
PHYSICAL REVIEW A 108, 023108 (2023)

Efficient algorithms to solve atom reconfiguration problems. II.
Assignment-rerouting-ordering algorithm

Remy El Sabeh ,1 Jessica Bohm ,2 Zhiqian Ding ,2 Stephanie Maaz ,3 Naomi Nishimura ,3 Izzat El Hajj ,1

Amer E. Mouawad ,1,3,4 and Alexandre Cooper 2,*

1Department of Computer Science, American University of Beirut, Beirut 1107 2020, Lebanon
2Institute for Quantum Computing, University of Waterloo, Waterloo, Ontarion N2L 3G1, Canada

3David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
4AG Theoretische Informatik, University of Bremen, 28359 Bremen, Germany

(Received 13 October 2022; revised 1 May 2023; accepted 10 July 2023; published 4 August 2023)

Programmable arrays of optical traps enable the assembly of configurations of single atoms to perform
controlled experiments on quantum many-body systems. Finding the sequence of control operations to transform
an arbitrary configuration of atoms into a predetermined one requires solving an atom reconfiguration problem
quickly and efficiently. A typical approach to solving atom reconfiguration problems is to use an assignment
algorithm to determine which atoms to move to which traps. This approach results in control protocols that
exactly minimize the number of displacement operations; however, this approach does not optimize for the
number of displaced atoms or the number of times each atom is displaced, resulting in unnecessary control
operations that increase the execution time and failure rate of the control protocol. In this work we propose the
assignment-rerouting-ordering (ARO) algorithm to improve the performance of assignment-based algorithms
in solving atom reconfiguration problems. The ARO algorithm uses an assignment subroutine to minimize the
total distance traveled by all atoms, a rerouting subroutine to reduce the number of displaced atoms, and an
ordering subroutine to guarantee that each atom is displaced at most once. The ordering subroutine relies on
the existence of a partial ordering of moves that can be obtained using a polynomial-time algorithm that we
introduce within the formal framework of graph theory. We numerically quantify the performance of the ARO
algorithm in the presence and in the absence of loss and show that it outperforms the exact, approximation, and
heuristic algorithms that we use as benchmarks. Our results are useful for assembling large configurations of
atoms with high success probability and fast preparation time, as well as for designing and benchmarking novel
atom reconfiguration algorithms.

DOI: 10.1103/PhysRevA.108.023108

I. INTRODUCTION

Programmable arrays of optical traps [1–4] have recently
emerged as effective tools for assembling configurations of
single atoms and molecules with arbitrary spatial geometries
[5–11]. Supplemented with strong and tunable interactions
like Rydberg-Rydberg interactions [12,13], these configura-
tions realize large, coherent quantum many-body systems that
act as versatile test beds for quantum science and technology
[14–17].

An ongoing challenge is to assemble configurations of
thousands of atoms with high success probability and fast
preparation time. Addressing this challenge requires the de-
sign and implementation of improved algorithms to solve
atom reconfiguration problems [18–20], which are hard com-
binatorial optimization problems that seek a sequence of
control operations to prepare a given configuration of atoms
from an arbitrary one. In the absence of atom loss, finding
a control protocol that exactly minimizes the total number
of displacement operations, without concern for any other
performance metrics, can be done in polynomial time using

*alexandre.cooper@uwaterloo.ca

assignment algorithms, such as those based on the Hungarian
algorithm [21–23].

Relying on assignment algorithms to solve atom reconfig-
uration problems [18–20], however, suffers from two major
drawbacks. The first drawback is that these assignment-based
algorithms do not optimize for the number of displaced atoms;
in fact, minimizing the total number of displaced atoms is an
NP-complete problem, even on simple graphs and geome-
tries such as grids, for which an approximate solution can
be obtained in polynomial time using the Steiner tree three-
approximation (3-approx) algorithm [24]. If single atoms are
displaced sequentially, then increasing the number of dis-
placed atoms increases the number of transfer operations
required to extract and implant the atoms from and into
the array of optical traps and thus increases the probabil-
ity of losing them. For example, an algorithm might choose
to displace M atoms once instead of one atom M times,
which, although equivalent in terms of the total number of
displacement operations, results in greater uncertainty about
which atoms will be lost, complicating the problem of ef-
ficiently allocating surplus atoms to replace lost ones. The
second drawback is that the moves are executed in an arbitrary
order, without taking into account the possibility of early
moves obstructing later moves; the same atom might thus be

2469-9926/2023/108(2)/023108(24) 023108-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3786-4035
https://orcid.org/0000-0001-5133-6370
https://orcid.org/0000-0002-4248-3480
https://orcid.org/0000-0001-7188-8834
https://orcid.org/0000-0001-7893-4813
https://orcid.org/0000-0003-3356-6898
https://orcid.org/0000-0003-2481-4968
https://orcid.org/0000-0002-8759-9647
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.023108&domain=pdf&date_stamp=2023-08-04
https://doi.org/10.1103/PhysRevA.108.023108

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

FIG. 1. Assignment-rerouting-ordering algorithm. The atom re-
configuration problem consists of finding a sequence of moves to
transform an arbitrary configuration of atoms (black dots) contained
in a static array of optical traps (circles) into a target configuration
of atoms (shaded green disks). First, the ARO algorithm uses the
assignment subroutine to find a sequence of moves that minimizes
the total distance traveled by all atoms or, equivalently, the total
number of displacement operations. Second, the rerouting subroutine
attempts to update the path of each move to reduce the number of
atoms displaced without increasing the total displacement distance,
here choosing the path P′

1 over the path P1. Third, the ordering
subroutine finds a sequence of moves that prevents an atom from
obstructing the path of another atom, here choosing to execute
the move associated with P2 before executing the move associated
with P3.

displaced multiple times, further increasing the probability of
losing it.

In this paper we propose the assignment-rerouting-
ordering (ARO) algorithm to overcome the aforementioned
drawbacks. Similar to typical assignment-based reconfigu-
ration algorithms, the ARO algorithm uses an assignment
algorithm to determine which atoms to move to which traps;
however, the ARO algorithm then updates the resulting se-
quence of moves using two novel subroutines, which are our
main contributions: a rerouting subroutine and an ordering
subroutine. The rerouting subroutine attempts to reroute the
path of each move to reduce the number of displaced atoms,
whereas the ordering subroutine orders the sequence of moves
to guarantee that each atom is displaced at most once (Fig. 1).
Both subroutines might thus modify the sequence of moves
without increasing the total number of displacement opera-
tions. Hence, besides possibly achieving a reduction in the
number of transfer operations, the ARO algorithm exactly
minimizes both the number of displacement operations and
the number of transfer operations per displaced atom. The
resulting reduction in the total number of control operations
allows the ARO algorithm to outperform a typical assignment-
based algorithm, the 3-approx algorithm, and our recently
introduced redistribution-reconfiguration algorithm [20], at
solving atom reconfiguration problems both in the absence
and in the presence of loss.

More generally, we are motivated by the goal of improv-
ing the performance of atom reconfiguration algorithms from
the most basic level to the highest by building upon exact
and approximation algorithms for which provable analytical
guarantees exist, e.g., within the framework of combinatorial
optimization and graph theory. This approach is comple-
mentary to operationally driven approaches that build upon
intuition and operational constraints to formulate heuristic
algorithms [9,10,18,20,25–30].

Exact and approximation algorithms can be used to im-
prove operational performance as standalone algorithms or as
subroutines within other heuristic algorithms, and they can
also be used to provide performance bounds to benchmark
new algorithms and identify ways to further improve them.
Moreover, these algorithms and the formal results that under-
pin them can support applications in other areas, e.g., robot
motion planning [31–34].

For the purposes of this paper, assignment algorithms
refer to algorithms that solve assignment problems and
assignment-based reconfiguration algorithms or assignment-
based algorithms refer to reconfiguration algorithms that solve
atom reconfiguration problems using an assignment algorithm
as a subroutine. When there is no risk of confusion, the term
“assignment” or “assignment algorithm” might be used to
denote a typical assignment-based reconfiguration algorithm
that does not exploit the rerouting or ordering subroutines.

The rest of the paper is organized as follows. We start
by reviewing atom reconfiguration problems and describ-
ing our baseline assignment-based reconfiguration algorithm
(Sec. II), which is used as a point of reference when quanti-
fying operational performance. We then introduce the ARO
algorithm (Sec. III), describing in detail the rerouting sub-
routine (Sec. III A) and the ordering subroutine (Sec. III B).
Next we numerically benchmark the performance of the ARO
algorithm against exact, approximation, and heuristic algo-
rithms, first in the absence of loss (Sec. IV) and then in
the presence of loss (Sec. V). We provide supporting proofs
and technical details about the various subroutines, including
runtime analysis and proofs of correctness, in the Appendixes
(Appendixes A–G).

II. ATOM RECONFIGURATION PROBLEMS

An atom reconfiguration problem [18–20] seeks a control
protocol R : C0 �→ CT to transform an arbitrary configuration
C0 of N0

a atoms into a given target configuration CT of NT
a

atoms. A configuration of atoms is contained in an array of
optical traps A(V) defined by its spatial arrangement or geom-
etry V = {�v j | �v j = (v jx , v jy) ∈ R2, 1 � j � Nt }, where Nt is
the number of traps in the optical trap array. We later choose
the geometry to be a square lattice (a grid) of Nt = Nx

t ×Ny
t

traps in the plane where v jx = x0 + jxδx and v jy = y0 + jyδy
for 0 � jx � Nx

t − 1 and 0 � jy � Ny
t − 1, (x0, y0) is the ori-

gin of the array, and δx and δy are the lattice spacing constants.
The control protocol is composed of a sequence of

extraction-displacement-implantation (EDI) cycles that ex-
tract, displace, and implant a single atom from one static trap
to another using a secondary array of dynamic traps. This
operation can also be done on multiple atoms simultaneously.
These EDI cycles are composed of a sequence of elementary
control operations that include elementary transfer operations,
which extract (implant) an atom from (into) a static trap into
(from) a dynamic trap, and elementary displacement opera-
tions, which displace a dynamic trap containing an atom from
one static trap to another by an elementary displacement step
δx or δy. In order to account for the probability of losing an
atom even if a trap stays idle, we also include no-op operations
that leave some traps unchanged, while transfer or displace-
ment operations are performed on other traps.

023108-2

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

In an operational setting, the initial configuration of atoms
is obtained by randomly loading a single atom into every
trap of the trap array with a probability given by the loading
efficiency ε. Given the initial and target configurations of
atoms, the reconfiguration problem is then solved, the con-
trol protocol is executed, and a measurement is performed
to check whether or not the updated configuration of atoms
contains the target configuration. In the presence of loss,
the atom reconfiguration problem might have to be solved
multiple times through multiple reconfiguration cycles until
the target configuration is reached (success) or is no longer
reachable (failure). The same algorithm is used independently
of the initial configuration, that is, we do not consider adaptive
algorithms whose behavior changes depending on the mea-
sured configuration, nor do we consider protocols that rely on
mid-cycle measurements.

A. Atom reconfiguration problems on graphs

Atom reconfiguration problems can be viewed as reconfig-
uration problems on graphs [19,24,32,35–37]. A configuration
of indistinguishable atoms trapped in an array of optical traps
is represented as a collection of tokens placed on a subset of
the vertices of a graph G, where V (G) and E (G) denote the
vertex set and edge set of G, respectively, with |V (G)| = n
and |E (G)| = m. We directly use n and m to refer to the
number of vertices and the number of edges, respectively,
when the graph G is clear from the context. We assume that
each graph is finite, simple, connected, undirected, and edge
weighted (we refer to Diestel’s textbook [38] for standard
graph terminology). We use w : E (G) → N+ to denote the
edge-weight function which implies that w(e) is positive for
all e = {u, v} ∈ E (G).

Although our main result, Theorem 1, is valid for arbitrary
(positive edge-weighted) graphs, we focus on (unweighted)
grid graphs. Specifically, we focus on the (p×q)-grid graph,
which is a graph of p×q vertices with vertex set {(x, y) | x ∈
{0, 1, . . . , p − 1}, y ∈ {0, 1, . . . , q − 1}} for p, q ∈ N+. We
denote the width p of a grid graph G by WG and its height
q by HG (we drop the subscript G when the graph we are
referring to is clear from the context). Two vertices v = (x, y)
and v′ = (x′, y′) (v �= v′) are adjacent, and thus connected
by an edge, if and only if |x − x′| + |y − y′| � 1. Note that
m = O(n) whenever G is a planar graph, as is the case for
grid graphs.

In addition to the graph G, the atom reconfiguration prob-
lem requires definitions of the initial (source) and desired
(target) configurations of atoms. The traps containing the
atoms in the source and target configurations are identified as
subsets of vertices S ⊆ V (G) and T ⊆ V (G), respectively. We
assume that |S| � |T | since otherwise the problem does not
have a solution. Note that S and T need not be disjoint. Each
vertex in S has a token on it and the problem is to move the
tokens on some S� ⊆ S such that all vertices of T eventually
contain tokens.

Here a move of token τi (1 � i � |S|) from vertex u to
vertex v, which is equivalent to a sequence of elementary
displacement operations, is allowed or unobstructed whenever
τi is on u and the path P (defined formally in the next section)
from u to v in G associated with it is free of tokens (except

for τi); otherwise, we say that the move is obstructed and
call each token τ j (j �= i) on P an obstructing token. If we
attempt to move a token along a path that is not free of tokens,
then we say that this move causes a collision. Because a
collision induces the loss of the colliding atoms, moves that
cause collisions are replaced by sequences of moves that do
not cause collisions. Indeed, if the move of token τi from u
to v is obstructed, then, assuming v is free of tokens, we can
always reduce this move to a sequence of unobstructed moves
by replacing the move by a sequence of moves involving
the obstructing tokens, i.e., solving the obstruction problem
(which we solve using a slightly different procedure described
in Appendix F). A solution to an atom reconfiguration prob-
lem is thus a sequence of unobstructed moves, each of which
displaces a token from a vertex with a token to a vertex
without a token along a path that is free of obstructing tokens.

B. Path systems as solutions to atom reconfiguration
problems on graphs

Our reconfiguration algorithm constructs a valid path sys-
tem (defined below), updates it, and then finds a sequence
of unobstructed moves to execute along every path. We de-
fine a path in a graph G as a walk whose sequence of
vertices comprises distinct vertices. We define a walk (of
length �) in G as a sequence of vertices in V (G), (v0, . . . , v�),
such that {vi, vi+1} ∈ E (G) for all i ∈ {0, . . . , � − 1}, where
{v1, v2, . . . , v�−1} are the internal vertices of the walk. We
define a cycle in G as a walk of length � � 3 that starts and
ends on the same vertex v0 = v� and whose internal vertices
form a path. The weight of a path is given by the distance
between its first (v0) and last vertex (v�), where the distance
between u and v in G is the weight of a shortest path between
u and v, computed as the sum of the weights of the edges
connecting the vertices of a shortest path P between u and v,
w(P) = ∑

e∈P w(e). When the graph is unweighted, or each
of its edges has a weight of one, in which case the graph is
said to be uniformly weighted, the distance between u and v

corresponds to the minimum number of edges required to get
from u to v in G.

