz, (21)

where we applied the approach from Ref. [30]. Here, m can
be considered as the projection of the light’s orbital angular
momentum (OAM), moam. Applying, additionally, that k⊥ →
0, Eq. (21) transforms to the conventional plane wave linearly
polarized in the xz plane: Atw

κ⊥ ‖ ≈ ex eikzz.
Here and below, the Bessel light with vector potential (20)

is addressed as linearly polarized, and one should take this
term in the following sense. The pattern of polarization of
such light has a quite complicated structure for large values
of θc and only for small values of θc reduces to the linear
polarization in a conventional meaning. Thus, throughout this
paper, the term “linearly polarized Bessel (twisted) light”
should be understood as “Bessel (twisted) light with the vector
potential (20)” and without any restrictions regarding param-
eter θc. Interesting ideas and discussions on the polarization
structure complexity can be obtained from [42].

Using the general expression for the vector potential of
linearly polarized radiation (20) allows us to derive the pho-
toionization matrix element,

M (tw)
MiM f ‖(p; θc, b) = i√

2

(
M (tw)

Miλ=+1 mtam=m+1 M f
(p; θc, b)

− M (tw)
Miλ=−1 mtam=m−1 M f

(p; θc, b)
)
, (22)

in terms of the matrix elements (17). Applying this expression
and performing algebra similar to that in the previous section,
we can derive the differential cross section for the ionization
by “linearly polarized” twisted light,

dσ (tw,lin)

d�p
(θp, φp; θc) = N 1

2Ji + 1

∑
MiM f ms

∫ ∣∣M (tw)
MiM f ‖(p; θc, b)

∣∣2 db⊥
πR2

= N 1

2Ji + 1

∑
MiM f ms

∑
λ,λ′

∫
M (pl)

Mi λ M f
(k, p) M (pl)∗

Mi λ′ M f
(k, p) ei(λ−λ′ )ϕk

dϕk

2π
. (23)

For θc → 0, this expression reduces to the well-known plane-wave result. Indeed, by using the asymptotic expression for the
Wigner D-function,

DL
Mλ(ϕk, θc, 0) ≈ e−iλϕk δλM, (24)

we can write the plane-wave photoionization matrix element as

M (pl)
Mi λ M f

(k, p) ≡ M (pl)
Mi λ M f

(θc, ϕk, p) ≈ e−iλϕk M (pl)
Mi λ M f

(θc = 0, ϕk = 0, p) ≡ e−iλϕk M (pl)
Mi λ M f

(0, p), (25)

where the last matrix element describes plane-wave radiation propagating along the quantization z axis. Substituting Eq. (25)
into Eq. (23), we obtain

dσ (pl,lin)

d�p
(θp, φp; θc) = N 1

2Ji + 1

∑
MiM f ms

∑
λ,λ′

M (pl)
Mi λ M f

(0, p)M (pl)∗
Mi λ′ M f

(0, p). (26)

To simplify Eq. (23), we first substitute the matrix elements (10) and, after further transformations (see Appendix B for
details), we obtain the expression for the differential cross section in the case of linearly polarized Bessel light,

dσ (tw,lin)

d�p
(θp, φp; θc) = N 2π

2Ji + 1

∑
J

∑
M=0,±2

√
4π

2J + 1
Y ∗

JM (θp, φp) dJ
MM (θc)

∑
λ,λ′

δM,λ−λ′

×
∑

κκ ′Jt J ′
t

∑
LL′ pp′

iL−L′
(iλ)p(−iλ′)p′

(−1)λ+Ji−Jf + 1
2 [ll ′LL′Jt J

′
t j j′](l0, l ′0 | J0)(Lλ, L′ − λ′ | JM )
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×
{

j j′ J
l ′ l 1

2

}{
Jt J ′

t J
L′ L Ji

}{
Jt J ′

t J
j′ j Jf

}
〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 〈(α f J f , εκ

′)J ′
t ||Hγ (p′L′)||αiJi〉∗.

