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Universality in odd-even harmonic generation and application in terahertz waveform sampling
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Odd-even harmonic generation contains the system’s dynamical symmetry breaking, and its decoding is desir-
able not only in understanding physics but also for applications of dynamics extraction. In this work we discover
a simple universal relation between the odd-even harmonics and the asymmetry of the terahertz (THz)-assisted
laser-atomic system: atoms in a primary midinfrared laser pulse combined with a THz laser. We demon-
strate numerically and then derive analytically the dependence of the harmonic even-to-odd ratio on the THz
electric field. Notably, the functional form of this dependency reveals a universal scaling independent of the
parameters of both the primary pulse and atomic target. This universality inspires us to propose a pump-probe
scheme for THz waveform sampling from the even-to-odd ratio, accessible from conventional compact setups.
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I. INTRODUCTION

Recently, high-order harmonic generation (HHG) from an
asymmetric laser-target system has gained a great deal of
attention since it reveals deeper structures in HHG spectra
[1–11]. The most prominent feature in such symmetry-
breaking systems is the emergence of even harmonics, which
apparently separate them from symmetric counterparts, which
emit only odd harmonics [12]. Therefore, the odd-even pattern
in HHG spectra must encode the dynamical asymmetry infor-
mation of the laser-target system [1–10], and thus a universal
relation between them can be helpful in many extraction ap-
plications.

One route to break the spatial-temporal symmetry is adding
a weaker external static electric field to the primary multicy-
cle laser pulse [13–18]. However, to yield a visible effect,
the static field needs to be impractically strong (of the
order of MV/cm). Nevertheless, with recent developments of
powerful terahertz (THz) sources, a quasistatic strong electric
field can be engineered into the HHG process [18–27]. This
THz-assisted HHG has been studied mostly in the harmonic
conversion efficiency or the plateau structure [19–23] but less
in other notable aspects such as odd-even harmonic spectra.
Some initial estimates have been made [14,26], but a direct
relation between the odd-even pattern and the asymmetricity
of the THz-assisted laser-atomic system has not yet been
established. This relation not only is of intellectual interest
but can be critical to many applications such as extracting
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quantum dynamics inside atoms or molecules, manipulat-
ing electron trajectories on the attosecond timescale, or THz
waveform sampling, which has been gaining attention re-
cently [3,18,22,28,29].

Recently, it has been reported that solids under a THz
field emit even harmonics that can be used to dynamically
image the electric field of the THz pulse [30]. However,
because of the complexity of the solids, their odd-even
HHG depends on the primary laser parameters and solid
targets. Hence, finding a universal odd-even harmonic rule
independent of these factors is essential for a fundamen-
tal understanding of and applications in probing laser-target
asymmetry.

In this work we accomplish two goals. First, we thoroughly
study the response of the odd-even HHG to the variation
of the THz electric field in a THz-assisted laser-atomic sys-
tem. The purpose is to achieve a quantitative connection
between the measurable harmonic even-to-odd ratio and the
symmetry-breaking THz electric field. Interestingly, we dis-
cover a universal and simple rule for the even-to-odd ratio
as a function of the scaled-THz electric field. This finding
stimulates us to proceed with the second goal of proposing
a general method for sampling the THz pulse waveform.
The method can retrieve the time-resolved waveform with
high accuracy from the harmonic even-to-odd ratio read from
HHG signals at each pump-probe time delay. In this vein,
we note that waveform detection is another important area
of THz science that is intensively investigated in addition to
its generation [18,28,29]. Within currently available methods,
active matter has to be carefully chosen; thus, finding a new
temporal detection scheme free from external parameters is
experimentally meaningful.
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The rest of the paper is organized as follows. In the next
section we briefly present the theoretical background, includ-
ing the numerical method for solving the time-dependent
Schrödinger equation that describes HHG processes and the
quantum-orbit theory as the analytic foundation for the rule of
the even-to-odd ratio. Section III presents three main results:
numerical evidence of the universality of the even-to-odd ra-
tio, the analytical ground of the even-to-odd ratio universality
and its application in THz waveform sampling. A summary is
given in Sec. IV.

II. THEORETICAL BACKGROUND

A. Numerical methods for simulating HHG

In this paper we simulate HHG data from various atoms in
the combination of a linearly polarized primary mid-infrared
(mid-IR) laser pulse and a collinear THz field by solving
the time-dependent Schrödinger equation (TDSE) within a
discretized spatial box. The numerical box size needs to be
large enough to cover the electron excursions in the combined
electric field. With a long-wavelength and high-power primary
laser pulse, it is dramatically extended, leading to significantly
expensive computational costs. On the other hand, when
atoms are exposed to a linearly polarized laser, electron wave
packets mostly spread along the laser polarization direction;
thus, the one-dimensional (1D) model is sufficient to study
the concerned HHG efficiently without a significant loss of
accuracy compared to the three-dimensional model [31,32].
Additionally, a more elaborate study of the three-dimensional
bare Coulomb potential model is also performed and produces
the same results as those from the 1D soft Coulomb potential
(see Appendix A). Therefore, in the main text, we present
HHG simulated by using the 1D potential model only.