A path system P in G is a collection of paths P =
{P1, P2, . . . , Pk} in which each path Pi ∈ P for i ∈ N+([1, k])
is a path from vsi (source vertex) to vti (target vertex), which
we denote by {vsi , v1, v2, . . . , vti} (single-vertex paths with
vsi = vti are also allowed). We define a doubly labeled vertex
as a vertex that is both a source vertex and a target vertex,
whether within the same path or in two different paths. The
weight of a path system is given by the sum of the weights of
its paths w(P) = ∑

P∈P w(P). Each source vertex vsi ∈ V (Pi)
associated with a path Pi ∈ P contains a token, i.e., vsi ∈ S;
the other vertices in Pi may or may not contain tokens. A token
τi is said to be isolated in a path system P whenever there
exists a single-vertex path P = {v} ∈ P such that the token τi

is on the vertex v and no other path in P contains vertex v.
We say that a move (of a nonisolated token) associated with

path Pi ∈ P is executable whenever the target vertex vti does
not contain a token; an unobstructed move is trivially exe-
cutable, whereas an obstructed move can always be reduced
to a sequence of unobstructed moves, assuming vti contains no
token. A path system P is said to be valid (for T) or T -valid

023108-3

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

whenever there exists some ordering of the moves that makes
them executable, and executing all the moves associated with
P results in each vertex in T having a token on it (with the
exception of isolated tokens, which need not move). Clearly,
in a valid path system, all source vertices are distinct and all
target vertices are distinct, although some source vertices can
be the same as some target vertices. We note that for any valid
path system, we can always find an executable move, unless
the problem has already been solved with all vertices in T
occupied by tokens. We also note that, before any move is
executed, whenever we have a token on some target or internal
vertex, then there must exist a path for which this token is on
the source vertex.

As described in the next section (Sec. II C), a typical
assignment-based reconfiguration algorithm solves an assign-
ment problem to compute a valid path system of minimum
weight, i.e., in which each path is one of the many possible
shortest paths between its source vertex and its target vertex,
chosen arbitrarily among the set of all possible shortest paths.
The obstruction problem is then solved to find a sequence
of unobstructed moves on each path. Our proposed ARO
algorithm (Sec. III) solves an assignment problem to compute
a valid path system, runs the rerouting subroutine, and then
runs the ordering subroutine, which yields an ordering of the
paths such that the resulting sequence of associated moves
guarantees that each move is unobstructed at the time of its
execution.

C. Baseline reconfiguration algorithm

A typical approach to solve an atom reconfiguration prob-
lem is to map it onto an assignment problem, which can be
solved in polynomial time using an assignment algorithm,
such as one based on the Hungarian algorithm [21–23]. A
typical assignment-based reconfiguration algorithm computes
a (valid) distance-minimizing path system, which is a valid
path system P whose weight w(P) is minimized, i.e., the
resulting control protocol exactly minimizes the total number
of displacement operations performed on all atoms.

To benchmark the performance of our proposed ARO
algorithm, we use a baseline reconfiguration algorithm
(Algorithm 1), which is a slightly modified version of a typical
assignment-based algorithm that relies primarily on solving
an assignment problem. This baseline algorithm solves atom
reconfiguration problems in five steps, two of which are op-
tional. In the first and second steps, the assignment subroutine
computes a valid distance-minimizing path system by solving
the all-pairs shortest path (APSP) problem, followed by the
assignment problem. In the third optional step, the isolation
subroutine isolates a maximal subset of tokens (not contained
in a larger subset) found on doubly labeled vertices. The
purpose of the isolation subroutine is to (attempt to) decrease
the number of atoms that have to move by greedily fixing in
place some atoms whose deletion from the graph (along with
the vertices on which they lie) does not increase the weight of
a distance-minimizing path system recomputed in the result-
ing graph. We find a maximal subset without the guarantee
that it is a maximum subset (the largest subset in the whole
graph), because finding a maximum subset is equivalent to the
NP-complete problem of minimizing the number of tokens

Algorithm 1. Baseline reconfiguration algorithm.

Require: A static trap array A, represented as a positive
edge-weighted graph G = (V, E) with

∑
e∈E (G) w(e) = O(nc) for

some positive integer c; an initial configuration of atoms C0,
represented as a set of source vertices S ⊆ V (G); and a target
configuration of atoms CT , represented as a set of target vertices
T ⊆ V (G).

1. Compute the distance and a shortest path between all pairs of
vertices of S and T by solving the APSP problem [O(n3) and
O(n2) on uniformly weighted grid graphs].

2. Compute a distance-minimizing path system, matching every
vertex in T to a distinct vertex in S and forming a shortest path
between them by solving the assignment problem [O(n3)].

3. (optional) Using the isolation subroutine, modify the path system
to (locally) isolate tokens that do not need to be displaced
[O(n5)].

4. Using the obstruction solver subroutine, find a sequence of
unobstructed moves [O(n2)].

5. (optional) Using the batching subroutine, batch moves to perform
control operations on multiple atoms in parallel [O(n3)].

that move, which remains NP-complete even on grids [24].
In the fourth step, the obstruction solver subroutine computes
a sequence of unobstructed moves associated with the path
system. In the fifth optional step, the batching subroutine com-
bines some of the moves to simultaneously displace multiple
atoms in parallel. We describe each of these subroutines in
more detail in Appendixes A, B, F, and G, respectively.

III. THE ASSIGNMENT-REROUTING-ORDERING
ALGORITHM

To improve the performance of assignment-based recon-
figuration algorithms, we propose the assignment-rerouting-
ordering algorithm, which exploits a rerouting subroutine
(Sec. III A) and an ordering subroutine (Sec. III B). The ARO
algorithm performs fewer transfer operations than the base-
line reconfiguration algorithm while still minimizing the total
number of displacement operations, thereby strictly improv-
ing overall performance in the absence and in the presence of
loss.

The ARO algorithm (Algorithm 2) solves atom reconfig-
uration problems in seven steps, five of which are imported
from the baseline algorithm. In particular, steps 1, 2, 3, 6, and
7 are standard subroutines that are shared with the baseline
algorithm and steps 4 and 5 are our main contributions. In
the first three steps, similarly to the baseline algorithm, the
assignment subroutine computes a valid distance-minimizing
path system by solving the APSP and assignment problems
and optionally isolates a maximal subset of tokens located
on doubly labeled vertices by using the isolation subroutine.
Next, instead of directly computing the sequence of moves
to execute as in the baseline algorithm, the ARO algorithm
seeks to further update the path system. In the fourth step, the
rerouting subroutine (Sec. III A), which is a heuristic, seeks to
reroute each path in the path system in an attempt to reduce
the number of displaced atoms. In the fifth step, the ordering
subroutine (Sec. III B) constructs an ordered path system that
admits an ordering of its paths, guaranteeing that each atom

023108-4

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

Algorithm 2. The ARO algorithm.

Require: A static trap array A, represented as a positive
edge-weighted graph G = (V, E) with

∑
e∈E (G) w(e) = O(nc) for

some positive integer c; an initial configuration of atoms C0,
represented as a set of source vertices S ⊆ V (G); and a target
configuration of atoms CT , represented as a set of target vertices
T ⊆ V (G).

1. Compute the distance and a shortest path between all pairs of
vertices of S and T by solving the APSP problem [O(n3) and
O(n2) on uniformly weighted grid graphs].

2. Compute a distance-minimizing path system, matching every
vertex in T to a distinct vertex in S and forming a shortest path
between them by solving the assignment problem [O(n3)].

3. (optional) Using the isolation subroutine, modify the path system
to (locally) isolate tokens that do not need to be displaced
[O(n5)].

4. Using the ordering subroutine, order the paths in the path system,
which breaks cycles if they exist [O(nc+6m) and O(n8) on
uniformly weighted grid graphs].

5. Using the obstruction solver subroutine, find a sequence of
unobstructed moves [O(n2)].

6. (optional) Using the batching subroutine, batch moves to perform
control operations on multiple atoms in parallel [O(n3)].

moves at most once. In the sixth step, similarly to the base-
line algorithm, the obstruction solver subroutine computes
a sequence of unobstructed moves associated with the path
system; because the paths are ordered, the move associated
with each path is unobstructed, and solving the obstruction
problem is trivial. In the seventh (optional) step, the batching
subroutine combines some of the moves to simultaneously
displace multiple atoms in parallel.

Our current implementation of the ARO algorithm has
been designed to work with general edge-weighted graphs
and runs in time O(n8) on uniformly weighted grid graphs.
The correctness of the algorithm follows from Theorem 3
(Appendix E 4), Lemma 2 (Appendix B), and Lemma 3 (Ap-
pendix C). Theorem 1 summarizes all the aforementioned
results. We note that our running time estimates on both
general edge-weighted graphs and uniformly weighted grid
graphs are not optimized. In particular, we conjecture the ex-
istence of an implementation of the ARO algorithm restricted
to uniformly weighted grid graphs that runs in O(n4), which
we believe follows almost immediately from Theorem 1. We
choose not to include the details of said implementation be-
cause it only works on uniformly weighted grid graphs and
the running time of the algorithm has no effect on the opera-
tional performance. Also, we believe that it can be optimized
further and our focus in this paper is primarily on proving the
existence of a polynomial-time ordering subroutine.

A. Rerouting subroutine

The baseline reconfiguration algorithm returns a path
system that minimizes the total number of displacement op-
erations, without considering the total number of displaced
atoms or the total number of transfer operations. Because the
problem of minimizing the number of transfer operations is
an NP-complete problem [24] (even on grids) and finding a

control protocol that simultaneously minimizes both displace-
ment and transfer operations is impossible for some instances
[Fig. 7(c)], we must resort to using heuristics that attempt to
reduce the number of atoms that are displaced.

To reduce the number of displaced atoms while preserv-
ing the number of displacement operations, we rely on the
distance-preserving rerouting subroutine, which attempts to
replace each path in the path system with another path of the
same weight that contains fewer vertices occupied by atoms.
We refer to rerouting a path as updating its sequence of inter-
nal vertices while preserving its source and target vertices. An
example of rerouting a path can be found in Fig. 1, where P1

is rerouted to P′
1. The intent behind the usage of the rerouting

subroutine is to attempt to increase the number of isolated
tokens, i.e., tokens that do not have to move. This version
of rerouting was designed specifically for uniformly weighted
grid graphs, but it can easily be generalized.

The subroutine proceeds by iterating over every path in the
path system and, for every path, attempting to reroute it, while
keeping the rest of the path system unchanged, in a way that
maximizes token isolation while preserving the weight of the
path. If the original path is a straight line, then there is nothing
to do, as the path cannot be rerouted without increasing its
weight. Otherwise, suppose that the source vertex vs of the
path is (x1, y1) and the target vertex vt of the same path is
(x2, y2) and that, without loss of generality, x1 < x2 and y1 <

y2. Given W = |x1 − x2| and H = |y1 − y2|, there is a total of
(W + H)!/H!W ! shortest paths between vertex (x1, y1) and
vertex (x2, y2). Using a brute-force approach for every path
is inefficient, as the number of rerouted paths to consider for
every path is exponential in the Manhattan distance between
the source vertex and the target vertex of the path. To avoid
an exhaustive search and to speed up computation, we exploit
dynamic programming (Appendix C); exhaustively rerouting
paths to increase the number of isolated tokens can then be
performed in O(n5) time on general positive edge-weighted
graphs and in O(n3) time on uniformly weighted grid graphs
(Lemma 4).

A possible extension of the rerouting subroutine that we
have developed, but whose performance we have not quanti-
fied, is to search for paths that might not necessarily preserve
the minimum total displacement distance or minimum number
of displacement operations. The distance-increasing rerouting
subroutine (see Appendix D for a detailed presentation) trades
off an increase in displacement operations for a decrease in
transfer operations. This subroutine runs in O(n7) time on
uniformly weighted grid graphs (Lemma 6). We note that
the ARO algorithm would still be correct and would have
the same asymptotic running time if we were to replace the
distance-preserving rerouting subroutine with the distance-
increasing rerouting subroutine.

B. Ordering subroutine

The ordering subroutine constructs an ordered path system
that admits a (partial) ordering of its paths so that the moves
associated with the paths are unobstructed at the time of their
execution, i.e., atoms displaced in preceding moves do not
obstruct the displacement of atoms in succeeding moves and
atoms obstructing certain paths are displaced before the atoms

023108-5

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

on the paths that they obstruct. The ordering is obtained by
finding the partial ordering of the vertices of the dependency
graph, which is a graph where each path is represented by a
vertex and where each dependency of a path Pi on a path Pj

is represented by a directed edge from the vertex representing
path Pj to the vertex representing path Pi. Path Pi is said to
depend on Pj if vs j is an internal vertex in (or the target vertex
of) Pi or if vti is an internal vertex in (or the source vertex of)
Pj . For example, in a partial ordering of the paths in the path
system in Fig. 1, P2 would precede P3, as executing the move
associated with P3 before executing the move associated with
P2 would obstruct the move associated with P2. Such partial
orderings are easy to compute in cycle-free path systems,
which are path systems that not induce any cycle, i.e., that
induce a cycle-free graph, or a forest.

This ordering of moves guarantees that each displaced
atom undergoes exactly one EDI cycle, thereby restricting
the number of transfer operations per displaced atom to its
strict minimum of two (one extraction operation and one
implantation operation per EDI cycle). The existence of a
polynomial-time procedure to transform any (valid) path sys-
tem into a (valid) ordered path system, in which the paths
are ordered such that executing the moves associated with
each path displaces every atom at most once, follows from
Theorem 1.

Theorem 1. A valid path system P in a positive edge-
weighted graph G can always be transformed in polynomial
time into a valid cycle-free path system P ′ such that w(P ′) �
w(P). Moreover, the dependency graph associated with the
path system P ′ is a directed acyclic graph (DAG), which
admits a partial ordering of its vertices, implying a partial
ordering of the corresponding moves.

In simple terms, Theorem 1 states that a path system can
always be transformed (in polynomial time) into an ordered
path system that admits an ordering of its paths such that ex-
ecuting the moves associated with the paths is guaranteed not
to cause any collisions. This theorem is valid for any arbitrary
path system defined over any arbitrary (edge-weighted) graph.

Theorem 1 applies to general (positive) edge-weighted
graphs, even when the path system is not distance-minimizing,
e.g., is obtained from implementing the distance-increasing
rerouting subroutine. Its correctness directly follows from
the correctness of the ordering subroutine (see Algorithm 3),
which efficiently constructs a cycle-free path system and finds
the ordering of the paths within it. We now describe the four

Algorithm 3. Ordering subroutine.

Require: A valid path system P , defined on a positive edge-
weighted graph G with

∑
e∈E (G) w(e) = O(nc) for some positive

integer c.
1. Merge path system [O(nc+4m2) and O(n7) on uniformly weighted

grid graphs].
2. Unwrap path system [O(n2m) and O(n3) on uniformly weighted

grid graphs].
3. Detect and break cycles in path system [O(nc+6m) and O(n8) on

uniformly weighted grid graphs].
4. Order path system [O(n3)].

steps of the ordering subroutine, providing formal proofs of
supporting lemmas and theorems in Appendix E.

First, the merging step converts a path system into a
(nonunique) merged path system (MPS). A merged path sys-
tem is a path system such that no two paths intersect more than
once, with the intersecting sections of the two paths possibly
involving more than one vertex (all vertices in the intersection
being consecutive in the vertex sequence of both paths). The
merging operation does not increase the total weight of the
path system, but it can decrease it; if the path system is
generated by the Hungarian algorithm, then the total weight
of the path system is already minimized. A valid merged path
system can be computed in time O(nc+4m2) for a graph G
where

∑
e∈E (G) w(e) = O(nc) for some positive integer c (see

Lemma 7 in Appendix E 1).
Second, the unwrapping step converts an MPS into an

unwrapped path system (UPS) by recomputing tangled paths.
An unwrapped path system is an MPS such that no two paths
within it are tangled. Two paths Pi and Pj are tangled if Pi

wraps or is wrapped by Pj , where a path Pi is said to be
wrapped in another path Pj if it is entirely contained in it; if Pi

is wrapped by Pj , then Pj wraps Pi. Unwrapping the paths that
a path Pj wraps is performed by sorting their respective source
traps and target traps separately based on their order of occur-
rence within Pj and assigning every source trap to the target
trap of the same order. A valid UPS can be obtained from a
valid MPS in time O(n2m) (see Lemma 8 in Appendix E 2).