(27)

In Eq. (27), d j
mm′ (θ ) is the small Wigner D-function, [37].

For θc = 0, dJ
MM (0) = 1, and thus we can make a second

statement.
Statement 2. For “linearly polarized” Bessel beams and a

homogeneous macroscopic target that consists of atoms which
are randomly and uniformly distributed within the plane per-
pendicular to the beam propagation direction, the effect of
twisting on the photoelectron angular distribution is expressed
by multiplying each coefficient of the spherical harmonic
Ykq(θp, φp) by a factor dk

qq(θc), where θc is the opening angle
of the twisted radiation cone. The result is independent of the
field multipoles and the atomic structure.

Equations (13), (19), and (27) are written in the j j-
coupling scheme. The transformation to a nonrelativistic
LL-coupling scheme is quite simple: one has to replace Ji, f ,t

with Li, f ,t ; replace j with l; replace 1/2 in the phase with zero;

and replace Wigner 6 j-symbol
{ j j′ J

l ′ l 1
2

}
with 1.

IV. RESULTS AND DISCUSSION

The main consequence of Statements 1 and 2 is the pos-
sibility to use the well-known parametrization of the PADs
in photoionization by plane-wave radiation in terms of the
anisotropy parameters β, γ , and δ [33] also for the case of
photoionization by twisted radiation. The difference between
“plane” and “twisted” PADs comes down to geometrical mul-
tipliers depending on the angle of the twisted radiation cone
θc, while the anisotropy parameters remain unaffected. This
makes it possible to calculate them by different methods and
models. It also means that one may expect a more pronounced
change in the PAD when at least one of the anisotropy param-
eters changes significantly.

For an illustration of our ideas, we now consider
photoionization of the helium atom in the vicinity of the
lowest autoionization states (AIS): dipole 2s2p [1P1] and
quadrupole 2p2 [1D2], respectively. The calculation of the
dipole and quadrupole photoionization amplitudes was
performed by means of the B-spline R-matrix code [43]
within the LS-coupling scheme to describe the initial
atomic and final ionic states. All the wave functions
were obtained by the multiconfiguration Hartree-Fock
method using the MCHF code [44]. For the initial state,
we first performed a Hartree-Fock (HF) optimization of
the 1s2 [1S] state in order to obtain a first approximation
of the 1s orbital. Then we added the configurations of
the same parity, 1s2s, 1s3s, 2s2, 2s3s, 2p2, 2p3p, 3p2, 3d2,
to the ground-state description, optimizing all of them
together on the 1S term. For the six final ionic states
(targets), we used single-configuration representations
1s [2S], 2s [2S], 2p [2P], 3s [2S], 3p [2P], 3d [2D]. The dipole
and quadrupole photoionization cross sections are presented
in Fig. 2(a).

It is well known that for ionization of an s shell, β = 2
and δ = 0. Therefore, γ remains the only parameter that may

change with the photon energy. The nondipole parameter
γ characterizes the interference between the electric dipole
(E1) and quadrupole (E2) photoionization amplitudes. One
should expect the sharpest modulation of this parameter when
the E2 photoionization cross section becomes comparable to
or even dominates E1 photoionization. For example, such
a situation is observed in helium photoionization near the
dipole 2s2p [1P1] and quadrupole 2p2 [1D2] AIS resonances.
At the photon energy of ≈60.18 eV, the cross section of the
E1 dipole photoionization approaches zero, i.e., ∼10−4 Mb.
Hence the E2 quadrupole photoionization dominates in this
region [see Fig. 2(a)].