The 1D TDSE for atoms in combined laser pulses polarized
along the z axis written in atomic units has the form

i
∂

∂t
ψ (z, t ) =

(
−1

2

∂2

∂z2
+ Vc(z) + Vext (z, t )

)
ψ (z, t ), (1)

where Vc(z) is the atomic model potential. We apply the 1D
soft Coulomb potential model [32] with the form

Vc(z) = − Z/2√
z2 + 1/4Z2

, (2)

where Z = √
2Ip is the Coulomb charge, with the atomic

potential ionization Ip which is equal to 0.5, 0.9036, 0.7925,
and 0.5792 a.u. for H, He, Ne, and Ar, respectively, which
are used in this work. This density-based model can generate
HHG data that qualitatively match those from the full three-
dimensional simulation [32]. It also validates single-active
electron approximation when the multielectron excitation en-
ergies are remarkably larger than that of single-electron exci-
tation, which is reasonable in small atoms and molecules [33].

The time-dependent potential couples the active electron
and the external electric field in the dipole approximation as

Vext (z, t ) = zE (t ), (3)

in which the electric field E (t ) is combined from the primary
laser pulse and the THz pulse

E (t ) = −E0 f (t ) sin(ω0t ) + ET cos(ωT t ). (4)

Here E0 and ω0 are the peak amplitude and carrier frequency
of the primary laser, respectively, and ET and ωT are those
for the THz electric field, respectively; f (t ) is the envelope
of the primary laser pulse. To obtain the resolved odd- and
even-order harmonics, we utilize a primary multicycle laser
pulse with a trapezoidal envelope. The duration of the THz
pulse is the same as that of the primary pulse.

The time-dependent wave function ψ (z, t ) is propagated
from the atomic ground state by the split-operator method
[34] with a time step of 0.01 a.u. The simulation is performed
within a numerical box of size Rm = 15rq, where rq = E0/ω

2
0

is the maximum classical displacement of the electron along
the z axis in the laser field. The grid spacing is 0.1 a.u. To
prevent the nonphysical effects caused by the reflection of the
wave function from the boundary, an absorber cos1/8{π [|z| −
(Rm − W )]/2W } [35] is applied, in which W = 5rq is the
width of absorbing boundaries. All of the parameters are
checked to ensure numerical convergence.

After obtaining ψ (z, t ), the laser-induced acceleration
dipole is computed by Ehrenfest’s theorem

a(t ) = −〈ψ (z, t )| ∇Vc(z) |ψ (z, t )〉 − E (t ). (5)

The HHG spectra are obtained by taking the modulus square
of the acceleration dipole in the frequency domain

H (�) ∼
∣∣∣∣
∫ τ

0
a(t )e−i�t dt

∣∣∣∣
2

, (6)

where � is the emitted HHG frequency and τ is the time
duration of the laser pulses.

B. Quantum-orbit theory

To support the goal of providing analytic insight into the
even-to-odd ratio later, here we briefly recall the quantum-
orbit theory inspired by Feynman’s path integrals [36].
Accordingly, the induced dipole moment is a coherent super-
position over all individual quantum trajectories

D(�) =
∑

n

Dne−i�n , (7)

where Dn(pn, trn, tin) is the temporal-spectral amplitude of the
n-quantum path connecting states at a complex ionization time
tin and a complex recombination time trn. The harmonic phase

�(p, tr, ti ) = �tr − S(p, tr, ti ) (8)

contains quasiclassical action, which has the form

S(p, tr, ti ) =
∫ tr

ti

(
[p + A(t ′)]2

2
+ Ip

)
dt ′, (9)

where Ip is the atomic ionization potential. The stationary
condition for quasiclassical action leads to the saddle-point
approximation, whose quantum trajectories noticeably con-
tribute to harmonic generation. At this point, the classical
canonical momentum is given as

p = − 1

tr − ti

∫ tr

ti

A(t ′)dt ′, (10)
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FIG. 1. Response to changing the THz electric field for (a) the
intensity of resolved odd-even harmonic spectra, (b) selected odd
(H501) and even (H500) harmonics at the cutoff, and (c) the har-
monic even-to-odd ratio. The primary trapezoidal mid-IR laser pulse
with an intensity of 2.5 × 1014 W/cm2 and wavelength of 2000 nm is
used for the HHG process, as well as the THz field with a frequency
of 1.3 THz (231 µm). The color bar in (a) decodes the HHG intensity
in arbitrary units. The dotted horizontal line in (c) shows the unity.

where A(t ) = − ∫ t
−∞ E(t ′)dt ′ is the vector potential of the

laser field. The complex ionization ti and recombination tr
instants can be derived from saddle-point equations, in which
the derivative of the phase [Eq. (8)] vanishes.