Third, the cycle-breaking step converts an UPS into
a cycle-free path system (CPS). The cycle-breaking step
modifies the path system such that the graph induced on
the modified path system is a cycle-free graph (a forest).
Even though a graph can have exponentially many cycles,
we prove that the cycle-breaking step can be executed in
polynomial time, i.e., a valid CPS can be obtained from a valid
UPS in time O(nc+6m) (see Lemma 13 in Appendix E 3). This
result relies on the existence of special cycles in a graph with
cycles (Appendix E 3 a), which can be found using a proce-
dure that we provide in Appendix E 3 b. Once a special cycle
has been found, the set of paths that induce it can be found
and updated to break the special cycle (see Appendix E 3 c)
and the process is repeated on the resulting path system.
This subroutine terminates in polynomial time and produces
a cycle-free path system (see Lemma 13 in Appendix E 3 d).
The reason for using the (time-consuming) cycle-breaking
procedure to break cycles instead of, e.g., computing mini-
mum spanning trees (MSTs) using Theorem 2.1 of Călinescu
et al. [24], is that computing an MST to break cycles might in
fact increase the total weight of the path system (see Fig. 2 for
an example on a weighted graph).

Fourth, the ordering step constructs an ordered path system
(OPS) by ordering the moves associated with a CPS, e.g.,
by constructing the DAG associated with the path system.
This step can be performed in time O(n3) (see Theorem 3
in Appendix E 4). The moves associated with the OPS can
be trivially computed using the obstruction solver subroutine
(see Sec. F).

Having described in detail the baseline reconfiguration
algorithm and the ARO algorithm, we now proceed to numer-
ically quantify their operational performance in the absence of
loss (see Sec. IV) and in the presence of loss (see Sec. V).

023108-6

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

FIG. 2. Justification for the cycle-breaking procedure. Shown is
an example of a path system defined on a weighted graph that induces
a cycle that cannot be broken by computing a minimum spanning tree
without increasing the total weight of the path system. The initial
path system has a total weight equal to 46 (the red path and the blue
path each has a weight of 13, the orange path has a weight of 8, and
the purple path has a weight of 12). The MST of the graph induced
on the path system includes all the edges of the graph except for
the edge of weight 10. The path system generated by computing all-
pairs shortest paths on the MST and then computing a source-target
matching has a total weight of 52 = 1×8 + 5×4 + 6×4, irrespective
of the specific choice of the matching (among 4! = 24 possibilities),
as the edges of weight 5 will each be in two paths and the edge of
weight 6 will be in four paths. A similar example can be constructed
for the case of uniformly weighted graphs, where deleting some edge
might increase the weight of the path system.

IV. QUANTIFYING PERFORMANCE
IN THE ABSENCE OF LOSS

We numerically quantify the performance of the ARO al-
gorithm in the absence of loss. We choose the performance
metrics to be the total number of displacement operations
Nν , the total number of transfer operations Nα , and the total
number of control operations NT = Nα + Nν . The values com-
puted for these performance metrics can be compared to the
values obtained using the baseline reconfiguration algorithm
and the 3-approx algorithm; the total number of displacement
operations is minimized by using the baseline reconfiguration
algorithm, whereas the total number of transfer operations is
bounded by at most three times its optimal value by using
the 3-approx algorithm. These performance metrics directly
correlate with the operational performance obtained in the
presence of loss (see Sec. V), quantified in terms of the
mean success probability; reducing the total number of dis-
placement and transfer operations results in fewer atoms lost,
whereas reducing the number of displaced atoms concentrates
the loss probability in as few atoms as possible, simplifying
the problem of filling up empty target traps in subsequent
reconfiguration cycles.

Although our results are valid for any arbitrary geome-
try and more generally for atom reconfiguration problems
defined on arbitrary graphs, we focus our analysis on the prob-
lem of preparing compact-centered configurations of NT

a =√
NT

a ×√
NT

a atoms in rectangular-shaped square-lattice arrays
of Nt = √

NT
a ×η

√
NT

a = ηNT
a static traps, where η = Nt/NT

a
is the trap overhead factor, which quantifies the overhead
in the number of optical traps needed to achieve a desired
configuration size. In the absence of loss, the overhead factor
is typically chosen based on the desired baseline success prob-
ability, which depends on the probability of loading at least
as many atoms as needed to satisfy the target configuration

FIG. 3. Reducing the fraction of displaced atoms using the
rerouting subroutine in the absence of loss. (a) Mean fraction of
displaced atoms f̄ν = 〈Nν

a /N0
a 〉 computed for various configuration

sizes for the baseline (yellow circles), assignment-rerouting (or-
ange squares), and 3-approx (purple inverted triangles) algorithms.
(b) Distribution of the relative fraction of displaced atoms and its
mean value for various configuration sizes computed as the ratio of
the fraction of displaced atoms for the assignment-rerouting algo-
rithm and the baseline reconfiguration algorithm.

and thus on the loading efficiency ε. In the presence of loss,
the overhead factor is typically a nonlinear function of the
configuration size that is chosen based on the desired mean
success probability [20].

For each target configuration size, we sample over 1000
initial configurations of atoms by distributing N0

a atoms at
random over Nt traps. We then count the number of transfer
and displacement operations for each displaced atom within
each realization and compute the ensemble average over the
distribution of initial configurations. The number of atoms
in the initial configuration satisfies a binomial distribution
N0

a ∼ B(Nt , ε), where the loading efficiency is conservatively
chosen to be ε = 0.5 and the trap overhead factor is chosen to
be η = 1/ε = 2. As computed from the cumulative distribu-
tion function of the binomial distribution, the baseline success
probability is thus p̄ = 0.5, i.e., half the initial configurations
contain enough atoms to satisfy the target configuration; how-
ever, we restrict our analysis to successful reconfiguration
protocols with N0

a � NT
a .

We first compute the reduction in the number of displaced
atoms Nν

a or, equivalently, the fraction of displaced atoms
fν = Nν

a /N0
a achieved by supplementing our baseline recon-

figuration algorithm with the rerouting subroutine to obtain
the assignment-rerouting algorithm. If we consider the base-
line reconfiguration algorithm, the mean fraction of displaced
atoms increases with configuration size [Fig. 3(a)] from f̄ 0

ν =
0.65(18) for preparing a configuration of NT

a = 4×4 atoms to
f̄ 0
ν = 0.94(2) for preparing a configuration of NT

a = 32×32
atoms. Nearly all atoms are thus displaced for large config-
uration sizes, in contrast with the 3-approx algorithm that
displaces only slightly more than half of the atoms [0.55(2)
for a configuration of NT

a = 32×32 atoms]. Compared to the
baseline reconfiguration algorithm, the assignment-rerouting
algorithm slightly reduces the fraction of displaced atoms
[Fig. 3(b)], achieving a mean relative fraction of displaced
atoms of 〈 f ar

ν / f 0
ν 〉 = 0.94(+6

−8) for preparing a configuration
of NT

a = 4×4 atoms and 〈 f ar
ν / f 0

ν 〉 = 0.983(7) for preparing a
configuration of NT

a = 32×32 atoms. The mean relative gain
in performance is thus larger for smaller configuration sizes,
even though a gain in performance is not always possible
for small configuration sizes for which the baseline recon-
figuration algorithm already minimizes the total number of

023108-7

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

FIG. 4. Reducing the number of transfer operations using the
rerouting and ordering subroutines in the absence of loss for a target
configuration of 32×32 atoms. (a) Distribution of the number of EDI
cycles per displaced atom using the baseline (yellow), ARO (red),
and 3-approx (red) algorithms. (b) Distribution of the number of
transfer operations computed relative to the 3-approx for the baseline
(yellow) and ARO (red) algorithms. (c) Mean relative number of
transfer operations for the ARO algorithm computed relative to the
baseline reconfiguration algorithm for various configuration sizes.
(d) Distribution of the relative number of transfer operations for
the ARO algorithm computed relative to the baseline reconfiguration
algorithm.

displaced atoms (f ar
ν / f 0

ν = 1). The gap in the mean fraction
of displaced atoms is narrower for larger configuration sizes
because we expect longer paths in the path system, which
makes the rerouting subroutine less effective, as it becomes
less likely that rerouting a path while keeping the rest of the
path system unchanged will isolate atoms. The key takeaway
of Fig. 3 is that assignment-rerouting is absolutely better than
baseline in terms of the fraction of displaced atoms, with the
largest relative improvement obtained for small trap arrays;
however, its performance does not match the performance of
the 3-approx. Any heuristic algorithm exploiting the assign-
ment subroutine would thus be better off using the rerouting
subroutine, if not for the increase in computational runtime.

We then compute the reduction in the number of EDI
cycles per displaced atom obtained by implementing the
ordering subroutine. The baseline reconfiguration algorithm
executes moves in an arbitrary order, possibly displacing the
same atom multiple times and thus having it undergo multiple
EDI cycles, each of which entails unnecessary extraction and
implantation operations. The ordering subroutine improves
on the baseline reconfiguration algorithm by ordering the
moves so that each atom undergoes at most one EDI cycle
[Fig. 4(a)]. The number of transfer operations per displaced
atom is strictly reduced to two, as it is the case for the 3-
approx algorithm, given one extraction and one implantation
operation per EDI cycle.

We further compute the reduction in the total number of
transfer operations by implementing the full ARO algorithm.
We express the number of transfer operations relative to
the 3-approx algorithm NARO

α /N3
α , which performs at most

three times the minimum number of transfer operations. For
preparing a configuration of NT

a = 32×32 atoms, the baseline

FIG. 5. Reducing the total number of control operations using
the ARO algorithm in the absence of loss for a target configura-
tion of 32×32 atoms. (a) Distribution of the number of transfer
and displacement operations for the baseline (yellow), ARO (red),
and 3-approx (purple) algorithms. (b) Distribution of the number
of control operations for the baseline (yellow), ARO (red), and 3-
approx (purple) algorithms. (c) and (d) Distribution of (c) the relative
number of control operations and (d) its mean value for various
configuration sizes for the ARO algorithm computed relative to the
baseline (yellow) and 3-approx algorithms (purple).

reconfiguration algorithm performs on average 2.7(2) times
more transfer operations than the 3-approx algorithm, whereas
the ARO algorithm performs on average 1.66(4) times more
transfer operations [Fig. 4(b)]. The mean relative fraction of
transfer operations performed by the ARO algorithm over
the baseline reconfiguration algorithm decreases with config-
uration size [Fig. 4(c)], ranging from 0.91(9) for preparing
a configuration of NT

a = 4×4 atoms to 0.62(4) for prepar-
ing a configuration of NT

a = 32×32 atoms [Fig. 4(d)]. The
downward trend can be explained by the deterioration of the
efficacy of the baseline reconfiguration algorithm with an
increase in the size of the configurations. In large configu-
rations, it is more likely that the target of a move is a vertex
in the path associated with another move. Depending on the
ordering of the moves, moves that were initially unobstructed
may become obstructed, requiring the obstructing atom to
be transferred again (see Appendix F). The ARO algorithm
remedies this issue by ensuring that each displaced atom is
transferred exactly once.

We finally compute the total number of control opera-
tions by summing the number of transfer operations and the
number of displacement operations for all atoms [Fig. 5(a)].
Because both the baseline and the ARO algorithms exactly
minimize the number of displacement operations and the
ARO algorithm performs fewer transfer operations, the ARO
algorithm ultimately performs fewer total control operations
[Fig. 5(b)]. In addition, although the 3-approx algorithm per-
forms fewer transfer operations than both the baseline and
ARO algorithms, it performs significantly more displacement
operations. The 3-approx algorithm thus performs worse than
the baseline and ARO algorithms in terms of total number
of control operations [Fig. 5(b)]. The mean relative num-
ber of control operations computed for the ARO algorithm
relative to the baseline (3-approx) algorithm decreases with

023108-8

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

configuration size, ranging from 0.95(6) [0.93(12)] for a con-
figuration of NT

a = 4×4 atoms to 0.89(2) [0.36(5)] for a
configuration of NT

a = 32×32 [Figs. 4(c) and 4(d)]. The up-
trend observed in Fig. 5(c) between NT

a = 16×16 and NT
a =

32×32 is due to displacement operations accounting for most
of the control operations when the target configuration size
is large. Hence, the gap between the performance of the ARO
algorithm and that of the baseline algorithm is smaller in terms
of the total number of control operations, as both algorithms
minimize displacements. The 3-approx algorithm, however,
does not minimize displacements, which is reflected in the
strictly downward trend in Fig. 5(d).

The total number of control operations correlates with the
mean success probability in the presence of loss when the du-
ration and the efficiency of control operations are comparable
for displacement and transfer operations. Hence, the relative
reduction in the number of control operations achieved by the
ARO algorithm translates into a relative increase in the mean
success probability in the presence of loss, which we quantify
in the next section.

V. QUANTIFYING PERFORMANCE
IN THE PRESENCE OF LOSS

We numerically evaluate the performance of the ARO
algorithm in the presence of loss using realistic physical pa-
rameters following the approach outlined in the preceding
paper introducing the redistribution-reconfiguration (red-rec)
algorithm (see [20]). We conservatively choose the trapping
lifetime to be 60 s and the success probability of elementary
displacement and transfer operations to be 0.985. The red-
rec algorithm is a heuristic algorithm that seeks to increase
operational performance by performing parallel control oper-
ations. The key idea of the algorithm is first to redistribute
atoms from columns containing more atoms than needed
(donors) to columns containing fewer atoms than needed
(receivers) and then to reconfigure each column using an
exact one-dimensional reconfiguration algorithm. In addition
to increasing operational performance, it also enables efficient
implementation on a low-latency feedback control system
with fast computational running time. For the present study,
we implement a slightly improved (more computationally ef-
ficient) version of the red-rec algorithm.

We choose the performance metric to be the mean suc-
cess probability obtained by averaging the success probability
over the distribution of random initial configurations and loss
processes. In the presence of loss, larger arrays are required
to load enough atoms to replace atoms lost during multi-
ple reconfiguration cycles. As the height of the trap array
is increased, there is a sharp transition between near-certain
success and near-certain failure [Figs. 6(a)–6(c)]. The relative
gain in performance achieved by the ARO algorithm over the
baseline algorithm is maximized at the inflection point where
p̄ = 0.5.

In the presence of loss, the ARO algorithm out-
performs the 3-approx, baseline, and red-rec algorithms
[Figs. 6(b)–6(d)]. Comparing the baseline and ARO
algorithms, the mean success probability increases from p̄a =
0.29(3) [0.65(3)] to p̄ARO = 0.41(4) [0.74(3)] for a static

ARO

ARO

FIG. 6. Increasing the mean success probability using the ARO
algorithm. The mean success probability p̄ for preparing a configu-
ration of NT

a = Nx
t ×Nx

t atoms in an array of Nt = Nx
t ×Ny

t traps is
shown for (a) Nx

t = 16, (b) Nx
t = 16 and Ny

t = 36, 38, (c) Nx
t = 32,

and (d) Nx
t = 32 and Ny

t = 86, 88. The markers represent the 3-
approx (purple inverted triangles), baseline (yellow disks), red-rec
(blue triangles), and ARO (red squares) algorithms.

trap array of 16×36 (16×38) traps and from p̄a = 0.41(4)
[0.64(3)] to p̄ARO = 0.82(3) [0.94(2)] for a static trap array
of 32×86 (32×88) traps. The relative gains of performance
are p̄ARO/p̄a = 1.4(3) [1.1(1)] and p̄ARO/p̄a = 2.0(2) [1.5(1)]
for a static trap array of 16×36 (16×38) and 32×86 (32×88)
traps, respectively.

The relative improvement in performance is offset by a
significant increase in computational running time. The red-
rec algorithm thus maintains an operational advantage when
real-time computation is needed. Our present implementation
of the ARO algorithm, however, has not been optimized for
real-time operation, and we foresee opportunities to further
improve its running time.

VI. CONCLUSION

We have introduced the assignment-rerouting-ordering
algorithm and shown that it outperforms the baseline re-
configuration algorithm, which is a typical assignment-based
algorithm, in both the absence and the presence of loss. The
ARO algorithm exactly minimizes the total number of dis-
placement operations while reducing the number of displaced
atoms and restricting the number of transfer operations to
strictly two (one extraction and one implantation operation per
EDI cycle).