The photon energy dependence of γ is presented in
Fig. 2(b), together with experimental data points from [45].
Comparison of the present theoretical results with experimen-
tal data shows a significant discrepancy around 60.2 eV. This
issue was extensively studied in [46]. The most probable and
plausible reason for such a difference is an underestimation
of the background signal, i.e., an entirely instrumental origin

FIG. 2. (a) Cross sections for dipole E1 (solid blue line) and
quadrupole E2 (red dashed line) photoionization of helium obtained
using Eq. (14) for a particular multipole. (b) Nondipole parameter
γ of the photoelectron angular distribution. The solid line represents
the theoretical prediction; the open circles are the experimental data
from [45].
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FIG. 3. (a) General transformation between coordinate systems
S1 and S2 by the Euler angle rotation R = {αR; βR; γR}. (b) The
transformation between the coordinate systems S′ [used in Eq. (28)]
and S [used in Eq. (30)] is provided by R = {0; π/2; π}.

during the experimental data processing. The spectroscopic
models, however, appear to be reliable.

In order to evaluate the expression for the PAD resulting
from twisted wave photoionization, we start from the well-
known plane-wave nonrelativistic PAD in the general form
within first-order nondipole corrections [47]. We choose the
coordinate system S′ (see Fig. 3) in such a way that the x′ axis
is the propagation axis of the light beam (k ‖ x′) and the z′

axis is the polarization axis,(
dσ

d�

)
S′

= σ0

4π

[(
1 + β

4
− 3

4
Pβ + 3

2
Pβ cos2 θ ′

p

)

+
(

δ + γ P cos2 θ ′
p − γ

P − 1

2

)
sin θ ′

p cos φ′
p

+ 3β

4
(P − 1)(sin θ ′

p cos φ′
p)2

+γ
P − 1

2
(sin θ ′

p cos φ′
p)3

]
. (28)

Here, P is the degree of linear polarization. P = 1 in Eq. (28)
corresponds to the case of linearly polarized light, while
P = 0 corresponds to the case of circularly polarized light.
For convenience, one can express all the combinations of
sines and cosines in Eq. (28) in terms of spherical harmonics
Ylm(θ ′

p, φ
′
p). To apply the statements obtained in Sec. III, we

need to transform Eq. (28) from the coordinate system S′ to S,
where the x axis is the polarization axis and the z axis is the
propagation direction. The conversion of spherical harmonics
when the coordinate system undergoes rotation described by
the triad of Euler angles R = {αR; βR; γR} is given by [37]

YKQ′ (θ ′
p, φ

′
p) =

∑
Q

DK
QQ′ (αR; βR; γR)YKQ(θp, φp). (29)

The transformation S′ → S (z′ → x; x′ → z) is provided by
the rotation R = {0; π

2 ; π}. The transformation of Eq. (28)
then leads to

(
dσ

d�

)
S

= σ0

4π

(
1 − β

2

√
4π

5

{
Y20(θp, φp) − P

√
6

2
[Y2−2(θp, φp) + Y2+2(θp, φp)]

}
+

(
δ + γ

5

)√
4π

3
Y10(θp, φp)

−γ

5

√
4π

7

{
Y30(θp, φp) − P

√
5

6
[Y3−2(θp, φp) + Y3+2(θp, φp)]

})
. (30)

Equation (30) is the starting point for analyzing PADs
generated in helium photoionization by twisted radiation.
Figures 4(a)–4(c) present calculated PADs with P = 0 and
P = 1 for three different photon energies: 59.8 eV (below
the resonance), 60.178 eV (just below the minimum in the
2s2p[1P1] dipole resonance), and 60.18 eV (exactly at the
minimum).

In our further analysis, we follow the order of consider-
ations in Sec. III and hence begin with circularly polarized
twisted radiation. We assume P = 0 in Eq. (30) and multi-
ply each spherical harmonic Ykq(θp, φp) by the factor dk

qq(θc)
according to Statement 1. Although the statement refers to
the Legendre polynomials, for P = 0, Eq. (30) contains only
spherical harmonics Ykq(θp, φp) with q = 0, which are equiva-
lent to the Legendre polynomials. After such a transformation,
we obtain the dependence of the PAD on the twisted radiation
cone angle θc. Simulated PADs for different values of θc are
presented in Figs. 4(d)–4(f). It is clearly seen that the PADs
are very sensitive to both the photon energy and the angle θc.
For ω = 59.8 eV in plane-wave photoionization, the angular
distribution is “purely” dipole. Increasing θc leads to gains in