III. RESULTS AND DISCUSSION

A. Universal response of the even-to-odd ratio to the
THz electric field

We first look thoroughly into the response of resolved
odd-even harmonics emitted from a hydrogen atom in the
combined linearly polarized primary mid-IR laser pulse
and the slowly varying THz field, as shown in Fig. 1(a).
Here the HHG data are calculated by numerically solv-
ing the 1D TDSE. We consider an example of a mid-IR
pulse with a ten-cycle trapezoidal envelope, an intensity of
2.5×1014 W/cm2, and a wavelength of 2000 nm. It is clear
that when the added THz field ET is much weaker than the
laser field [less than 5 × 10−6 a.u. (26 kV/cm)], the spec-
trum part around the cutoff is pure-odd harmonics [12]. Upon
increasing the THz strength, the space-time symmetry (half-

FIG. 2. Dependence of harmonic even-to-odd ratio on [(a) and
(b)] a pure and [(c) and (d)] a scaled-THz electric field for a hydrogen
atom in various THz-assisted primary laser pulses with (a) different
intensities (fixed wavelength of 2000 nm) and (b) different wave-
lengths (fixed intensity of 2.5I0), where I0 = 1 × 1014 W/cm2. The
gray-shaded areas in (c) and (d) highlight the region of a stable
even-to-odd ratio.

period time translation combined with spatial inversion) of the
original system is violated, leading to the emergence of even
harmonics.

For a more focused picture, Fig. 1(b) shows the response
of harmonic intensity with the THz strength for the two se-
lected even (500th) and odd (501st) harmonics at the cutoff,
denoted by H500 and H501, respectively. Their behavior can
be visually partitioned into two regions. (i) For the first region,
the intensity of the even harmonics gradually increases, while
that of the odd harmonics is almost unchanged. (ii) After
the first intersection at ET ≈ 4 × 10−5 a.u. (0.2 MV/cm) that
indicates the equal presence of the even and odd harmon-
ics, the second region begins with the intensity fluctuation
of the odd and even harmonics around their average values.
Notably, the odd and even harmonics at some specific THz
field values alternatively undergo deep minima corresponding
to pure-even or pure-odd spectra, as illustrated in Fig. 1(a).

Since the absolute harmonic efficiency is strongly affected
by the laser field, we introduce a dimensionless quantity by
taking the intensity ratio between the even harmonic and the
average of the two adjacent odd ones, which is referred to
as the even-to-odd ratio. The variation of this quantity with
respect to the THz field is shown in Fig. 1(c). However, taking
the intensity ratio does not entirely cancel the effect of the
primary laser still on the THz-dependent even-to-odd ratio,
as can be seen in the sensitivity to different laser intensities
and wavelengths shown in Figs. 2(a) and 2(b). Specifically,
the sensitivity to laser wavelength [Fig. 2(b)] is much more
severe than laser intensity [Fig. 2(a)]. Remarkably, we find
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FIG. 3. Same as in Fig. 2 but with [(a) and (c)] varied number
of optical cycles of the primary laser pulse (the target is a hydrogen
atom) and [(b) and (d)] different atomic targets (a primary pulse of
ten optical cycles is used). The primary laser has the same intensity
and wavelength as used in Fig. 1.

that by rescaling the THz electric field ET by the factor
E0/ω

3
0 as

γ = E0

ω3
0

ET , (11)

where E0 and ω0 are the primary laser’s peak amplitude
and carrier frequency, respectively, the data collapse quanti-
tatively within the range γ � 0.1 (see Fig. 2). Here the region
γ below 0.1 suffers from significant numerical noise. We refer
γ to as the scaled-THz electric field. We also numerically
verify the data collapse with respect to the duration (5, 10,
15, and 20 cycles) of the primary laser pulse and, more inter-
estingly, with different active atomic targets (H, He, Ne, and
Ar), as shown in Fig. 3. Furthermore, the universal response as
a function γ is observed not only for harmonics at the cutoff,
but also for those below the cutoff with an additional condition
of good phase matching in HHG experiments, as presented in
detail in Appendix B.

B. Analytical ground of the even-to-odd ratio

1. Analytical derivation

The universal relation between the harmonic even-to-
odd ratio and scaled-THz electric field observed numerically
above motivates us to uncover its underlying physics. In this
section we show that it is not accidental but can be proven
rigorously by the quantum-orbit theory [36] briefly presented
in Sec. II B.