Further gains in performance could possibly be achieved
by trading off an increase in displacement operations for a
decrease in transfer operations. As we have seen, to minimize
the total number of displacement operations, the baseline re-
configuration algorithm needs to displace nearly all atoms,
including those that are already located in the target region of
the trap array. Reducing the number of displaced atoms would
reduce the number of transfer operations. One way to reduce
the number of displaced atoms is to impose the constraint that
a subset of the atoms located in the target region are fixed in
place, i.e., the traps containing them remain idle. This sub-
set could be selected at random, searched over, or identified

023108-9

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

based on heuristics, e.g., fixing in place atoms located near
the geometric center of the target configuration to minimize
their corruption, as they are the most costly to replace. An-
other approach is to replace the distance-preserving rerouting
subroutine with the distance-increasing rerouting subroutine,
as the latter subroutine was designed to trade off an increase in
displacement operations for a decrease in transfer operations.

We have alluded to the possibility of using adaptive al-
gorithms to further improve operational performance. By
adaptive algorithms, we mean running different reconfigura-
tion algorithms in each reconfiguration cycle such that the
choice of which algorithm to execute is possibly depen-
dent on the measured atom configuration. Deploying adaptive
algorithms requires quantifying the performance of the algo-
rithms in terms of how the atoms are distributed in the initial
configuration.

The present implementation of the ARO algorithm has
not been optimized for runtime performance, which prevents
numerical benchmarking for large configuration sizes and
near-term deployment in an operational context. Future work
should focus on improving the runtime performance of the
ARO algorithm, possibly at the cost of integrating additional
heuristics, quantifying performance on arbitrary graphs, and
demonstrating applicability in an operational setting.

Our results highlight the value to be gained from extend-
ing formal results from combinatorial optimization and graph
theory in an operational setting. Additional research opportu-
nities exist in developing exact and approximation algorithms
for atom reconfiguration problems that simultaneously opti-
mize multiple objective functions as well as for problems with
labeled, distinguishable atoms that encode quantum informa-
tion. Besides enabling the preparation of large configurations
of atoms, reconfiguration algorithms can also be used to im-
plement quantum information protocols on quantum devices
with dynamic connectivity graphs, e.g., by displacing atoms
with respect to one another to perform gates among otherwise
noninteracting atoms [39–41].

Finally, we emphasize that our results are general and thus
extend beyond the scope of atom reconfiguration problems.
We encourage the interested readers to read our complemen-
tary study on the red-rec algorithm [20].

The source code for the benchmarking module and recon-
figuration algorithms will be made available upon reasonable
request.

ACKNOWLEDGMENTS

This work was supported by the Canada First Research
Excellence Fund. The work of A.E.M. was supported by the
Alexander von Humboldt Foundation and partially supported
by the PHC Cedre Project No. 2022 “PLR.” The work of
R.E.S., S.M., and N.N. was supported by the Natural Sciences
and Engineering Research Council of Canada.

APPENDIX A: ASSIGNMENT SUBROUTINE

The assignment subroutine first solves the all-pairs short-
est path problem in order to compute the shortest pairwise
distances between occupied traps in the initial configuration
(represented as the set of source vertices S) and occupied

traps in the target configuration (represented as the set of
target vertices T). More generally, the algorithm consists of
computing shortest paths between every vertex in S and every
vertex in T . On uniformly weighted grid graphs, the APSP
problem can be solved in a time that is quadratic in the number
of vertices [O(n2)], as the shortest distance between any two
traps in the grid is equal to the Manhattan distance between
them. In the general edge-weighted case, this problem can be
solved in O(n3) time using the Floyd-Warshall algorithm [42].
Alternatively, because it is more easily amenable to parallel
implementation, e.g., on a GPU, Dijkstra’s algorithm (run
from each source vertex) could replace the Floyd-Warshall
algorithm to find shortest paths between pairs of vertices in
positive edge-weighted graphs.

The assignment subroutine then solves the assignment
problem to find one of possibly many sets of pairs of source
and target traps that exactly minimize the total distance trav-
eled by all atoms and thus exactly minimize the total number
of displacement operations. The problem of computing a
distance-minimizing path system can be reduced to solving
an assignment problem using the assignment subroutine. A
solution to the assignment problem consists of finding a bijec-
tion f : A → B that minimizes the total cost

∑
a∈A C(a, f (a)),

where A and B are two sets of equal cardinality and C :
A×B → R is a positive cost function. In the absence of a
surplus of atoms, i.e., when |S| = |T |, we set A = S and
B = T , and for any pair a ∈ A and b ∈ B we choose the
cost function C(a, b) to be the distance between vertex a and
vertex b. Clearly, a solution to the assignment problem is a
matching between source traps and target traps that minimizes
the total displacement distance. This assignment problem has
a polynomial-time solution; the first documented solution,
which was attributed to Kuhn as the Hungarian algorithm
[21], has an asymptotic running time of O(|A|4) that was later
improved to O(|A|3) [22].

In our present implementation of the assignment subrou-
tine, we solve the APSP problem using the Floyd-Warshall
algorithm [42], which we modify to store one of the shortest
paths between each pair of source and target vertices. We
then use the Hungarian algorithm to solve the assignment
problem and find one of many possible pairings of source
and target traps that minimize the total displacement distance;
each pair is associated with the shortest path computed and
stored earlier.

We now show how the problem of computing a T -valid
distance-minimizing path system (in positive edge-weighted
graph) can be reduced to the assignment problem, even
with the existence of surplus atoms. Given a positive edge-
weighted graph G and two sets S, T ⊆ V (G) such that |S| �
|T |, we define a set U (|U | = |S| − |T |) and we set A = S and
B = T ∪ U . As for the cost function, we define it for any tuple
in A×B as

C(a, b) =
{

dG(a, b) for b ∈ T

W otherwise,

where dG(a, b) is the weight of a shortest path between u and
v in G and W is a large number (we set W large enough
to ensure that it is larger than |S| times the weight of the
heaviest shortest path). Running the Hungarian algorithm on

023108-10

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

the constructed instance will yield an assignment such that
each vertex in B \ U is assigned to a source vertex in A;
this subset of the matching can be used to construct a valid
distance-minimizing path system P (where for each pair we
pick one of the many possible shortest paths) [24]. We provide
a proof of correctness for completeness.

Lemma 1. Given an n-vertex (positive) edge-weighted
graph G and two sets S, T ⊆ V (G) such that |S| � |T |, we can
compute in time O(n3) a T -valid distance-minimizing path
system P .

Proof. Note that C(a, b) is equal to the weight of a shortest
path in G connecting a and b whenever a ∈ S and b ∈ T and
W otherwise. After we obtain the matching, we can move the
tokens matched to vertices in B \ U as follows. Assume we
want to move token τi; if the path τi would take to reach its tar-
get has another token τ j on it, we switch the targets of the two
tokens and we move τ j instead, in a manner similar to the ob-
struction solver subroutine. One can check that the weight of
the edges traversed does not exceed the weight of the path sys-
tem. On the other hand, the optimum solution (in fact, any so-
lution) must move tokens to targets and cannot do better than
the total weight of the shortest paths in a minimum-weight
assignment. The running time follows from the fact that we
run the Floyd-Warshall algorithm followed by the Hungarian
algorithm, each of which has a running time of O(n3). �

APPENDIX B: ISOLATION SUBROUTINE

A common issue associated with the assignment subroutine
is that it might label a vertex as both a source and a target
vertex, either labeling a target vertex as its own source or
labeling a vertex as the target of one path and the source
of another. Such double labeling might result in unnecessary
transfer operations, possibly displacing an atom that could
otherwise have remained in place. To minimize the number of
unnecessary transfer operations caused by double labeling, we
implement an isolation subroutine, which we run before com-
puting the moves associated with the path system, to remove
doubly labeled vertices whenever possible. The removal of a
doubly labeled vertex is possible whenever the recomputed
path system (obtained after excluding the vertex and its inci-
dent edges from the graph and updating S and T accordingly)
remains valid and has a total weight that is less than or equal
to the total weight of the original path system. The isolation
subroutine guarantees that every token in the resulting path
system has to be displaced at least once. It also guarantees
that the baseline reconfiguration algorithm does not serendip-
itously displace fewer tokens than the ARO algorithm;
however, because implementing the subroutine is computa-
tionally costly and these serendipitous instances are rare, this
subroutine can be safely ignored in an operational setting.

As just explained, the isolation subroutine is a heuristic that
guarantees that, for any distance-minimizing path system, ev-
ery token in the path system (after deleting some vertices and
tokens from the graph) has to move at least once, regardless
of the path system or of the order in which we execute the
moves. We let IP denote the set of vertices which contain
tokens that are isolated in P and we let FP denote the set
of vertices in S that do not appear in P (their tokens are
said to be fixed in place by P). We show, in particular, that

FIG. 7. Examples of atom reconfiguration problems on graphs.
(a) Example problem for which ordering the paths of a path system
reduces the number of transfer operations. Executing the move as-
sociated with either P2 or P3 (or both) before the move associated
with P1 would force τ2 or τ3 (or both) to move twice. (b) Exam-
ple problem for which a token (here τ3) can be isolated without
increasing the weight of the path system. (c) Example problem for
which the displacement distance and the number of displaced tokens
cannot be simultaneously minimized. Two tokens need to move to
minimize the displacement distance, whereas one token needs to
move if minimizing displacements is not imposed.

we can transform P into another path system P ′ such that
w(P ′) = w(P), IP ′ ⊇ IP , and FP ′ ⊇ FP and there exists no
other path system P ′′ such that w(P ′′) = w(P ′) and either
IP ′′ ⊃ IP ′ or FP ′′ ⊃ FP ′ [see Fig. 7(b) for an example of an
instance where our rerouting heuristics would fail to isolate
an extra token while the isolation subroutine succeeds].

Assume we are given a distance-minimizing path system P
and let v ∈ S ⊆ V (G) be a vertex containing a token τ which
is not isolated or fixed in place in P (not in IP ∪ FP). Let
G′ = G − (IP ∪ FP ∪ {v}) denote the graph obtained from
G after deleting the set of vertices IP ∪ FP ∪ {v} ⊆ V (G)
and the edges incident on all vertices in IP ∪ FP ∪ {v}. We
compute an assignment (Appendix A) in the graph G′ =
G − (IP ∪ FP ∪ {v}) with S′ = S \ (IP ∪ FP ∪ {v}) and T ′ =
T \ (IP ∪ FP ∪ {v}). Let P ′ denote the path system associated
with this newly computed assignment. If P ′ is T ′-valid and
w(P ′) = w(P), then we use P ′ instead of P and consider
token τ (on vertex v) as either an extra isolated token or an
extra fixed in place token, depending on whether v ∈ S ∩ T
or v ∈ S \ T . We then add v to either IP ′ or FP ′ , depending
on whether the token on it was isolated or fixed in place. This
process is repeated as long as we can find new tokens to isolate
or fix in place. We show that, in a distance-minimizing path
system where no tokens can be isolated or fixed in place, all
other tokens will have to move at least once. We call such a
path system an all-moving path system.

Lemma 2. Given an n-vertex (positive) edge-weighted
graph G, two sets S, T ⊆ V (G) such that |S| � |T |, and a
T -valid distance-minimizing path system P , we can compute,
in time O(n5), a valid all-moving path system P ′ such that
w(P ′) = w(P), IP ′ ⊇ IP , and FP ′ ⊇ FP .

Proof. Let P ′ denote the path system obtained after exhaus-
tively applying the described procedure. Clearly, P ′ is valid
and w(P ′) = w(P) (by construction). It remains to show that
P ′ is an all-moving path system. In other words, we show
that there exists no other valid path system P ′′ such that
w(P ′′) = w(P ′) and P ′′ can isolate or fix a proper superset
of IP ′ or FP ′ , i.e., IP ′′ ⊃ IP ′ or FP ′′ ⊃ FP ′ .

Assume that P ′′ exists and let v� ∈ IP ′′ \ IP ′ or v� ∈ FP ′′ \
FP ′ . In either case, we know that v� ∈ S, which gives us the

023108-11

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

required contradiction as our procedure would have deleted v�

(and either isolated or fixed the token on it).
For the running time, note that we can iterate over vertices

in S in O(n) time. Once a vertex is deleted, we run the
APSP algorithm followed by the Hungarian algorithm, and
this requires O(n3) time. We can delete at most n vertices,
and whenever a vertex is successfully deleted (which corre-
sponds to fixing in place or isolating a token), we repeat the
procedure. Therefore, the total running time of the isolation
procedure is O(n5). �

APPENDIX C: DISTANCE-PRESERVING
REROUTING SUBROUTINE

Following Sec. III A where we present an overview of the
distance-preserving rerouting subroutine, we show that the

problem of rerouting a path system to increase the number
of isolated tokens without increasing the path system’s total
weight has a substructure that we can utilize to design a
polynomial-time dynamic programming solution. We present
this subroutine in detail for uniformly weighted grid graphs
and we sketch how it could be generalized to work on general
positive edge-weighted graphs.

We assume that we are working with a path P with a source
vertex (c1, r1) and a target vertex (c2, r2) such that r1 < r2

and c1 < c2. The other three cases entail flipping one or both
of these inequalities and can be solved in a similar way. For
the path in question, we introduce a (W + 1)×(H + 1) matrix
DP such that W = |c1 − c2|, H = |r1 − r2|, and DP[i][j] is
the smallest number of isolated tokens on any shortest path
between (c1, r1) and (c1 + i, r1 + j) in the path system that
excludes the current path P, i.e., in P \ P. The DP[i][j] values
are computed as follows:

DP[i][j] =

⎧⎪⎪⎨
⎪⎪⎩

0 for i = 0, j = 0 (case I)
I[i][j] + DP[i − 1][j] for i �= 0, j = 0 (case II)
I[i][j] + DP[i][j − 1] for i = 0, j �= 0 (case III)
I[i][j] + min(DP[i − 1][j], DP[i][j − 1]) otherwise (case IV).

Here I[i][j] is equal to 1 whenever there is an isolated token
on vertex (c1 + i, r1 + j) in P \ P and 0 otherwise. The value
of interest is DP[W][H], which can be computed in O(W H)
time. The proof of correctness of this algorithm follows from
the next lemma. We note that the generalization to positive
edge-weighted graphs entails modifying the Floyd-Warshall
algorithm to break ties between shortest paths based on the
number of isolated tokens on them in the path system that
excludes them. It follows that, in the general case, the smallest
number of isolated tokens on any shortest path between two
vertices can be computed in O(n3) time.

The statement and the proof of the following lemma as-
sume that r1 < r2 and c1 < c2. The proof can be altered to
work for the other three possible cases.

Lemma 3. Given a valid path system P in a uniformly
weighted grid graph G and a path P ∈ P with source vertex
(c1, r1) and target vertex (c2, r2) such that r1 < r2 and c1 <

c2, DP[i][j] is the smallest number of isolated tokens in the
path system that excludes the path P (i.e., P \ P) on any short-
est path between the source vertex and vertex (c1 + i, r1 + j).

Proof. We use induction on the two indices i and j. For the
path going from the source vertex (c1, r1) to itself, there are
no tokens in P \ P since the current path is excluded from the
path system, so DP[0][0] = 0 (case I) is correct. Similarly,
for the vertices on the same column and the same row as
(c1, r1), there is a single distance-minimizing path to each of
them, so I[i][j] + DP[i − 1][j] and I[i][j] + DP[i][j − 1],
respectively, compute the numbers of isolated tokens on the
paths to those vertices correctly (cases II and III). Now assume
that DP[i][j] takes on the correct value for 0 � i � k and 0 �
j � k′ [excluding the pair (k, k′)]. We prove that DP[k][k′]
takes on the correct value.