the forward-backward direction and the PAD becomes almost
isotropic. Closer to the minimum of the dipole resonance
(ω = 60.178 eV), the PADs start to lose the general symmetry
because of the amplification of nondipole effects. Exactly in
the minimum (ω = 60.18 eV according to our calculations),
the shape of the PADs becomes qualitatively different. Specif-
ically, a predominant portion of photoelectrons is emitted in
the direction of the incident beam wave vector k and a small
fraction in the opposite direction.

Next we consider the linearly polarized case, set P = 1 in
Eq. (30), and multiply each spherical harmonic Ykq(θp, φp)
by the factor dk

qq(θc) according to Statement 2. Calculated
PADs for this case are presented in Figs. 4(g)–4(i). For ω =
59.8 eV, the evolutions of the PADs with increasing θc do
not show any striking changes, becoming only more intense
in the forward-backward direction. On the contrary, a little
below the dipole resonance minimum (ω = 60.178 eV), the
angular distribution changes quite noticeably and a redistribu-
tion of photoelectrons occurs. Finally, when the photon energy
approaches the minimum at ω = 60.18 eV for the case of
linearly polarized twisted light, we find significant changes in
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FIG. 4. (a)–(c) Simulated, according to Eq. (30), PADs for plane-wave photoionization of helium (diamonds and circles along the line
indicate the angular grid step). The upper part shows three-dimensional (3D) views of the angular distributions for circularly polarized (P = 0,
gray one on the left) and linearly polarized (P = 1, orange one on the right) light. (d)–(f) Simulated, according to Statement 1, PADs for twisted
circularly polarized Bessel beam photoionization of helium for different values of θc. The upper part shows 3D views of the angular distributions
for θc = 30◦, 45◦, and 60◦ (from left to right). (g)–(i) Simulated, according to Statement 2, PADs for twisted linearly polarized Bessel beam
photoionization of helium for different values of θc. The upper part shows 3D views of the angular distributions for θc = 30◦, 45◦, and 60◦

(from left to right). Note that all the polar plots correspond to the case of θp = 0. The angular grid step for the PADs in (d)–(i) is similar to that
in (a)–(c). The columns correspond to the photon energy indicated at the top of the figure: (a), (d), (g) ω = 59.8 eV; (b), (e), (h) ω = 60.178
eV; (c), (f), (i) ω = 60.18 eV.

the shape of the PADs for different values of θc. For θc = 30◦,
for example, there are two dominant petals in the forward
direction and two minor ones in the backward direction. Turn-
ing to θc = 45◦ merges the two backward petals into one and
redistributes photoelectrons in the forward direction by filling
the local minimum along the incident beam wave vector k.
For θc = 60◦, two additional dominant backward directions
of electron emission are formed (∼67.5◦ and 290.5◦), and in
the forward direction, the strengthening trend along the wave
vector k continues.

Summing up, the above analysis showed that the angular
distributions of photoelectrons emitted under the influence of
a twisted Bessel beam are very sensitive to the parameters
of the incident radiation (polarization and cone angle θc) in
the energy regions where a strong domination of nondipole
effects occurs. Hence, one can control the shape of the PAD

by manipulating the polarization and twisted radiation cone
opening angle θc.

From the above, it is clear that experimental angular distri-
butions of high accuracy could serve as a tool to extract the
parameters of twisted beams, i.e., one can diagnose the inci-
dent twisted radiation beam. Applying Statement 1 to Eq. (30)
for the case of a circularly polarized (P = 0) twisted beam and
writing it in terms of Legendre polynomials, we obtain, for the
PAD, (

dσ (tw,circ)

d�

)
S

= σ0

4π

[
1 − β

2
P2(cos θp)P2(cos θc)

+
(
δ + γ

5

)
P1(cos θp)P1(cos θc)

− γ

5
P3(cos θp)P3(cos θc)

]
. (31)
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FIG. 5. Calculated parametrization factor γ tw
circ from Eq. (35)

for different values of the twisted beam cone angle θc for helium
photoionization. For θc = 0◦, the factor γ tw

circ coincides with the con-
ventional nondipole parameter γ depicted in Fig. 2(b).