Within this framework, HHG is a subcycle process in
which the generation of N th-order harmonic results from the
coherent interference of the attosecond bursts emitted period-

ically with half-cycle time translation

D(Nω0) ≈ D1e−i�1 + D2e−i�2 , (12)

where D1 and D2 are the amplitudes, and �1 and �2 the
phases of two adjacent attosecond bursts, respectively. We
assume that the THz electric field is considerably weak so that
it distorts the half-cycle symmetry only of the phase but not
of the magnitudes of attosecond bursts, so D1 ≈ −D2. Their
coherent interference gives the harmonic intensity

H (Nω0) ∼ |D(Nω0)|2 = 2|D1|2(1 − cos
�), (13)

where 
� = �1 − �2 is the phase difference between the
two adjacent attosecond bursts. Together with Eq. (8), it can
be expressed as


� = Nπ − Re(
S), (14)

where 
S = S1 − S2 is the difference between quasiclassical
actions of two adjacent bursts. As a consequence, the intensi-
ties for odd and even harmonics are

H (Noddω0) ∼ 2|D1|2{1 + cos[Re(
S)]}, (15a)

H (Nevenω0) ∼ 2|D1|2{1 − cos[Re(
S)]}, (15b)

respectively. Taking their ratio, we have the even-to-odd ratio

η(Nω0) ≡ H (Nevenω0)

H (Noddω0)
≈ tan2 Re(
S)

2
. (16)

Equations (15) show that the additional THz field generates
even harmonics via the half-cycle symmetry breaking of the
quasiclassical action 
S. Therefore, the necessary task is un-
covering the quasiclassical action S of the laser-target system
in the presence of a THz electric field. For more convenience
in the analytical calculation, we convert the combined electric
field (4) into a simpler form as

E (t ) ≈ −E0 sin(ω0t ) + ET , (17)

where the THz field is considered a static electric field be-
cause of its much lower frequency compared to the primary
laser. Inserting into Eq. (9), the quasiclassical action can be
expressed as a series of ET as

S = S0 + ST . (18)

Here the zeroth order describes the pure action caused by the
primary laser only

S0 = E2
0

ω3
0

(
− [sin(ω0tr ) − sin(ω0ti )]2

2ω0(tr − ti )
+ ω0(tr − ti )

4

+ sin(2ω0tr ) − sin(2ω0ti )

8

)
+ Ip(tr − ti ), (19)

and the first-order term linearly depends on ET as

ST = ET
E0

ω3
0

(
ω0(tr − ti )[sin(ω0tr ) + sin(ω0ti )]

2

+ cos(ω0tr ) − cos(ω0ti )

)

= ET
E0

ω3
0

2 sin θ (
θ cos 
θ − sin 
θ ), (20)
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with θ = ω0(tr + ti )/2 and 
θ = ω0(tr − ti )/2. The second-
order term is omitted since the THz electric field is much
weaker than the primary field, i.e., ET 	 E0.

It is clear that the zeroth-order quasiclassical action (19)
is conserved after every half of an optical cycle, while the
first-order one is not. This causes the phase difference of two
adjacent attosecond bursts


S ≈ 
ST = 2ST , (21)

which gives rise to even harmonics. Substituting Eq. (21) into
Eq. (16), we obtain the even-to-odd ratio as

η(N ) = tan2 Re(ST ) = tan2

(
C

E0ET

ω3
0

)
. (22)

For convenience, we can rewrite the even-to-odd ratio in a
compact form as

η = tan2(Cγ ), (23)

where γ is the dimensionless scaled-THz electric field deter-
mined by Eq. (11), which has the form in the international
system of units as

γ = e2

h̄me

E0

ω3
0

ET . (24)

The coefficient

C = 2 sin θ (
θ cos 
θ − sin 
θ ) (25)

is a dimensionless coefficient depending on harmonic ion-
ization and recombination instants. With the assumption of
ET 	 E0, these instants can easily be calculated from equa-
tions of an electron moving in the primary laser only. With
laser parameters used in this study, the quantum-orbit theory
gives coefficients C of high-energy harmonics (near cutoff)
that is very close to the one calculated by the semiclassical
simulation. Therefore, for conciseness, we simply present the
estimation of coefficient C with the semiclassical approach.
The calculations show that these instants are real num-
bers, specifically ω0ti = 1.886 and ω0tr = 5.964, which gives
C = 2.558.