In any path from (c1, r1) to (c1 + k, r1 + k′), vertex (c1 +
k, r1 + k′) can be reached on a distance-minimizing path

either from vertex (c1 + k − 1, r1 + k′) or from vertex (c1 +
k, r1 + k′ − 1). By the inductive hypothesis, we already know
the smallest number of isolated tokens from (c1, r1) to either
one of those two vertices in P \ P; the smallest number of
isolated tokens from (c1, r1) to (c1 + k, r1 + k′) will therefore
be the minimum of those two values, to which we add 1 in
case there is an isolated token on vertex (c1 + k, r1 + k′) in
P \ P (case IV). �

Once we obtain DP[W][H], if its value is smaller than
the number of isolated tokens along the current path P in
the path system that excludes P, then P has to be rerouted
(since we can isolate more tokens by rerouting P); otherwise
P is unchanged. Since path reconstruction is required, we
need to store the decisions that were made by the dynamic
programming procedure and the easiest way to do so is by
introducing a (W + 1)×(H + 1) matrix PR, which stands for
previous right, such that PR[i][j] indicates whether DP[i][j]’s
value was obtained by reaching vertex (c1 + i, r1 + j) from
the bottom (PR[i][j] = 1) or from the left (PR[i][j] = 0). Us-
ing the PR matrix, we can therefore reconstruct the rerouted
path and use it to replace the initial path if needed.

Lemma 4. Given a valid path system P in an n-vertex
uniformly weighted grid graph G (positive edge-weighted
graph G), we can, in time O(n3) [O(n5)], exhaustively run the
distance-preserving rerouting heuristic.

Proof. The procedure loops over all paths in the path sys-
tem and attempts to reroute each path. If at least one path is
rerouted, once all paths have been considered, the process is
repeated. The process keeps getting repeated until the algo-
rithm goes through all paths without changing any path. The
algorithm terminates in O(n3) time on uniformly weighted
grid graphs [O(n5) time on positive edge-weighted graphs],
assuming at most n paths in the path system, given that we can
isolate at most n tokens, that computing a replacement path

023108-12

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

requires O(W H) = O(n) time [O(n3) time], and that every
time a token is isolated, the procedure repeats from scratch.�

APPENDIX D: DISTANCE-INCREASING
REROUTING SUBROUTINE

Following Sec. III A where the distance-increasing rerout-
ing subroutine is briefly mentioned, we now provide a detailed
presentation. This subroutine is a trade-off heuristic that seeks
to trade an increase in displacement distance for a reduction
in the number of displaced tokens. We present this subroutine
only for uniformly weighted grid graphs and we note that
the distance-increasing rerouting subroutine could potentially
be generalized to work on general positive edge-weighted
graphs. We say that a path in a grid is rectilinear if it is
horizontal or vertical (assuming an embedding of the grid in
the plane). Recall that we say that a token τ is isolated in
a path system P whenever there exists a single-vertex path
P = {v} ∈ P such that the token τ is on the vertex v and no
other path in P contains vertex v.

The purpose of the distance-increasing rerouting subrou-
tine is to introduce a mechanism that allows us to increase
token isolation, even if that comes at the cost of increasing
displacement distance. We also want to make it possible to
control how much leeway is given to this subroutine when
it comes to deviating from the minimization of overall dis-
placement distance. To do so, we introduce the concept of a
margin, which we denote by μ. The margin limits the paths
considered. For a margin μ, a source vertex (c1, r1), and a
target vertex (c2, r2) (assuming, without loss of generality,
r1 < r2 and c1 < c2) defined in a path system in a uniformly
weighted grid graph G, the rerouted path can now include any
of the vertices that are within the subgrid bounded by the ver-

tices (max(c1 − μ, 0), max(r1 − μ, 0)) (bottom left corner)
and (min(c2 + μ,WG − 1), min(r2 + μ, HG − 1)) (top right
corner), which we call the extended subgrid.

As was the case for the analysis of the distance-preserving
rerouting subroutine, for the rest of this section we assume
that we are working with a path system P and a path P
with a source vertex (c1, r1) and a target vertex (c2, r2) such
that r1 < r2 and c1 < c2. The other three cases can be han-
dled in a similar way. Evidently, as was the case for the
distance-preserving rerouting subroutine, there is no point in
attempting to enumerate all the paths here either, as their
number is exponential in H + W + μ. In fact, even for μ = 0,
the possible reroutings are a superset of the possible rerout-
ings in the distance-preserving rerouting, as we removed the
restriction on maintaining a shortest path within the subgrid.

Out of the reroutings of P that minimize the number of
isolated tokens in P \ P, we select the ones that have the
shortest path length, and out of those, we select the ones that
have the smallest number of changes in direction (horizontal
vs vertical). We arbitrarily select any one of the remaining
paths.

Again, we exploit dynamic programming to solve the
problem. Just like in Appendix C, we make use of I how-
ever, in this case, we have to consider all vertices that are
part of the extended subgrid, so the matrix I is of size
(W + 1 + 2μ)×(H + 1 + 2μ) and I[i][j] is equal to 1 when-
ever (c1 + i − μ, r1 + j − μ) is in the grid and contains an
isolated token and 0 otherwise. We introduce a [(W + 1 +
2μ)×(H + 1 + 2μ)]×(W + 1 + 2μ)×(H + 1 + 2μ) matrix
DP such that DP[i][j][k] is the smallest number of isolated
tokens on any path of length i between (c1, r1) and (c1 + j −
μ, r1 + k − μ) in P \ P. The DP[i][j][k] values are computed
as follows:

DP[i][j][k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0, j = μ, k = μ (case I)

+∞ for (c1 + j − μ, r1 + k − μ) not in grid graph (case II)

+∞ for i = 0, j �= μ, or k �= m (case III)

+∞ for DP[i − 1][j − 1][k] = DP[i − 1][j + 1][k]

= DP[i − 1][j][k − 1]

= DP[i − 1][j][k + 1] = +∞ (case IV)

I[j][k] + min(DP[i − 1][j − 1][k],

DP[i − 1][j + 1][k],

DP[i − 1][j][k − 1], DP[i − 1][j][k + 1]) otherwise (case V).

By convention, we set DP[i][j][k] to +∞ when (1) the
shortest distance between (c1, r1) and (c1 + j − μ, r1 + k −
μ) is greater than i (cases III and IV, which is equivalent to
saying that the smallest number of isolated tokens of any path
of length i between those two vertices in P \ P is infinite, and
this makes case V work), (2) when (c1 + j − μ, r1 + k − μ)
are coordinates that do not correspond to the coordinates of a
vertex within the grid graph (case II), or (3) when at least one
of j or k is out of bounds, i.e., when (c1 + j − μ, r1 + k − μ)
has fewer than four neighboring vertices in the grid graph (this
makes it easier to deal with cases IV and V).

The value of interest is min{DP[W + H][μ + W][μ + H],
DP[W + H + 1][μ + W][μ + H], . . . , DP[(W + 1 + 2μ) ×
(H + 1 + 2μ) − 1][μ + W][μ + H]}. Specifically, we con-
sider the maximum number of tokens we managed to isolate
for every path length greater than or equal to W + H [which
is the length of the shortest path between (c1, r1) and (c2, r2)]
and we pick the maximum across all path lengths. The proof
of correctness of this procedure follows from Lemma 5.

The statement and the proof assume that r1 < r2 and c1 <

c2. The proof can be altered to work for the other three possi-
ble cases.

023108-13

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

Lemma 5. Given a valid path system P in a uniformly
weighted grid graph G and a path P ∈ P with source vertex
(c1, r1) and target vertex (c2, r2) such that r1 < r2 and c1 <

c2, mini∈N+{[0,(W +1+2μ)×(H+1+2μ)−1]} DP[i][j][k] is the small-
est number of isolated tokens in P \ P on any path between
the source vertex and vertex (c1 + j − μ, r1 + k − μ).

Proof. We start by proving the correctness of the dynamic
programming approach, as the correctness of the lemma state-
ment follows directly from that. Specifically, we start by
proving that DP[i][j][k], for pairs (j, k) that correspond to
vertices in the grid, is the smallest number of isolated tokens
on any path of length i between (c1, r1) and (c1 + j − μ, r1 +
k − μ) in the path system that excludes the path P and is equal
to +∞ otherwise. We will use induction on the first dimension
only (i.e., the path length dimension or number of edges in the
path).

The only path of length 0 starting from (c1, r1) reaches
(c1, r1). Since the current path is excluded from the path
system, there are no tokens from (c1, r1) to itself and there-
fore DP[0][μ][μ] = 0 (case I), as needed. No other vertex
is reachable for i = 0, so DP[0][i][j] (0 � i � W + 2μ and
0 � j � H + 2μ) should equal +∞, and case III ensures that
DP[0][i][j] takes on the correct value in the specified range.

Now assume that DP[l][j][k] takes on the correct val-
ues (0 � j � W + 2μ and 0 � k � H + 2μ). We would like
to prove that DP[l + 1][j][k] takes on the correct values
(0 � j � W + 2μ and 0 � k � H + 2μ).

There are two cases to consider. For a fixed value of
the pair (j, k) corresponding to a vertex (c1 + j − μ, r1 + k)
in the grid, if none of (c1 + j − μ − 1, r1 + k − μ), (c1 +
j − μ + 1, r1 + k − μ), (c1 + j − μ, r1 + k − μ − 1), and
(c1 + j − μ, r1 + k − μ + 1) is reachable within l displace-
ments, then (c1 + j − μ, r1 + k − μ) should not be reachable
within l + 1 displacements. By the induction hypothe-
sis, we would have DP[l][j − 1][k] = DP[l][j + 1][k] =
DP[l][j][k − 1] = DP[l][j][k + 1] = +∞, which sets the
value of DP[l + 1][j][k] to +∞ as well, as needed (case IV).

The second case is when at least one of the neighbors
of (c1 + j − μ, r1 + k − μ) is reachable in l steps. By the
inductive hypothesis, we have the smallest number of iso-
lated tokens in P \ P from (c1, r1) to the neighbors of (c1 +
j − μ, r1 + k − μ) reached in l steps. The vertex (c1 + j −
μ, r1 + k − μ) can only be reached in l + 1 steps from any
of its neighbors that were reached in l steps, so the smallest
number of isolated tokens on any path of length l + 1 from
(c1, r1) to (c1 + j − μ, r1 + k − μ) in P \ P is equal to the
minimum of the values obtained for the neighbors reached in
l steps, to which we add 1 in the case in which there is an
isolated token on vertex (c1 + j − μ, r1 + k − μ), which is
what the algorithm does (case V).

We have proven that DP[i][j][k] takes on the correct
value, that is, DP[i][j][k] is the smallest number of iso-
lated tokens on any path of length i between (c1, r1)
and (c1 + j − μ, r1 + k − μ) in P \ P. It follows that
the smallest number of isolated tokens on any path be-
tween (c1, r1) and (c1 + j − μ, r1 + k − μ) in P \ P is
mini∈N+{[0,(W +1+2μ)×(H+1+2μ)−1]} DP[i][j][k]. �

Just like the distance-preserving case, the distance-
increasing case requires keeping track of paths, their lengths,
and their number of changes in direction; DP can be easily

augmented to accommodate for that, or an auxiliary matrix
(similar to PR in Appendix C) can be used to keep track of
this information. The procedure is run exhaustively, that is,
we loop over all paths and attempt to reroute them, and if at
least one path is rerouted, once all paths have been considered,
the process is repeated. It remains to prove that the procedure
terminates and runs in polynomial time.

Lemma 6. Given a valid path system P in an n-vertex
uniformly weighted grid graph G and a margin μ � n, we
can, in time O(n7), exhaustively run the distance-increasing
rerouting heuristic.

Proof. Computing all the entries in the augmented DP
table for a single path can be achieved in time O(n3). Now
every time a path is rerouted we have one of the following
three consequences: (i) the isolation of one or more tokens
and an indeterminate effect on the overall weight of the path
system and the overall number of direction changes in the
path system, (ii) the decrease of the overall weight of the
path system and an indeterminate effect on the overall number
of direction changes in the path system (no increase in the
number of isolated tokens), or (iii) the decrease of the overall
number of direction changes in the path system (no increase
in the overall weight of the path system or decrease in the
number of isolated tokens). The number of tokens that can be
isolated is linear in the number of vertices in the grid, whereas
the overall weight of the path system and the overall number
of direction changes in the path system are quadratic in the
number of vertices in the grid.

On the one hand, the weight of a path can be decreased at
most O(n) times, ignoring the effect that token isolation may
have on the weight of the path. On the other hand, the number
of direction changes in a path can be decreased at most O(n)
times, ignoring the effect that token isolation or a decrease in
path weight may have on the number of direction changes.
Now, since decreasing the weight of a path may affect the
number of direction changes within it, in the worst case, every
two reroutings that decrease the weight of a path P [of which
we have O(n)] may be separated by O(n) reroutings of path
P, each of which decreases its number of direction changes.
Therefore, ignoring token isolation, each path can be rerouted
at most O(n2) times, for a total of O(n3) path reroutings.

We now incorporate token isolation into our analysis and
we consider how it interacts with the other two consequences
of distance-increasing rerouting. Since each token isolation
may lead to updating the weight of a single path to O(n),
accounting for the O(n) token isolations and relying on the
reasoning from the preceding paragraph means that we may
have O(n3) extra path reroutings in total, in addition to the
O(n3) path reroutings we have already accounted for earlier.
This implies that the total number of possible reroutings is
bounded by O(n3).

It remains to show how fast we can accomplish each rerout-
ing. Recall that computing all the entries in the augmented
DP table for a single path can be achieved in time O(n3).
Moreover, the algorithm reiterates through the paths of the
path system from scratch every time a rerouting takes place,
meaning that a single rerouting is completed in time O(n4).
Given that the total number of possible reroutings is O(n3), we
can exhaustively run the distance-increasing rerouting heuris-
tic in time O(n7). �

023108-14

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

APPENDIX E: ORDERING SUBROUTINE

The ordering subroutine (briefly explained in Sec. III B)
seeks to order the path system and convert it into a (valid)
ordered path system. It is the central module of the ARO algo-
rithm and consists of finding the order in which to execute the
moves so that each token is displaced at most once [Fig. 7(a)].

1. Step 1: Merge path system

The first step of the ARO subroutine is to compute a
merged path system (MPS). A merged path system is a path
system such that no pair of paths within the system intersects
more than once, where an intersection between two paths is
a nonempty maximal sequence of vertices that appear in each
path’s vertex sequence representation contiguously either in
the same order or in reverse order.

Lemma 7 (merged path system). Given an n-vertex
(positive) edge-weighted graph G with |E (G)| = m and∑

e∈E (G) w(e) = O(nc) for some positive integer c, two sets
S, T ⊆ V (G), and a T -valid path system P , we can compute,
in time O(nc+4m2), a valid merged path system P ′ such that
w(P ′) � w(P). Moreover, the number of distinct edges used
in P ′ is at most the number of distinct edges used in P .

Proof. For any pair of paths Pi and Pj that intersect, let vi, f

and vi,l be the first and last vertices of Pi that are also in Pj .
Similarly, let v j, f and v j,l be the first and the last vertices of
Pj that are also in Pi. We let Pi

f ,l denote the subpath of Pi that

starts at vi, f and ends at vi,l . We let P j
f ,l denote the subpath

of Pj that starts at v j, f and ends at v j,l . An edge in a pair of
intersecting paths Pi and Pj is said to be exclusive if it belongs
to either Pi

f ,l or P j
f ,l but not both.

With the above in mind, we describe the merging process.
While there exists an edge in the path system that is exclu-
sive in some pair of intersecting paths, we look for the edge
that is exclusive in the smallest number of intersecting path
pairs (this number is called the exclusivity frequency). If such
an edge does not exist, this implies that the path system is
merged. Once we have selected an edge, call it e, we pick
an arbitrary pair of intersecting paths where the edge e is
exclusive and we proceed to merge this pair. Let the selected
pair be Pi and Pj . We can either reroute Pi

f ,l through P j
f ,l or we

can reroute P j
f ,l through Pi

f ,l . If one of the reroutings decreases
the weight of the path system, it is chosen and the path system
is updated accordingly. Otherwise, we make both paths go
through whichever of Pi

f ,l or P j
f ,l maximizes token isolation.

If rerouting through either of those subpaths isolates the same
number of tokens, we reroute both paths through the subpath
that does not contain the edge e we selected initially.