Putting

β tw
circ = βP2(cos θc), (32)

γ tw
circ = γ P3(cos θc), (33)

δtw
circ =

(
δ + γ

5

)
P1(cos θc) − γ

5
P3(cos θc), (34)

equation (31) can be parameterized as(
dσ (tw,circ)

d�

)
S

= σ0

4π

[
1 − β tw

circ

2
P2(cos θp)

+
(

δtw
circ + γ tw

circ

5

)
P1(cos θp)

− γ tw
circ

5
P3(cos θp)

]
. (35)

Equation (35) has the same structure as the PAD for pho-
toionization by plane-wave circularly polarized radiation.
Therefore, if one performs an experiment on photoionization
by both plane and twisted (Bessel) radiation with the same
target atom and extracts the anisotropy parameters β, β tw

circ,
γ , γ tw

circ, δ, and δtw
circ, then it becomes possible to diagnose the

Bessel beam, i.e., either to find [according to parametrizations
(32)–(34)] its parameter θc, if it is unknown for some reason,

or to estimate the quality of the twisted beam preparation by
comparing the expected and the experimentally derived values
of θc. The dependence of γ tw

circ on the twisted cone angle θc is
presented in Fig. 5.

V. CONCLUSIONS

In the present work, we performed a theoretical analysis
of the photoionization process caused by twisted radiation,
specifically, Bessel beams. Assuming the atomic target to
be extended (the size of the target area is larger than the
characteristic size of the incident beam), we proved two state-
ments that allow one to derive an expression for the PADs
under the influence of twisted light of different polarization.
Being extensions of the well-known parametrizations for the
plane-wave radiation, our “twisted” expressions will help to
plan and to perform next-generation atomic photoionization
experiments.

An illustration of the statements’ application was given
for the example of helium atoms ionized by twisted radia-
tion in the vicinity of the lowest autoionization resonances
in dipole and quadrupole photoionization. When nondipole
effects become dominating, the shape of the PAD noticeably
changes. Moreover, increasing the opening angle, i.e., the
parameter θc for different incident photon energies, substan-
tially modifies the PADs. The latter result suggests that the
angular distributions can be controlled by the twisted radiation
parameters. In addition, we showed that the PADs can serve
as a diagnostic tool for the parameters of the incident circular
polarized twisted Bessel radiation because of the possibility to
parametrize the angular distribution expressions accordingly.
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APPENDIX A: DIFFERENTIAL CROSS SECTION FOR CIRCULARLY POLARIZED BESSEL LIGHT

By inserting the matrix element (17) into Eq. (18), we obtain

dσ (tw,circ)

d�p
(θp, φp; θc) = N 1

2Ji + 1

∑
MiM f ms

∫
ei(k′

⊥−k⊥ )b⊥ aκ⊥mtam (k⊥) a∗
κ⊥mtam

(k′
⊥)M (pl)

MiλM f
(k, p) M (pl)∗

MiλM f
(k′, p)

d2k⊥
4π2

d2k′
⊥

4π2

db⊥
πR2

= N 1

2Ji + 1

∑
MiM f ms

∫ ∣∣aκ⊥mtam (k⊥)
∣∣2 ∣∣M (pl)

MiλM f
(k, p)

∣∣2 d2k⊥
4π2

. (A1)
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By using the explicit form of the amplitude aκ⊥mtam (k⊥) and the relation |δ(k⊥ − κ⊥)|2 = R/π δ(k⊥ − κ⊥) (cf. Eq. (24) from
Ref. [40]), we finally obtain

dσ (tw,circ)

d�p
(θp, φp; θc) = N 1

2Ji + 1

∑
MiM f ms

∫ ∣∣M (pl)
MiλM f

(k, p)
∣∣2 dϕk

2π
. (A2)