The analytical formula (23) demonstrates a direct connec-
tion between the even-to-odd ratio η (a normalized quantity
characterizing the asymmetry of measurable output) and the
dimensionless scaled-THz electric field γ (the normalized
symmetry-breaking factor). Most importantly, Eq. (23) is free
from parameters of the primary laser pulse (except implicitly
in γ ) and the atomic target, implying the universality of the
response of the harmonic even-to-odd ratio to the scaled-THz
field. In addition, this analytical expression also shows a
periodic modulation of the harmonic even-to-odd ratio with
the period of π/C. It alternatively undergoes maxima and
minima, generating instants of the pure-even and pure-odd
harmonic spectra. Based on the relation (23), we further refer
to the dimensionless quantity γ as a parameter describing the
asymmetric degree of the laser-target system and call it the
asymmetry parameter.

FIG. 4. Response of the harmonic even-to-odd ratio to a wide
range of scaled-THz fields calculated by the analytical formula
η = tan2(2.558 γ ) (black solid curve) and the numerical TDSE
method (dashed and dotted curves) for harmonics at the cutoff using
different primary lasers enclosed in the legend. The gray-, cream-,
and mauve-shaded areas cover three regions with different underly-
ing physics mechanisms.

2. Matching numerical simulations and analytical prediction

Figure 4 shows an overall visualization of the even-to-odd
ratio versus the asymmetry parameter γ for the harmonics at
the cutoff. This visualization is based on the data obtained
in two different ways, using analytical relations and direct
numerical calculations by the TDSE method. Comparing the
results of the two methods reveals three regimes with differ-
ent levels of analytic-numeric agreement, implying various
physical mechanisms. (i) For a small asymmetry parame-
ter 0.1 � γ � 0.6 (gray-shaded area), the analytical formula
quantitatively predicts the even-to-odd ratio obtained from
numerically solving the TDSE with various primary laser
parameters and atomic targets. The agreement is expected
within perturbative strengths of the THz field because it only
modifies the electron quasiclassical motion in the contin-
uum energy region but does not affect the ionization and
recombination steps. (ii) For higher asymmetric parameters
0.6 � γ � 3.5π/C ≡ 4.3 (cream-shaded area), the relation
(23) fails to match the magnitude. Moreover, the disparity
caused by the laser’s parameters becomes prominent, unlike
the perturbative regime. However, the reversal points (from
greater than 1 to less than 1 and vice versa) still fall into the
sequence of (k + 0.5)π/2C with k ∈ N. Although there are
special points (at 3.5π/2C for the blue curve and 5.5π/2C
for the red curve), the periodicity of the even-to-odd curves
remains unchanged. The main reason is that a moderately
strong THz field participates in the ionization step beyond
distorting the electron quasiclassical motion. This induces the
imbalance between adjacent attosecond bursts, thus reducing
the interference contrast and causing irregular modulation
of the even-to-odd ratio. (iii) With γ � 4.3 (mauve-shaded
area), the numerical even-to-odd ratio becomes highly disor-
dered and the classical description (23) fails to predict both
the magnitude and spacing between the reversal points. Here
the intense THz field modifies ionized electrons’ travel time
compared to the field-free case. Additionally, intense THz
fields dominate over the primary laser field in driving elec-
tron trajectories, thus altering the plateau structure of HHG
spectra.
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FIG. 5. (a) Proposed pump-probe scheme for sampling THz waveforms with sequential steps: (i) experimental setup with the THz pulse
(pump) and a primary mid-IR laser (probe) both shinning on a gas jet, (ii) measurements of intensities of even and two adjacent odd harmonics
at the cutoff region with pump-probe time delays, and (iii) extracting step, first computing the even-to-odd ratio from HHG signals and then
extracting the THz electric field using the universal rule. (b) Comparison between the extracted THz pulse from simulated data (dotted curve)
and its benchmark (solid curve). Five-cycle trapezoidal primary pulses with an intensity of 2.5 × 1014 W/cm2 and wavelength of 2000 nm are
used as probe lasers. For easier illustration, the electric-field magnitude of the primary pulse is scaled by a factor of 10−4.

In short, universality manifests itself in two different as-
pects: the even-to-odd magnitude itself in the first region and
its main oscillation frequency in the second region. We note
that the predictive power of Eq. (23) is optimized [regime
(i)] if the primary laser’s parameters vary in an appropriate
working range (intensity within [1.0–4.0] × 1014 W/cm2 and
wavelength longer than 1200 nm (mid-IR laser)). In fact, the
primary laser field E0 must be high enough not only to ensure
a low controlled ratio ET /E0 to avoid deforming the HHG
plateau structure, but also not exceed the intensity saturation.
Also, the wavelength should be long so that the asymmetry
parameter γ can fall into the stable range. Appropriate laser
parameters can be chosen to match available experimental
spectrometer resolution. See Appendix C for details.