By definition of a merged path system, termination implies
correctness. Therefore, it remains to show that the algorithm
terminates. Merging two paths has one of three consequences:
(i) the decrease of the overall weight of the path system, a
possible increase in the number of isolated tokens in the path
system (because path merging may decrease the number of
distinct edges used in the path system), and an indeterminate
effect on the exclusivity frequencies of edges in unmerged
path pairs; (ii) the increase of the overall number of isolated
tokens in the path system and an indeterminate effect on the

exclusivity frequencies of edges in unmerged path pairs (no
increase in the overall weight of the path system); or (iii)
the decrease of the exclusivity frequency of the edge that
is exclusive in the smallest number of unmerged path pairs
and an indeterminate effect on the exclusivity frequencies of
edges in other unmerged path pairs (no increase in the overall
weight of the path system or decrease in the number of iso-
lated tokens). The first two consequences occur polynomially
many times; we can isolate at most O(n) tokens, and since we
assume that

∑
e∈E (G) w(e) = O(nc), the first consequence can

occur at most O(nc+1) times [since
∑

P∈P w(P) = O(nc+1)].
We need to take into account the interaction between the
first two consequences and the third consequence. The third
consequence can occur O(nm) times in a row, as each edge
can belong to all paths, of which we have O(n). Interleaving
the third consequence with the first two consequences, both of
which have an indeterminate effect on exclusivity frequencies,
leads to a total of O(nm(n + nc+1)) = O(nc+2m) path pair
merges. Each path pair merge is executed in time O(m) and
is preceded by a lookup for the edge that is exclusive in the
smallest number of intersecting path pairs. This lookup is
done in time O(n2m), as it requires checking every path pair
and iterating over the edges of the paths in each path pair.
The overall running time of the path merging procedure is
therefore O(nc+2m(m + n2m)) = O(nc+4m2).

We still have to show that, once an edge is no longer exclu-
sive in any unmerged path pair, its exclusivity frequency can
no longer increase as a result of the third consequence. If some
merge increases the exclusivity frequency of the edge in ques-
tion, since merging involves reusing edges that are already
part of the path system, this implies that the edge already
occurred exclusively in some unmerged path pair involving
the path that the merging rerouted through. This contradicts
the fact that the edge is no longer exclusive in any unmerged
path pair, as needed. �

2. Step 2: Unwrap path system

The second step of the ARO subroutine is to compute an
unwrapped path system (UPS). An unwrapped path system is
an MPS such that no path within it contains another path. A
path Pi is said to contain a path Pj if the intersection between
Pi and Pj is Pj .

Lemma 8 (unwrapped path system). Given an n-vertex
(positive) edge-weighted graph G with |E (G)| = m, two sets
S, T ⊆ V (G), and a T -valid merged path system P , we can
compute, in time O(n2m), a valid unwrapped path system P ′
such that w(P ′) � w(P). Moreover, the number of distinct
edges used in P ′ is at most the number of distinct edges used
in P .

Proof. We process the paths in an arbitrary order, and for
every path P, we unwrap all the paths that it wraps. To do so,
we go through the path system and we detect all paths whose
source vertex and target vertex are both contained within the
selected path P. Let l be the number of such paths. We then
separately sort the l source vertices and the l target vertices by
their order of appearance within the selected path P. The final
step assigns source i to target i in the ordering and it does so
for all i in N+([1, l]); the path with source i as source vertex
is then rerouted to target vertex i via the selected path P.

023108-15

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

For a selected path P, this process destroys all wrappings
within it. Assume it does not, that is, assume the assign-
ment of sources to targets in order of appearance in P fails
to unwrap a wrapping. Without loss of generality, we will
suppose that Pg wraps Ph and we will use g and h to desig-
nate the indices of the source and target vertices of Pg and
Ph, respectively, after sorting within P, rather than them just
being arbitrary indices for the tangled paths. The concerned
vertices vsg , vsh , vtg , and vth must have appeared in one of
four orders. Two of those four orders will be discussed be-
low, as the analysis for the other two is symmetrical. If the
sequence of vertices in the initial selected path P takes on the
form . . . , vsg, . . . , vsh , . . . , vth , . . . , vtg, . . ., we have a contra-
diction; since vsg appears before vsh in P, g < h. Likewise,
since vth appears before vtg in P, h < g. The same is true if we
have the form . . . , vsg, . . . , vth , . . . , vsh , . . . , vtg, The last
two forms, which are identical to the two forms we presented
but with the positions of vsg and vtg switched, yield the same
contradiction.

We still have to show that path unwrapping does not un-
merge a path system and that there are no wrappings left when
the algorithm terminates. We start by showing that applying
path unwrapping to a merged path system does not undo
merging. It is sufficient to show that unwrapping paths within
an arbitrary path in a merged path system does not give rise
to a pair of paths that have more than one intersection. When
unwrapping paths within a path, some paths are shortened and
some paths are extended. Shortening a path does not create an
additional intersection between it and any other path, so we
only have to worry about the paths that get extended as a result
of the unwrapping. If the extension of some path Px makes
it intersect some other path Py more than once, the selected
arbitrary path Pz which initially wrapped the now-extended
path P′

x intersects Py more than once, because P′
x is a subpath

of Pz, which contradicts the assumption that we started with a
merged path system.

Finally, we show that no unwrapped path remains after path
unwrapping terminates. Assume that path Pi remains wrapped
in path Pj after termination. We know that, in its execution,
the algorithm should have processed Pj and all the paths that
contain it. We proved that unwrapping paths within any of
the paths that contain Pj (including Pj itself) would eliminate
the wrapping of Pi within Pj . Since the wrapping persisted,
it has to be the case that it was caused by the unwrapping
of paths within another path that does not contain Pj . This
is not possible, as the only paths that modify Pi and Pj via
unwrapping are paths that contain them.

The algorithm unwraps paths within every path; unwrap-
ping paths within a single path can be executed in time O(nm).
Finding the wrapped paths can be accomplished in time O(m),
whereas reconstructing the wrapped paths is done in time
O(nm), which is equal to the sum of their lengths, and since
there are O(n) paths in total, the running time of the path
unwrapping procedure is O(n2m). �

3. Step 3: Detect and break cycles

The third step of the ARO algorithm detects and breaks
cycles in a path system to compute a cycle-free path system
(CPS), which is a UPS such that the graph it induces is a

forest. We use G[P] to denote the graph induced by (the
vertices of the paths of) a path system P , which we also
call the path system graph. A cycle is represented by either a
sequence of vertices 〈v1, v2, . . . , vk〉 or a sequence of edges
〈e1, e2, . . . , ek〉. Given a path system P = {P1, . . . , Pk} that
induces a cycle C characterized by its edge set E , we define an
edge coloring of the cycle as a function cC : E �→ {1, . . . , k}
(the subscript indicating the cycle is dropped if the cycle we
are referring to is clear from the context), where color i is
associated with Pi. An edge coloring of the path system P
(or, more broadly, a set of paths) is defined analogously. If
c(ei) = j, we say that the edge ei is j-colored and ei is j
colorable if and only if it is on the path Pj . We say that a
path is j colorable if all its edges are j colorable. Note that
even though edges can appear in more than one path (which
implies that an edge can be colored using one of multiple
colors), we are interested in a special type of edge colorings,
the purpose of which will become clearer later. A cycle is
contiguously colored if any two edges e1 and e2 that have
the same color j are separated by a sequence of edges along
the cycle that are j-colored. A cycle that is not contiguously
colored is noncontiguously colored. A cycle is contiguously
colorable if there exists a coloring of its edges that makes it
contiguously colored. A color in a cycle is noncontiguous if
there exist two nonconsecutive edges e and e′ in the cycle such
that c(e) = c(e′) and neither of the two subpaths that connect
them along the cycle is c(e) colored.

Theorem 2. Given an n-vertex (positive) edge-weighted
graph G with |E (G)| = m and

∑
e∈E (G) w(e) = O(nc) for

some positive integer c, two sets S, T ⊆ V (G), and a T -
valid unwrapped path system P , we can compute, in time
O(nc+6m), a valid cycle-free path system P ′ such that
w(P ′) � w(P). Moreover, the number of distinct edges used
in P ′ is at most the number of distinct edges used in P .

The proof of the theorem is quite involved, so we break
it into several parts. We first prove that whenever the path
system graph G[P] contains a cycle passing through some
arbitrary edge e, G[P] must contain a special cycle (defined
later) passing through e. We then describe a procedure to find
a special cycle passing through e. We further describe our
approach to break the special cycle and finally prove termi-
nation of the cycle-breaking procedure (Lemma 13). While
our results are applicable for arbitrary edges, we apply the
algorithms we derive from the lemmas to a specific edge
e�; the careful selection of the edge e� is what guarantees
termination.

Given a path system, we let the frequency of an edge denote
the number of paths containing it. Cycle detection consists
of finding whether there is a cycle in G[P]. Finding a cycle
can be achieved using any graph traversal algorithm; either
a breath-first search (BFS) or a depth-first search (DFS) is
sufficient. We wish to obtain additional information; if a cycle
is found, we look for the edge e�, which is the edge with the
smallest frequency among all edges contained in cycles.

To find the edge of interest, i.e., e�, we sort the edges with
nonzero frequency in nondecreasing order of frequency and
then in this ordering we look for the earliest edge that is part
of a cycle. For cycle detection, let u and w be the end points
of an arbitrary edge e. Then e is part of a cycle in G[P] if and
only if w is reachable from u in G[P] − e, where G[P] − e

023108-16

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

denotes the graph obtained from G[P] after deleting the edge
e. After the edge e� is found, we look for paths that induce
a special cycle, which is a cycle that contains e� and has
particular properties.

Before describing the procedure that allows us to identify
the desired set of paths, we provide a few additional relevant
definitions. We define an e path as a path that contains the edge
e. The results from Lemmas 9–11 show that if there is a cycle
in the path system graph that passes through an arbitrary edge
e, then there must exist a special cycle that passes through
edge e. A special cycle that passes through edge e is a cycle
that (i) is contiguously colorable and (ii) is induced by a set of
paths that (a) is inclusion-minimal, (b) contains at most two e
paths, and (c) induces a single cycle, i.e., it induces no cycle
other than the special cycle itself.

a. Proof of existence of special cycles

Lemma 9. If there is a cycle C in G[P] that passes through
an arbitrary edge e, then there is a contiguously colorable
cycle C′ in G[P ′], P ′ ⊆ P , that also passes through edge e.

Proof. Consider any cycle C that passes through an arbi-
trary edge e. If the cycle is contiguously colored, there is
nothing to prove. Otherwise, we describe how the existence
of this cycle implies the existence of a contiguously colorable
cycle that includes e. We call a j-colored segment a maximal
contiguous sequence of j-colored edges in the edge repre-
sentation of the cycle. We consider an edge coloring of C,
cC , that has a minimal number of segments in the cycle; this
guarantees that the edges that separate j-colored segments on
the cycle and that are not j-colored themselves are not all
j colorable because otherwise we can reduce the number of
segments in the cycle.

We first cover notation we will be recurrently using in
this proof. For any two vertices u, v ∈ V (Pk), where Pk is an
arbitrary path, we denote the subpath of Pk going from u to v

by Pk,u→v . For any cycle Ck , any edge η ∈ E (Ck), and any two
vertices u, v ∈ V (Ck), we use PCk ,u→η→v (PCk ,u→v) to refer to
the subpath between u and v along cycle Ck that goes through
(does not go through) η.

We describe a procedure that reduces the number of seg-
ments in the cycle. Let cC (e) be the color of the edge e =
{u,w}. We first handle making all other colors in C contigu-
ous, which is a process we call peripheral color merging.
We then handle making the color of e in the resulting cycle
contiguous, which we refer to as edge color merging.

Peripheral color merge. Peripheral color merging merges
multiple j-colored segments into a single j-colored seg-
ment, where j �= cC (e). Consider the vertex representation
v1, v2, . . . , vk of the cycle (where v1 = u and vk = w are the
end points of e). Let v jp and v jq be the earliest and the latest
vertices in the vertex representation of the cycle belonging to
path Pj (v jp and v jq may be v1 and vk , respectively). Clearly,
Pj,v jp→v jq

is j colorable. We consider two cases.
(i) Pj,v jp →v jq

does not contain e. Here Pj,v jp→v jq
can replace

PC,v jp→v jq
in the vertex sequence of the cycle and we set the

color of all the edges in Pj,v jp →v jq
to j. It is easy to see that

Pj,v jp→v jq
and PC,v jp→e→v jq

are internally vertex disjoint, so the
new vertex sequence is that of a cycle containing the edge e.
The original cycle was therefore transformed into a new cycle

C′ where color j is contiguous, as ensured by the definition of
v jp and v jq . This implies that the cycle transformation reduced
the number of segments by at least 1, since there were at least
two j-colored segments in C.

(ii) Pj,v jp →v jq
contains e. We look at the vertices in V (C) ∩

V (Pj) and we partition them into two sets: the set of vertices
Vjb that are before e in the vertex representation of Pj and the
set of vertices Vja that are after e in the vertex representation
of Pj . It is evident that Vjb ∩ Vja = ∅ and that |Vjb | �= 0 and
|Vja | �= 0, because both v jp and v jq belong to one of the two
sets and they belong to different sets. Next we search for
two vertices v jb and v ja in the vertex representation of the
cycle such that v jb ∈ Vjb v ja ∈ Vja and none of the internal
vertices of PC,v jb →v ja

are in Vja or Vjb . There exist two paths
between v jb and v ja , Pj,v jb →v ja

and PC,v jb →v ja
, and those two

paths are internally vertex disjoint because PC,v jb →v ja
sharing a

vertex with Pj,v jb →v ja
that is not v jb or v ja would contradict our

choice of v jb and v ja . Those two paths will make up our trans-
formed cycle C′. The former of the two paths will be j-colored
(meaning that we change the color of e as well), whereas the
coloring of the latter of the two paths is unchanged. Color j is
contiguous in C′, given how we defined v jb and v ja , meaning
that we have reduced the number of segments by at least 1.
Notice that cC′ (e) �= cC (e).

We exhaustively apply the procedure above, which clearly
terminates, since the number of segments is reduced after
every step, and we end up with a cycle C′′ with edge coloring
cC′′ , where the only noncontiguous color, if any, is cC′′ (e), the
color of the edge e [note that cC′′ (e) may or may not be equal
to cC (e)]. In what follows, we use χ (Pχ) to refer to cC′′ (e) [the
path associated with cC′′ (e)]. We now describe how χ can be
made contiguous.

Edge color merge. Edge color merging merges multiple
χ -colored segments in C′′ into a single χ-colored segment. In
the vertex representation of C′′, we are interested in segments
that are χ colored. If there is only one χ -colored segment,
the cycle is contiguously colored and we are done. Otherwise,
we have two or more χ -colored segments. We can assume
that the χ -colored segments are maximal, that is, none of the
χ -colored segments can be extended by recoloring edges in
C′′ to include more edges. We let se be the segment containing
edge e and we let V (se) denote the vertices of se. We define
Vχb

, Vχa
, vχb

and vχa
analogously to Vjb , Vja , v jb , and v ja ,

respectively. Since there are two or more χ-colored segments
in C′′, it must be the case that at least one of Vχb

\ V (se) or
Vχa

\ V (se) is nonempty: otherwise (Vχb
∪ Vχa

) \ V (se) = ∅,
i.e., V (Pχ) ∩ V (C) = V (se), which would imply that we have
a single χ -colored segment in the cycle. The remaining two
cases are considered below.

(i) Vχb
\ V (se) and Vχa

\ V (se) are both nonempty. We ap-
ply the algorithm described in the second case of peripheral
color merging in order to merge color χ (i.e., Pχ plays the
role of Pj in that case). What makes applying said algorithm
possible here is the fact that both Vχb

\ V (se) and Vχa
\ V (se)

are nonempty, which implies that vχb
and vχa

both exist, and
the construction of the cycle follows from that. The resulting
cycle C′′′ is a cycle where color χ is contiguous, so we are
done.