Here, the plane-wave matrix element M (pl)
MiλM f

(k, p) is calculated for the photon wave vector k = k(sin θc cos ϕk,

sin θc sin ϕk, cos θc), with k = cω and θc as input parameters.
One can perform the integration over the azimuthal angle ϕk analytically if one rewrites the plane-wave matrix element (10)

as

M (pl)
MiλM f

(k, p) =
∑
LM p

(iλ)p DL
Mλ(k̂) GLM (p), (A3)

where we introduced

GLM (p) =
√

2π iL
∑
κμ

∑
Jt Mt

[lL]

[Jt ]

(
l0,

1

2
ms

∣∣∣∣ jms

)
D j∗

μms
( p̂)(Jf M f , jμ | Jt Mt ) (JiMi, LM | Jt Mt )〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉.

(A4)

By inserting (A4) into (A3) and using the relation
∫ ∞

0 ei(M−M ′ )ϕk dϕk = 2πδMM ′ , we obtain

dσ (tw,circ)

d�p
(θp, φp; θc) = N 1

2Ji + 1

∑
MiM f ms

∑
LL′ pp′

∑
M

(iλ)p−p′
dL

Mλ(θc) dL′
Mλ(θc)GLM (p) G∗

L′M (p). (A5)

To find a more practical expression, we write Eq. (A5) in the form

dσ (tw,circ)

d�p
(θp, φp; θc) = N 2π

2Ji + 1

∑
LL′ pp′

iL−L′
(iλ)p−p′

[LL′]
∑

Jt J ′
t κκ ′

Z [ll ′][Jt J
′
t ]−1〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉

× 〈(α f J f , εκ
′)J ′

t ||Hγ (p′L′)||αiJi〉∗, (A6)

where

Z =
∑

MiM f msM

μμ′Mt M′
t

(
l0,

1

2
ms

∣∣∣∣ jms

)
(Jf M f , jμ | Jt Mt )(JiMi, LM | Jt Mt )

(
l ′0,

1

2
ms

∣∣∣∣ j′ms

)
(Jf M f , j′μ′ | J ′

t M ′
t )(JiMi, L′M | J ′

t M ′
t )

× D j∗
μms

( p̂)D j′
μ′ms

( p̂)dL
Mλ(θc) dL′

Mλ(θc). (A7)

The summation over the projections in (A7) can be performed analytically as follows. First we sum the product of four Clebsch-
Gordan coefficients over MiM f Mt M ′

t using (A.91) of [37]:∑
MiM f Mt M ′

t

(Jf M f , jμ | Jt Mt ) (JiMi, LM | Jt Mt )(Jf M f , j′μ′ | J ′
t M ′

t ) (JiMi, L′M | J ′
t M ′

t )

= (−1)Jt −J ′
t + j− j′

∑
sσ

[sJt J
′
t ]2 [LL′]−1( j − μ, sσ | L − M )( j′ − μ′, sσ | L′ − M )

{
Jf Jt j
L s Ji

}{
Jf J ′

t j′
L′ s Ji

}
. (A8)

Then, multiplying D-functions, we obtain

Z = (−1)Jt −J ′
t + j− j′ [sJt J

′
t ]2 [LL′]−1

∑
sms

∑
JM1M2M

∑
σμμ′

(−1)ms−μ( j − μ, sσ | L − M )( j′ − μ′, sσ | L′ − M )

× ( j − μ, j′μ′ | JM1)( j − ms, j′ms | JM2) DJ
M1M2

( p̂) δM20

(
l0,

1

2
ms

∣∣∣∣ jms

)(
l ′0,

1

2
ms

∣∣∣∣ j′ms

)