C. Application in THz waveform sampling

With laser parameters that optimize the validity of Eq. (23),
we propose a pump-probe THz waveform sampling scheme,
illustrated in Fig. 5(a). Here the THz pulse becomes the pump
pulse, being probed by a delayed mid-IR laser. The two pulses
meet inside a gas jet, triggering the HHG process. The odd-
even HHG [Fig. 5(a) (ii)] and consequently the even-to-odd
ratio [Fig. 5(a) (iii)] are recorded at each time delay. With the
analytical formula (23), the waveform of the THz pulse can
be easily reconstructed [Fig. 5(a) (iii)].

Figure 5 shows an example of the waveform “measure-
ment” from simulated HHG for the THz pulse ET (t ) =
ET 0 exp(−ω2

T t2/36π2) sin ωT t , with ET = 257 kV/cm and
frequency ωT = 1.3 THz, inspired by the pulse recently re-
ported in [37]. The five-cycle trapezoidal primary pulses with
2.5 × 1014 W/cm2 intensity and 2000 nm wavelength are
used as probe lasers. The time resolution of the THz wave-
form sampling is related to the probe pulse duration, which
is about 20 fs for the five-cycle laser pulse with three cycles
in the flat part. Figure 5(b) demonstrates the validity of our
proposed procedure. It indicates a good consistency between

the extracted THz waveform and the input data. We have also
examined and affirmed the validity of the proposed method in
sampling THz pulses with complicated waveforms, implying
a broad frequency band (not shown). We note that the carrier-
envelope phase of the detected THz pulse might be flipped by
π since the proposed method can extract the magnitude only
but not its sign.

Using the optimized universal rule can detect the THz
electric field within a wide THz field range of about
[20,2000] kV/cm imposed by the working range of the prob-
ing laser pulses (see Appendix C). We emphasize that the
detectable range can be expanded if we use the suboptimal
regime [regime (ii) of Fig. 4] of γ , looking only at its stable
spacing between reversal points. We leave the details for fu-
ture work.

IV. CONCLUSION

In this paper we have both numerically and analytically
demonstrated the universal dependence of the even-to-odd
ratio on the scaled-THz electric field (asymmetry parameter of
the system). The approach to derive the universal rule in this
work can be generalized to other asymmetric laser-target sys-
tems that may be meaningful in controlling electron dynamics
within an attosecond timescale or extracting asymmetric fac-
tors of laser-target systems.

Based on this universal rule, we have proposed a pump-
probe method for THz waveform sampling using the even-
to-odd ratio, which is measurable within current compact
laser setups. Unlike the previous methods for THz detection
involving electronic or optical excitation of targets under THz
pulse, our proposed method works on the perturbative regime
in which the THz field only affects the dynamics of quasifree
electrons in the continuum energy region, leading to modu-
lation of the even-to-odd ratio, but does not directly interact
with the targets. This independence of the targets and probe
laser parameters makes the method feasible for detecting a
wide range of THz electric fields.
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FIG. 6. Comparison of (a) HHG spectra and (b) their scaled-
THz-dependent even-to-odd ratio of the hydrogen atom when
employing two potential models: the one-dimensional soft Coulomb
(1D) and three-dimensional bare Coulomb (3D) models. The trape-
zoidal primary laser pulse with a duration of five optical cycles, an
intensity of 2.5 × 1014 W/cm2, and a wavelength of 2000 nm is
used. In (a) the THz pulse has an amplitude of ET = 4 × 10−4 a.u.
In (b) the analytical even-to-odd curve is given as a benchmark.
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APPENDIX A: MODEL INDEPENDENCE OF THE
EVEN-TO-ODD RATIO

In this Appendix we demonstrate that the problems of re-
duced dimensionality and softening Coulomb potential do not
affect the even-to-odd ratio and its universality. To this end,
we employ the QPROP solver [38] for numerically solving
the TDSE for the 3D hydrogen atom with bare Coulomb po-
tential in the combination of a primary laser and THz pulse as
described by Eq. (4). The simulation is performed within the
numerical box with the radius of Rm = Rt + 2.5rq + Wim, in
which the position of the flux-capturing surface Rt = 20 a.u.

and the width of the imaginary potential Wim = 100 a.u. The
radial grid is 
r = 0.04 a.u. The partial wave function is
expanded into spherical harmonic functions up to Lmax = 160.
The time evolution of the wave function is propagated with
a time step of 
t = 0.01 a.u. After obtaining the time-
dependent wave functions, HHG is computed from the tempo-
ral acceleration dipole (5) through the Fourier transform (6).