(ii) Exactly one of Vχb
\ V (se) or Vχa

\ V (se) is empty.
We look at v′

χ p
and v′

χq
, which are the earliest and the latest

023108-17

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

FIG. 8. Merging the edge color for the case where exactly one of
Vχb

\ V (se) and Vχa
\ V (se) is empty. (a) and (b) Starting from cycle

C′′ where the edge color (red) is noncontiguous, we construct a cycle
C′′′ (blue line) in which the color of edge e (red) is contiguous via
path Pχ (red solid line on the cycle to highlight the segments; red
dashed line indicates edges in the path that are not shared with the
cycle).

vertex, respectively, in the vertex representation of the cycle
belonging to path Pχ but not segment se. We either have
v′

χ p
, v′

χq
∈ Vχb

\ V (se) or v′
χ p

, v′
χq

∈ Vχa
\ V (se). In the vertex

representation of Pχ , either u comes before w or w comes
before u. We have four different subcases we split into two
different groups.

(a) v′
χ p

, v′
χq

∈ Vχb
\ V (se) and w comes before u in the

vertex representation of Pχ or v′
χ p

, v′
χq

∈ Vχa
\ V (se) and w

comes after u in the vertex representation of Pχ [Fig. 8(a)].
There exist two vertex-disjoint paths between w and v′

χ p
:

Pχ,w→v′
χ p

and the path w, u, . . . , v′
χ p

along the cycle going
through e. Those two paths will make up our transformed
cycle C′′′. The former of the two paths will be χ colored,
whereas the coloring of the latter of the two paths is un-
changed. Color χ is contiguous in C′′′, and no color was made
noncontiguous, as needed.

(b) v′
χ p

, v′
χq

∈ Vχb
\ V (se) and u comes before w in the

vertex representation of Pχ or v′
χ p

, v′
χq

∈ Vχa
\ V (se) and u

comes after w in the vertex representation of Pχ [Fig. 8(b)].
There exist two vertex-disjoint paths between u and v′

χq
:

Pχ,u→v′
χq

and the path u,w, . . . , v′
χq

along the cycle (in reverse
order) going through e. Those two paths will make up our
transformed cycle C′′′. The former of the two paths will be χ

colored, whereas the coloring of the latter of the two paths is
unchanged. Color χ is contiguous in C′′′, and no color was
made noncontiguous, as needed.

This completes the proof. �
Lemma 10. Let C be a cycle in G[P] that passes through an

arbitrary edge e and let {P1, . . . , Pk} be an inclusion-minimal
set of paths from P that contains all edges of C. If there exist
more than two e paths in {P1, . . . , Pk} then there exists a con-
tiguously colored cycle C′ in G[P] that passes through edge
e such that an inclusion-minimal set of paths {P′

1, . . . , P′
k′ } ⊂

{P1, . . . , Pk} ⊆ P that contains all edges of C′ has at most two
e paths (and k′ < k).

Proof. We can assume that the edges of the same color are
contiguous along C, by Lemma 9. We show how to transform
C into a cycle that uses two or fewer e paths.

If C already has this property, there is nothing to prove.
Otherwise, C uses three or more e paths and we describe

how C can be transformed. In C, we are dealing with a total
of � different e paths, having colors 1 to �, with color 1
being the color of the edge e. We now describe a process
that yields a cycle with the desired properties. We iterate
through the � possible colors for the edge e in order, starting
from color 2, and for every color we change the color of e
accordingly and we merge the edge e with the other segment
of the same color. The first color change may cause up to two
noncontiguities: one noncontiguity in color 1 if e is not at the
extremity of the 1-colored segment and one noncontiguity in
color 2 if the 2-colored segment does not share an end point
of e with the 1-colored segment. If the color change makes
color 2 noncontiguous, we fix the noncontiguity in color 2
using the construction from case 2 of the edge color merge
subroutine from Lemma 9. This construction can be applied
here, despite the fact that its precondition may not be satisfied,
because the vertices in the 2-colored segment that does not
contain e are all in either V2b or V2a and the other end of
the path whose vertices are in the cycle but are not part of
a 2-colored segment can be safely ignored. This construction
restores color 2’s contiguity and eliminates the noncontiguity
in color 1 (if any) by either discarding or recoloring one of the
two 1-colored segments. Note that this process may eliminate
some colors in the cycle; if an e-path color is eliminated,
it is skipped in the process of iterating through the colors
for the edge e. Next we color the edge e using color 3.
Note that this does not cause a noncontiguity in color 2 be-
cause the edge e is at the extremity of color 2’s segment, owing
to the construction from the edge color merging subroutine;
we merge color 3, we color the edge e using color 4, and so
on. Any coloring and merging can eliminate a color, but can
never cause a noncontiguity in any of the other colors. We
then loop back to color 1. At this point, there are no color
noncontiguities in the cycle and no color change applied on
the edge e can cause color noncontiguities. We claim that the
cycle resulting from this process conforms to the property we
are looking for, that is, it uses two or fewer e paths.

Suppose it does not, that is, suppose that it uses three or
more e paths. If any of those e paths is not incident to the
edge e, the color of the edge e can be changed to cause a
noncontiguity, which contradicts what we said earlier about
changes in the color of e involving an e-path color not being
able to cause noncontiguities. Otherwise, the only case where
we have three or more contiguous segments incident to e is
when e and the two edges that are adjacent to it along the
cycle have three different colors. However, in that case, e can
be colored using one of the other two colors and the path
whose color was previously used to color e can be discarded,
contradicting minimality. �

Lemma 11. If there exists a cycle C in G[P] containing
edge e, then there exists an inclusion-minimal set of paths
P� = {P1, . . . , Pk} ⊆ P , k � 3, that induces a unique cycle C�

such that C� contains e.
Proof. Assume the set of paths {P1, . . . , Pk} is in-

clusion minimal and induces multiple cycles. Let C =
{C1,C2, . . . ,Cq} denote the set of all cycles in G[P�]. Let
Ce ⊆ C denote the set of cycles containing e and let Cē =
C \ Ce denote all remaining cycles. Two colors i and j are said
to be adjacent on some cycle if some coloring of the cycle
includes two (consecutive) segments colored i and j that share

023108-18

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

at least one vertex. Clearly, if two colors are adjacent, their
corresponding paths intersect (either on a single vertex or on
multiple consecutive vertices).

By Lemma 10 we know that P� contains at most two e
paths, as otherwise we can reduce the number of paths and
maintain a cycle containing e, contradicting the minimality of
P�. Moreover, we know, by Lemma 9, that at least one cycle
in Ce can be contiguously colored. We denote this cycle by C′.
Every path in {P1, . . . Pk} contains at least one edge in every
cycle of Ce that does not appear in any other path; otherwise a
path can be omitted from P� and the remaining paths will still
induce a cycle containing e, contradicting the minimality of
P�. We call such edges private edges, i.e., edges belonging
to cycles in C and to a single path in P�. Without loss of
generality, we let 〈1, 2, . . . , k〉 denote the color ordering of the
segments of C′ (viewed in the clockwise order and assuming
the segment containing e is colored 1).

Now assume that P� contains three or more e′ paths for
some e′ appearing in any cycle of C. Then, by Lemma 10 we
can find a proper subset of P�, say, P ′, such that there exists a
contiguously colored cycle C′′ in G[P ′]; P ′ contains all edges
of C′′ and has at most two e′ paths and hence at least one path
less than P�, i.e., |P ′| < |P�|. This implies that there exist
two paths Pi and Pj , where i �= j and |i − j| � 2, that are in-
tersecting in C′′ (have consecutive segments in C′′) but whose
segments are not consecutive in C′. First, assume that neither
Pi = P1 nor Pj = P1. Then we can construct a cycle containing
e and using at most k − 1 colors (paths), a contradiction. For
the remaining case, we assume, without loss of generality, that
Pj = P1. Depending on whether the intersection of Pi and Pj

includes e, is to the left of e (in the vertex ordering of P1), or
is to the right of e, we can still construct a cycle containing
e and using at most k − 1 paths, again contracting our choice
of P�. Putting it all together, we can now assume that every
edge of P� belonging to a cycle of C can appear in at most two
paths. Using a similar argument, we also conclude that every
cycle in C must contain at least one segment from each path
in {P1, . . . , Pk} (along with a private edge); otherwise we can
again construct a cycle containing e and using fewer paths.

It remains to show that C = {C�}, i.e., G[P�] contains a
unique cycle C�. Assume otherwise and let C′ denote the
contiguously colored cycle containing e. Let C′′ be any other
cycle. We have shown that C′′ must contain at least one
segment of each color and no edge of the path system belongs
to more than two paths. There are two cases to consider.
If C′′ can be contiguously colored such that the ordering
matches that of C′, i.e., 〈1, 2, . . . , k〉 with edge e colored
1, then we claim that C′ = C′′. To see why, consider two
paths Pi and Pi+1 whose colors are consecutive in the color
ordering. Both C′ and C′′ have to go through at least one
private edge in Pi and one private edge in Pi+1, and since the
colors of Pi and Pi+! are contiguous in the color ordering,
the cycles must go through the private edges in question via
the unique intersection of the two consecutive path segments
(using either a single vertex of the intersection or all edges
of the intersection). Since the pair of paths whose colors are
consecutive in the color ordering was picked arbitrarily, it
follows that both C′ and C′′ contain the edges (or vertices) in
all the path intersections. A similar argument can be used to
show that the inclusion of the edges (or vertices) in the path

intersections in both cycles implies the inclusion of the edges
in the subpaths between the path intersections in both C′ and
C′′. Since the two cycles have the same edge set, it follows
that they are in fact the same cycle, as needed.

Finally, assume that C′′ cannot be contiguously colored so
that its color ordering matches that of C′. If for some edge
coloring of C′′ we get a color i that is adjacent to at least three
distinct colors in C′ and C′′, then we denote those colors by
j, l , and p. One of the colors j, l , or p will not be adjacent to
color i in the color ordering of C. Without loss of generality,
assume that color j is not adjacent to color i in the color
ordering of C′. Starting from the color ordering of C′, we
can construct a sequence of segments that omits the colors
between i and j in the color ordering of C′ because paths Pi

and Pj intersect (given that colors i and j are adjacent). The
constructed sequence of colors corresponds to a set of paths
with cardinality strictly less than k that induces a cycle (and
contains e), thus contradicting the fact that the set of paths
{P1, . . . , Pk} was assumed to be inclusion-minimal with regard
to C�. Moreover, we can assume a coloring of C′′ that mini-
mizes the number of segments, which implies that the color
ordering of C′′ cannot contain a contiguous sequence of the
form i, i + 1, i, since this implies that Pi and Pi+1 intersect at
least twice, another contradiction. It follows that the coloring
of C′′ must be contiguous and ordered as in C′. As noted in the
previous case, this implies that C′ = C′′ and we are done. �

The combination of the three previous lemmas allows us to
reduce the problem of finding cycles to the problem of finding
special cycles. The reason why special cycles are of interest to
us is because they make the cycle-breaking algorithm work, as
the cycle-breaking procedure is specifically designed to break
special cycles.

b. Procedure to find a special cycle

We now describe the procedure for finding a special cycle
containing the edge e� and obtain the set of paths that induce
this special cycle. Recall that e� is the edge with the smallest
frequency among all edges that are contained in cycles.

Let z be the number of e� paths in the path system. For
each e� path, we construct 2(z − 1) + 1 different graphs that
we call path intersection graphs, for a total of z[2(z − 1) + 1]
path intersection graphs. Every path intersection graph is built
out of a selection of one e� path as a base path and at most one
other e� path as a support path, where a base path is an e� path
whose color we use for e� and a support path is an e� path
that is needed as part of the special cycle we are looking for.
In every path intersection graph, we add a vertex vPi for every
path Pi that is not an e� path and we add an edge between two
such vertices if the corresponding paths intersect. Moreover,
in every path intersection graph with a path Pb as its base
path, we add two vertices lPb and rPb . The vertex lPb (rPb) is
associated with all the vertices in the base path that occur to
the left (right) of the edge e� in the vertex sequence of the path
(including one of the end points of the edge e� in both cases).
If some path Pj that is not an e� path intersects Pb, we add
an edge from vPj to either lPb or rPb , depending on whether it
intersects Pb in a subpath associated with lPb or rPb (clearly, a
path cannot intersect both subpaths without going through the
edge e� because the path system is merged). Support paths

023108-19

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

may be treated as either left-intersecting paths (i.e., the vertex
corresponding to the support path is connected to lPb) or
right-intersecting paths (i.e., the vertex corresponding to the
support path is connected to rPb), or neither, and that explains
why we construct 2(z − 1) + 1 different path intersection
graphs (z − 1 path intersection graphs for the z − 1 different
choices of left-intersecting paths, z − 1 path intersection
graphs for the z − 1 different choices of right-intersecting
paths, and one path intersection graph with no support path)
for every base path.

We claim that the problem of obtaining a set of paths that
induces a special cycle containing edge e� reduces to running
(lPb, rPb)-reachability queries on the constructed z[2(z − 1) +
1] path intersection graphs. More specifically, we use a BFS
to check whether rPb is reachable from lPb , and if we find any
yes instance, we reconstruct the set of paths by using the BFS
tree of the instance with the shortest path between rPb and lPb ;
this set of paths induces a special cycle.

Lemma 12. Paths P1, P2, . . . , Pk induce a special cycle con-
taining edge e� [e� ∈ E (P1)] if and only if rP1 is reachable
from lP1 through vertices vP2 , vP3 , . . . , vPk in one of the gen-
erated reachability instances.

Proof. We handle the forward direction first. If we have a
special cycle, we know that it is contiguously colorable, that
there exists a set of paths that induce it and induce no other
cycles, and that it uses at most two e� paths. We are able
to extract a minimal sequence of paths P1, P2, . . . , Pk such
that the only path intersections that exist within the sequence
of paths are between two contiguous paths or the first and
the last path in the sequence (if those are not the only path
intersections, we end up with more than one induced cycle).
There are two cases we need to handle.

Case 1. Here P1 is the only e� path in the special cycle; there
is a path from vP2 to vPk in all of the path intersection graphs
that have P1 as the base path, since Pi intersects Pi+1 for all
i ∈ N+([2, k − 1]). The path intersection graphs of interest to
us are the ones with no support paths. Paths P2 and Pk each
intersect one side of P1; otherwise e� is not contained in the
special cycle. Therefore, there exists a path intersection graph
that has either edges from vP2 to lP1 and from vPk to rP1 or
edges from vP2 to rP1 and from vPk to lP1 ; rP1 is reachable from
lP1 either way.

Case 2. We are dealing with two e� paths in the special
cycle, meaning that P1 and exactly one of P2 or Pk are e�

paths (note that the second e� path has to be one of those
two paths; otherwise we contradict the inclusion-minimality
property of the set of paths {P1, P2, . . . , Pk}). Here P1 acts
as a base path and exactly one of P2 or Pk acts as a support
path. We therefore consider the two corresponding (lP1, rP1)-
reachability instances, and using an argument similar to the
one we employed for the first case, at least one of those two
reachability instances will be a yes instance.

We now handle the backward direction. Assume rP1 is
reachable from lP1 and let lP1 , vP2 , vP3 , . . . , vPk , rP1 be the cor-
responding shortest path that we obtained from the BFS tree.
We can easily verify that the existence of such a path implies
the existence of a subset of paths that induce cycles, this subset
of paths being P1, P2, . . . , Pk .

We still have to show that P1, P2, . . . , Pk induce a special
cycle. The easiest criterion to verify is that no more than

FIG. 9. Leveraging a source-target corner to reduce the number
of paths that induce the special cycle. (a) Example of a sequence of
three paths that induce a special cycle that contains the edge e� (thick
blue line). (b) Updated sequence of paths after swapping the target
vertices of P2 and P3, which can then be removed from the sequence
of paths, as it no longer contributes any edge to the special cycle.

two e� paths are involved, as this follows by construction of
the path intersection graphs, since all of them involve either
one base path and no support path or one base path and one
support path.