×
{

Jf Jt j
L s Ji

}{
Jf J ′

t j′
L′ s Ji

}
dL

Mλ(θc) dL′
Mλ(θc). (A9)
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Next, we sum the products of three Clebsch-Gordan coefficients over μμ′σ ,∑
μμ′σ

( j − μ, sσ | L − M )( j′ − μ′, sσ | L′ − M )( j − μ, j′μ′ | JM1)(−1)−μ

= (−1)s− j− j′−M[LL′](L − M, L′M | J0)

{
L L′ J
j′ j s

}
δM10, (A10)

and over ms,∑
ms

(−1)ms

(
l0,

1

2
ms

∣∣∣∣ jms

)(
l ′0,

1

2
ms

∣∣∣∣ j′ms

)
( j − ms, j′ms | J0) = (−1) j′+ j+ 3

2 [ j j′](l0, l ′0 | J0)

{
j j′ J
l ′ l 1

2

}
. (A11)

The result is

Z =
∑
sJM

(−1)Jt −J ′
t +s− j′+ j+ 3

2 (−1)J−M[sJt J
′
t ]2[ j j′] (l0, l ′0 | J0) (L − M, L′M | J0)

×
{

Jf j Jt

L Ji s

}{
Jf j′ J ′

t
L′ Ji s

}{
j j′ J

L′ L s

}{
j j′ J
l ′ l 1

2

}
dL

Mλ(θc) dL′
Mλ(θc) PJ (cos θp). (A12)

After this, we sum over M,∑
M

(−1)−M (L − M, L′M | J0) dL
Mλ(θc) dL′

Mλ(θc) =
∑

M

(−1)−λ(L − M, L′M | J0) DL
−M−λ(0, θc, 0)DL′

Mλ(0, θc, 0)

= (−1)−λ(L − λ, L′λ | J0) PJ (cos θc), (A13)

and over s,∑
s

(−1)s[s]2

{
Jf j Jt

L Ji s

}{
Jf j′ J ′

t
L′ Ji s

}{
j j′ J

L′ L s

}
= (−1)−Jf −Ji−L− j− j′−L′−Jt −J−J ′

t

{
Jt J J ′

t
j′ Jf j

}{
Jt J J ′

t
L′ Ji L

}
.

(A14)

Collecting (A12)–(A14), we arrive at

Z = (−1)Ji−Jf −λ− 1
2 [Jt J

′
t ]2 [ j j′]

∑
J

(l0, l ′0 | J0) (Lλ, L′ − λ | J0)

{
Jt J ′

t J
j′ j Jf

}{
Jt J ′

t J
L′ L Ji

}{
j j′ J
l ′ l 1

2

}

×PJ (cos θp) PJ (cos θc). (A15)

Substituting (A15) into (A6), we finally obtain the cross section as

dσ (tw,circ)

d�p
(θp, φp; θc) = N 2π

2Ji + 1

∑
J

PJ (cos θp)PJ (cos θc)
∑

κκ ′Jt J ′
t

∑
LL′ pp′

iL−L′
[ll ′Jt J

′
t LL′ j j′]

× (iλ)p−p′
(−1)λ+Ji−Jf + 1

2 (Lλ, L′ − λ | J0) (l0, l ′0 | J0)

{
j j′ J
l ′ l 1

2

}{
Jt J ′

t J
L′ L Ji

}{
Jt J ′

t J
j′ j Jf

}

× 〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 〈(α f J f , εκ
′)J ′

t ||Hγ (p′L′)||αiJi〉∗. (A16)

APPENDIX B: DIFFERENTIAL CROSS SECTION FOR LINEARLY POLARIZED BESSEL LIGHT

Recall that p̂ ≡ {φp, θp, 0} and k̂ ≡ {φk, θc, 0}. To simplify Eq. (23), we first substitute the matrix elements (10). The result is

dσ (tw,lin)

d�p
(θp, φp; θc) = N

2Ji + 1

∑
MiM f ms

∑
λ,λ′

∫
dφk ei(λ−λ′ )φk

∑
LL′Jt J′

t
pp′κκ′

∑
MM′μμ′

Mt M′
t

iL−L′
(iλ)p(−iλ′)p′

[ll ′LL′][Jt J
′
t ]−1

(
l0,

1

2
ms | jms

)