The simulated HHG by the 3D bare Coulomb poten-
tial model and its counterpart by the 1D soft Coulomb
potential are presented in Fig. 6(a), which shows their simi-
larity regardless of the dimensionality and Coulomb-potential
type. Consequently, their even-to-odd ratios are similar and
coincide with the analytical prediction as indicated in
Fig. 6(b). In addition, as demonstrated in Fig. 7, by employing
this 3D bare Coulomb potential we also confirm the insensi-
tivity of γ -dependent even-to-odd ratio to the changing of the
primary laser’s intensities and wavelength.

Furthermore, along with the simulation for atomic tar-
gets, we also examine the odd-even universality for the
symmetric-molecular targets. The simulation is performed by
numerically solving the TDSE for two-dimensional soft-core
Coulomb potential models for N2 and O2 molecules. The
results (not shown) show the coincidence of γ -dependent

FIG. 7. Insensitivity of even-to-odd ratio versus scaled-THz elec-
tric field with a changing primary (a) laser intensity (wavelength of
2000 nm) and (b) laser wavelength (intensity of 2.5I0). The bare
Coulomb 3D potential model of the hydrogen atom is implemented
for numerical simulations.

even-to-odd ratios of molecules with those of atoms and with
the analytical solutions (23).

The above evidence affirms the universality of the even-
to-odd ratio despite the diverse targets and their potentials
(dimensionality and Coulomb-potential type). This universal-
ity can be easily understood since the emergence of even
harmonics in the THz perturbation regime [regime (i)] is
caused by the distortion of the phase of two adjacent attosec-
ond bursts, which in turn is governed by the motion of electron
during propagation only and does not influence by the targets.
Therefore, the analytical formula (23) does not depend on
any target’s and its potential’s parameters as long as it is
inversion symmetric. Thus, the THz-dependent even-to-odd
ratio is not influenced by the potential models, including the
reduced dimensionality Coulomb-potential type.

APPENDIX B: UNIVERSALITY OF THE EVEN-TO-ODD
RATIO FOR HARMONICS BELOW CUTOFF

In the main text we mentioned that the universality of
the even-to-odd ratio is also validated for harmonics below
the cutoff in the case of a good macroscopic phase-matching
condition in HHG measurement where the short electron
trajectories are favorable. In this Appendix we present the
evidence.

For harmonics below the cutoff, besides the inter-half-
cycle interference of bursts emitted with half-cycle time
translation, the intra-half-cycle interference of emission con-
tributed from the short and long trajectories and even
high-order returns of multiple rescattering also significantly
modulates harmonic intensities [31,39]. Moreover, the weight
contribution of long and short trajectories is strongly governed
by the driven laser [31]; as a consequence, the even-to-odd
ratio for these harmonics is no longer stable with the laser
parameters (not shown).

A common way to avoid intra-half-cycle interference is
to eliminate long trajectories with a good phase-matching
setup in HHG experiments [40,41]. This macroscopic phase-
matching condition can be theoretically mimicked based on
a single-atom response either by coherently summing up
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FIG. 8. Even-to-odd ratio for harmonics below cutoff versus the
scaled-THz electric field γ for primary mid-IR pulses with vari-
ous intensities and wavelengths when keeping only short electron
trajectories in the simulation by the TDSE method. The classical
simulation of scaled-THz-dependent even-to-odd ratio is exhibited
by solid curves. The harmonic energy E is characterized by the
corresponding kinetic energy of electron K in units of ponderomotive
energy Up: (a) 0.5Up, (b) 1.0Up, (c) 1.5Up, (d) 2.0Up, (e) 2.5Up, and
(f) 3.17Up.

HHG spectra calculated for a proper range of laser inten-
sity within the laser focus [42,43] or by setting a proper
absorbing boundary beyond which an absorbing procedure
filters out the continuum wave packets related to long trajecto-
ries [8,10,44,45]. The latter approach is adopted in our study,
where the absorber with a width of 200 a.u. is applied from
1.1rq to the edge of the simulation box.

A general view of the simulated even-to-odd ratio as a
function of the scaled-THz field when selecting only short
electron trajectories is illustrated in Fig. 8 for different photon
energies E corresponding to the kinetic energy of electron
K through the energy conversion E = K + Ip. The fig-
ure shows three noticeable features. First, the behavior of the
even-to-odd ratio with the scaled-THz field γ for below-cutoff
harmonics is similar to that of harmonics at the cutoff. Second,
it reveals a notable shift of the even-to-odd ratio as a whole
towards smaller γ as the harmonic energy E increases. Third,
it demonstrates considerable stability of the even-to-odd ra-
tio for below-cutoff harmonics with the scaled-THz field γ

despite changing the primary mid-IR laser’s parameter. How-
ever, the stability is degraded for low-order harmonics whose
energy is below Ip + 2Up, where Up is the ponderomotive
energy.

To justify the above observations, we implement the an-
alytical relation (23) to simulate the even-to-odd ratio for
harmonics below the cutoff. For this purpose, we first simulate
the values of the coefficient C via Eq. (25) and show them
in Fig. 9. Here the ionization and recombination instants are
detected from classical simulation. Figure 9 shows that if only
short electron trajectories are selected, the coefficient C is a
one-to-one function of the electron kinetic energy K , which in
turn converts to harmonic energy E . Then we substitute this
harmonic-dependent coefficient C into Eq. (23) and present
the obtained analytical even-to-odd ratio as black solid curves
in Fig. 8, showing good agreement between the numerical
and analytical simulation for a wide range of scaled-THz

FIG. 9. Classical simulation of coefficient C versus the kinetic
energy of electron K when selecting short trajectories.

electric fields. Furthermore, it explains the apparent shift of
the even-to-odd ratio towards smaller γ with increasing C
due to the extension of the excursion time of electrons in the
region of the continuum energy as the harmonic energy E
increases. Moreover, from the point of view of the classical
simulation, the coefficient C is independent of the primary
laser’s parameters, leading to the apparent stability of the
scaled-THz even-to-odd ratio. However, as shown by more
complex models such as quantum-orbit theory [46], the ex-
cursion time of the electron slightly depends on the primary
laser parameters, especially for low-energy harmonics, which
might explain their lower consistency between numerical and
analytical values of the even-to-odd ratio. Therefore, we rec-
ommend implementing the even-to-odd ratio of harmonics in
the high-energy plateau region or at the cutoff for the most
accurate universality rule.

APPENDIX C: WORKING RANGE

We have found that in the first region with 0.1 � γ � 0.6,
the even-to-odd ratio versus the scaled-THz electric field is
almost stable against changing primary laser parameters in an
appropriate range. This universality is well described by the
analytical relation (23). However, as noted in the main text,
this universality is validated if certain requirements for the
primary laser are met.

The first requirement is that its intensity is high enough to
generate HHG and should not exceed the saturation intensity
where the atomic ground state is depleted [47]. Moreover,
for atoms in an intense primary laser combined with a low-
frequency electric field, the ratio ET /E0 is a key quantity
controlling the electron trajectories and, consequently, de-
forming the structures and properties of HHG [14,15]. To
perturb the asymmetry of the laser-atomic system but not
change the spectral structure of HHG, this ratio ET /E0 must
be small (less than 0.3%); thereby, the intensity of the primary
laser must be high enough to reduce the ratio ET /E0. In our
simulation for hydrogen atoms, the intensity varying in the
range of [1.0–4.0] × 1014 W/cm2 gives a stable even-to-odd
ratio rule in the first region of the scaled-THz electric field.

The following requirement for primary wavelengths relates
to the restriction of the lower and upper limits of the first
universal rule, i.e., 0.1 � γ � 0.6, while at the same time
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FIG. 10. Detectable range for the THz electric field ET when us-
ing different mid-IR primary laser pulses in the appropriate working
range. The detectable THz field ET is inferred from the limitation of
the stable range 0.1 � γ � 0.6.

ensuring a low ratio ET /E0 (less than 0.3%). The analytical
formula (23) hints that the primary laser wavelengths need to
be long. On the other hand, longer wavelengths also guarantee
that the Keldysh parameter is much less than unity; thus the
primary field induces ionization within the tunneling regime
[48]. Our examination shows that the mid-IR primary laser

whose wavelength is longer than 1200 nm but shorter than
3000 nm is appropriate to ensure the universality of the even-
to-odd ratio versus the scaled-THz electric field.

With primary laser pulses within this working range, the
THz-dependent even-to-odd ratio calculated numerically can
be accurately described by the analytical relation (23) for the
first universal region 0.1 � γ � 0.6. Figure 10 shows that,
depending on the estimated THz electric field, the appro-
priate primary laser’s parameter should be chosen to ensure
that the scaled-THz field γ falls within this stable range.
This leads to the detection range of the THz field ET within
[4 × 10−6, 4 × 10−4] a.u. ([20,2000] kV/cm).

We emphasize that this detectable range of the THz field
can be expanded using the suboptimal regime, where only
its stable oscillation period is preserved. We sketch the route
utilizing this rule to detect the THz field as an outlook. By
looking at the analytical formula (23), a new dimensionless
quantity ζ = (1 − η)/(1 + η) can be defined as a harmonic
oscillation as

ζ = cos

(
2CE0

ω3
0

ET

)
. (C1)

In practice, one can tune ζ by changing the value E0/ω
3
0, by

scanning either the mid-IR intensity or the wavelength [49].
Afterward, the Fourier transform of this function ζ (2CE0/ω

3
0 )

gives a peak at ET .
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