×
(

l ′0,
1

2
ms

∣∣∣∣ j′ms

)
(Jf M f , jμ | Jt Mt ) (Jf M f , j′μ′ | J ′

t M ′
t )(JiMi, LM | Jt Mt ) (JiMi, L′M ′ | J ′

t M ′
t )

× D j∗
μms

( p̂) D j′
μ′ms

( p̂) DL
Mλ(k̂) DL′∗

M ′λ′ (k̂)〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 〈(α f J f , εκ
′)J ′

t ||Hγ (p′L′)||αiJi〉∗.
(B1)
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Now we perform the summations using the formulas∑
MiM f Mt M ′

t

(Jf M f , jμ | Jt Mt ) (JiMi, LM | Jt Mt )(Jf M f , j′μ′ | J ′
t M ′

t ) (JiMi, L′M ′ | J ′
t M ′

t )

= (−1)Jf −Ji−L+L′+ j+ j′−M ′−μ′
[Jt J

′
t ]2

∑
sσ

(L′ − M ′, LM | sσ )( j′ − μ′, jμ | sσ )

{
Jt J ′

t s
L′ L Ji

}{
Jt J ′

t s
j′ j Jf

}
, (B2)

∑
μμ′

(−1)−μ′
( j′ − μ′, jμ | sσ )D j∗

μms
( p̂) D j′

μ′ms
( p̂) = (−1)ms+2σ ( j − ms, j′ms | s0)Ds

0σ ( p̂−1), (B3)

∑
MM ′

(−1)−M ′
(L′ − M ′, LM | sσ )DL

Mλ(k̂) DL′∗
M ′λ′ (k̂) = (−1)λ−σ (L′ − λ′, Lλ | sλ − λ′)Ds

λ−λ′σ (k̂
−1

). (B4)

Here we introduced the notations p̂−1 ≡ {0, θp, φp} and k̂
−1 ≡ {0, θc, φk},∑

ms

(−1)ms

(
l0,

1

2
ms

∣∣∣∣ jms

) (
l ′0,

1

2
ms

∣∣∣∣ j′ms

)
( j − ms, j′ms | s0) = (−1) j′+ j+ 3

2 [ j j′] × (l0, l ′0 | s0)

{
j j′ s
l ′ l 1

2

}
. (B5)

Finally, we use the integral ∫
dφk ei(λ−λ′ )φk Ds

λ−λ′σ (k̂
−1

) = 2π ds
σσ (θc)δσ,λ−λ′ (B6)

and note that

Ds
0σ ( p̂−1) = (−1)σ

√
4π

2s + 1
Y ∗

sσ ( p̂). (B7)

Collecting (B1)–(B7) and replacing the summation indices sσ → JM, we obtain

dσ (tw,lin)

d�p
(θp, φp; θc)

= N 2π

2Ji + 1

∑
J

∑
M=0,±2

√
4π

2J + 1
Y ∗

JM (θp, φp) dJ
MM (θc)

∑
λ,λ′

δM,λ−λ′

×
∑

κκ ′Jt J ′
t

∑
LL′ pp′

iL−L′
(iλ)p(−iλ′)p′

(−1)λ+Ji−Jf + 1
2 [ll ′LL′Jt J

′
t j j′](l0, l ′0 | J0)(Lλ, L′ − λ′ | JM )

×
{

j j′ J
l ′ l 1

2

}{
Jt J ′

t J
L′ L Ji

}{
Jt J ′

t J
j′ j Jf

}
〈(α f J f , εκ )Jt ||Hγ (pL)||αiJi〉 〈(α f J f , εκ

′)J ′
t ||Hγ (p′L′)||αiJi〉∗. (B8)
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