We now show that the path from lP1 to rP1 implies the
corresponding paths induce a single cycle.

Case 1. A proper subset of the paths induces a cycle; we
pick the smallest such subset. Let

←−
P be the path in said subset

such that v←−
P

is the earliest occurring vertex in the path from

lP1 to rP1 . Within the subset, there must exist two paths
←−
P

that intersects such that the vertices associated with those two
paths occur later than v←−

P
in the path from lP1 to rP1 ; let those

paths be Pj and Pl . Since v←−
P

is the earliest occurring vertex,
the BFS procedure visited it earlier than vPj and vPl . Therefore,
in the BFS tree, vPj and vPl are children of v←−

P
; the path from a

leaf (rP1 specifically) to the root cannot therefore include both
vPj and vPl .

Case 2. The set of paths is inclusion-minimal and in-
duces multiple cycles; we know this is not possible due to
Lemma 11. The color contiguity criterion follows imme-
diately, as we have already proven in Lemma 9 that any
cycle can be turned into a contiguously colored cycle without
adding new paths to the set of paths that induces it. �

c. Procedure to break special cycles

The cycle-breaking procedure takes as input a sequence
of paths (the selected paths) that induce a special cycle C
containing the edge e� and works on breaking C by modifying
the path system. As a consequence of the cycle being special,
the only intersections that exist within the sequence of paths
are between two contiguous paths or the first and the last path
in the sequence of paths.

This procedure aims to reduce the number of paths that
induce C by looking for a source-target corner. A source-target
corner is a tree that is a subgraph of the path system graph and
that is induced by two paths such that updating the paths by
swapping their targets and reconstructing them via the tree
they induce makes it possible to delete one of the two updated
paths without destroying C. Every time a source-target corner
is found, we eliminate it by updating the paths as described
earlier then deleting one of them and we end up with a smaller
set of paths that induces the same cycle. For example, in
Fig. 9(a) three paths induce the special cycle. A source-target
corner exists between P2 and P3, because swapping targets,

023108-20

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

FIG. 10. Breaking a cycle in a path system induced on a reduced
set of paths without source-target corners. (a) Example of a path
system with a special cycle formed by four paths. (b) Even reduced
path system and (c) odd reduced path system obtained after breaking
the cycle. Because both reduced path systems have the same overall
weight and the odd path system does not contain the edge e� (thick
blue line), the odd reduced path system gets picked.

reconstructing the paths, and removing P3 preserves the cycle
[Fig. 9(b)], so P3 is definitively removed from the selected
paths, as it no longer contributes any edge to the special cycle.
This process does not increase the total weight of the path
system, since the same edges are used for the reconstruction.
Note that if the number of remaining selected paths is odd,
then there must exist another source-target corner; otherwise
the number of source vertices will not be equal to the number
of target vertices in the graph that the selected paths induce.

Eventually, we end up with a cycle with no source-target
corners (and an even number of paths); if the cycle is made
up of two paths, we use logic that is similar to the logic we
presented for path merging (in the proof of Lemma 7). We
attempt to reduce total path weight; if this fails, we attempt
to isolate tokens; if this also fails, we reroute through the
subpath that does not contain e�. If we end up with a cycle
formed out of four or more paths (see Fig. 10), we refer to
the remaining paths as a reduced set of paths. Let r be the
cardinality of the reduced set of paths. We can generate two
path systems induced on the reduced set of paths, which we
call reduced path systems, such that they each break the cycle.
Let {P1, P2, . . . , Pr} be the reduced set of paths.

(i) Even reduced path system. Match vsi with vti if i is even
and vsi with vt[(i+1)modr]+1 if i is odd, 1 � i � r. In the latter case,
reconstruct path Pi on the graph induced by the reduced set of
paths without using its private edges.

(ii) Odd reduced path system. Match vsi with vti if i is odd
and vsi with vt[(i+1)modr]+1 if i is even, 1 � i � r. In the latter case,
reconstruct path Pi on the graph induced by the reduced set of
paths without using its private edges.

We remark that there is a single way to reconstruct the
paths within each of the two path systems, as we are forbid-
ding the inclusion of private edges within them, and if there
were multiple reconstructions that would work, this would
imply that the reduced set of paths induces more than one
cycle. The fact that both graphs induced by the reduced path
systems are cycle-free follows from the fact that the reduced
set of paths induces a single cycle and from the existence
of private edges for every path. Those private edges are no
longer part of any path in each of the reduced path systems and
the number of distinct edges used did not increase; therefore
the cycle has been broken. We would now like to update the
reduced set of paths using one of the two reduced path systems
we constructed. Observe that the total weight of one of the two

generated reduced path systems is less than or equal to that of
the path system involving the selected paths. The observation
follows from the fact that the total weight of the odd reduced
path system and that of the even reduced path system add up
to twice the total weight of the reduced set of paths. If the
total weights of the two reduced path systems are different, we
pick the reduced path system with the smallest total weight.
Otherwise, we pick the reduced path system that does not
include the edge e� (Fig. 10). After the selection is made, we
update the paths in the path system accordingly.

It may be the case that the cycle-breaking procedure gives
rise to pairs of paths that are unmerged or paths that are
wrapped; those are two possible consequences of the elimi-
nation of source-target corners. Therefore, every time a cycle
is broken, we run the path merging and the path unwrapping
procedures to reinstate the invariant (namely, that the path sys-
tem is a UPS), followed by repopulating the edge frequencies
in the updated path system. The path system being unwrapped
is what ensures the correctness of our work.

d. Proof of termination of the cycle-breaking procedure

Finally, we show that the cycle-breaking procedure termi-
nates. Once the cycle-breaking procedure terminates, the path
system graph is a forest, which admits an ordering of moves
(as we show in the next section).

Lemma 13. Given an n-vertex (positive) edge-weighted
graph G with |E (G)| = m and

∑
e∈E (G) w(e) = O(nc) for

some positive integer c, two sets S, T ⊆ V (G), and a T -valid
unwrapped path system P , the cycle-breaking procedure ter-
minates in time O(nc+6m).

Proof. The cycle-breaking procedure was designed in a
way that ensures it terminates in polynomial time. If we lim-
ited it to arbitrarily detecting and breaking cycles, it would
have been harder to prove its termination, let alone that it
terminates in polynomial time. Breaking a single cycle [which
takes time O(n4), with the proof to follow] has one of three
consequences: (i) the decrease of the overall weight of the path
system, a possible increase in the number of isolated tokens
in the path system, and an indeterminate effect on the edge
frequencies; (ii) the increase of the overall number of isolated
tokens in the path system, with an indeterminate effect on
edge frequencies (no increase in the overall weight of the path
system); or (iii) the decrease of the frequency of the least
frequent edge that is part of a cycle, with an indeterminate
effect on the frequency of the other edges (no increase in the
overall weight of the path system or decrease in the number
of isolated tokens).

The consequences and their hierarchy are given by con-
struction of the algorithm. The first consequence can occur
O(nc+1) times; it may also increase the number of isolated
tokens (but not decrease it, as cycle breaking reroutes paths
through edges that are already in the path system). Irrespec-
tive of the first consequence, the second consequence can
occur O(n) times, because there are O(n) tokens, and the
third consequence can occur O(nm) times in a row, since the
frequency of a single edge is O(n), and edges that are taken
out of cycles are not brought back into cycles because of
how cycle-breaking is designed. One can observe that changes
in path system weight or changes in the number of isolated

023108-21

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

tokens affect edge frequencies, in the sense that there can be
O(nm) occurrences of the third consequence in a row after
each occurrence of either of the first two consequences. Anal-
ogously to the reasoning we employed for path merging, this
means that the cycle-breaking procedure involves breaking
O((nc+1 + n)nm) = O(nc+2m) cycles.

It remains to show that breaking a single cycle can be done
in time O(n4). In the worst case, there are O(n) paths that
induce the cycle in question. In this case, constructing the
reachability instances is accomplished in time O(n4), as we
end up with O(n2) instances overall, each of which consists
of O(n) vertices, such that constructing the edges for each
instance takes time O(n2) [provided we precompute which
pairs of paths intersect, which is executed once and in time
O(n2m) prior to the construction of the reachability instances].
Every single BFS call on each reachability instance takes time
O(n2), which is the number of edges in a single path inter-
section graph, so all BFS calls combined take time O(n4). We
now account for the running time of source-target corner elim-
inations. In the worst case, we have O(n) source-target corner
eliminations, each of which is executed in time O(n + m) (via
a BFS). Finally, it should be easy to see that the base cases run
in time O(nm), as they involve either merging a pair of paths
[O(m)] or constructing two path systems and computing their
total weight [O(nm)]. Given all the above, it follows that the
cycle-breaking procedure terminates in time O(nc+6m). �

4. Step 4: Order path system

The fourth step of the ARO algorithm is to compute an
ordered path system whose moves can be executed with the
guarantee that each token moves at most once.

Theorem 3 (ordered path system). Given an n-vertex
(positive) edge-weighted graph G with |E (G)| = m and∑

e∈E (G) w(e) = O(nc) for some positive integer c, two sets
S, T ⊆ V (G), and a T -valid path system P , we can compute,
in time O(nc+6m + n3), a valid ordered path system P ′ such
that w(P ′) � w(P). Moreover, the number of distinct edges
used in P ′ is at most the number of distinct edges used in P .

Proof. Given P , we apply Theorem 2 to compute a cycle-
free path system P ′′ in time O(nc+6m). Recall that P ′′ is both
merged and unwrapped and G[P ′′] is a forest. Hence, we can
apply the algorithm of [24] on each tree of the forest. It was
shown in [24] that given a tree with n vertices and with the
number of source vertices |S| in the tree being equal to the
number of target vertices |T | in the tree, there is an O(n)-time
algorithm, which we call the exact tree solver, that performs
the optimal (minimum) number of moves to transform S to
T while moving each token at most once. It is easy to see
that the nontrivial trees (i.e., the trees not containing a single
source and target vertex) induced by the path system each
have an equal number of source vertices and target vertices;
if not, there will exist a token in some tree that does not
need to move, which implies that the path system can be
modified in a way that decreases its total weight (or increases
the number of isolated or fixed in place tokens). So we can
assume, without loss of generality, that each tree has an equal
number of source vertices and target vertices. We keep track
of the moves produced by the algorithm for each tree and add
them in order to obtain P ′; the order among the different trees

is irrelevant. The usage of the exact tree solver guarantees that
w(P ′) � w(P) and that the number of distinct edges used
in P ′ is at most the number of distinct edges used in P , as
isolated tokens will not move (in fact, we might even increase
the number of isolated tokens) and the set of edges used in P ′
is a subset of the edges used in P . Moreover, the algorithm
of [24] can be easily adapted to guarantee that the frequency
of each edge, i.e., the number of times it is traversed in the
path system, cannot increase since it is always traversed in
one of its two possible directions. To see why P ′ is ordered,
we can construct a directed graph D where each path P in P ′
corresponds to a node vP in D and we add a directed edge
from node vP to vP′ whenever another path P′ in P ′ depends
on P. We claim that D is a directed acyclic graph. Suppose it
is not. Then the existence of a cycle implies that either some
pair of paths is unmerged, or some pair of paths is wrapped, or
at least one token must move more than once, a contradiction
in all cases. Hence, we can reconstruct the ordering of the
moves by simply computing a topological ordering of D,
which can be done in time O(|V (D)| + |E (D)|) = O(n2) [43].
Note that constructing the graph D takes time O(n3) in the
worst case. �

APPENDIX F: OBSTRUCTION SOLVER SUBROUTINE

The obstruction solver subroutine seeks a sequence of
moves associated with a valid path system. Our implemen-
tation of the obstruction solver subroutine is a variation of the
subroutine devised by Călinescu et al. [24], the core differ-
ence being that our version can handle token surplus (i.e.,
|S| > |T |). Processing every path in the path system in an
arbitrary order, the subroutine attempts to move each token
from its source vertex to its target vertex. If an obstructing
token is present on the path, the subroutine switches the target
of the token that it is attempting to move with the target of the
obstructing token, updates the path system with the previously
computed shortest paths between the newly updated pairs of
source and target vertices, and then attempts to move the
obstructing token. The recursive procedure terminates when
all vertices in T are occupied.

Formally, suppose that the token τi is on the source vertex
vsi of a path Pi ∈ P aiming towards its target vertex vti . If
the move associated with Pi is not obstructed, i.e., there is
no other token on the path between vsi and vti , then τi is
moved to vti . Otherwise, there is some obstructing token that
is closest to vsi , say, τ j , on the path Pi. The obstruction solver
subroutine finds the target vertex vt j associated with token τ j

and then switches the target of τi with that of τ j . The solver
updates the path system by choosing the shortest paths for the
updated pairings of source and target vertices. The shortest
paths are previously computed during the APSP subroutine
and stored in memory, which requires O(n2) space and does
not present any scalability issues. After choosing the shortest
paths, the solver recursively attempts to move the obstructing
token. Because it started with a valid path system, the solver is
guaranteed to return a valid sequence of unobstructed moves
in polynomial time [O(n2) time in the worst case].

The performance of the obstruction solver subroutine de-
pends on the ordering of the paths on which moves are
executed. Indeed, the ordering affects the number of displaced
tokens, as well as the total number of transfer operations.

023108-22

EFFICIENT ALGORITHMS TO SOLVE ATOM … PHYSICAL REVIEW A 108, 023108 (2023)

Figure 7(a), an example on a path system that induces a cycle,
shows an instance in which the execution of the ordering
(P1, P2, P3) displaces every token once for a total of three
moves, which is optimal, whereas the execution of the or-
dering (P2, P3, P1) requires five moves (given that the tokens
are moved sequentially, one after the other), with tokens τ2

and τ3 being displaced twice. Our proposed ordering subrou-
tine (Sec. III B) mitigates this excessive number of control
operations by computing a partial ordering of the paths that
guarantees that no token is displaced more than once.

The ordering of the paths in the execution of the ob-
struction solver subroutine also affects the number of tokens
that are displaced. For example, Fig. 7(b) shows an in-
stance in which three tokens are displaced for one ordering
(P3, P2, P1), whereas two tokens are displaced for another
ordering (P2, P1, P3). Indeed, in the latter ordering, P2 is not
obstructed, so it can be directly executed. Then, because P1

is obstructed by token τ3, the target of τ1 becomes vt3 and
the target of τ3 becomes vt1 = vs3 . The obstruction solver
subroutine first attempts to move τ3 and, because it already
occupies its target, there is nothing to be done. The solver
then attempts to move τ1 to vt3 . If the shortest path between
vs1 and vt3 goes through P2, then, because a move on this path
is obstructed by τ2, the solver first moves τ2 to vt3 and then
τ1 to vt2 ; two tokens have thus been displaced instead of three.
Because token τ3 can be discarded from the path system, token
τ3 can be isolated; the isolation subroutine (Appendix B) seeks
to find tokens that can be isolated and removes them from the
path system to reduce unnecessary displacement operations.

APPENDIX G: BATCHING SUBROUTINE

Because typical assignment-based reconfiguration algo-
rithms do not take into account the number of transfer
operations, the resulting control protocols might perform as
many extraction and implantation operations as displacement
operations, i.e., an EDI cycle for each elementary displace-
ment operation. To reduce the number of transfer operations,
we implement a batching subroutine that seeks to simulta-
neously displace multiple atoms located on the same row or
column of the grid graph within a single EDI cycle. Given
that the output of the ARO algorithm is a sequence of dis-
placements, a batch is a maximal sequence of consecutive
displacements, each of which displaces a distinct atom, such
that the displacements’ sources are adjacent along a row or
column and the displacements’ targets are adjacent along the
same row or column. If the reconfiguration system allows for
simultaneous displacements within the same row or within the
same column, then all atoms in a batch can be displaced at
once. This simple batching routine could be further extended
to achieve greater operational performance. The running time
of the batching subroutine is no more than O(n3).

Although the resulting performance of our baseline algo-
rithm is improved over a typical assignment-based algorithm
that does not rely on the isolation and batching subroutines,
our benchmarking analysis shows that a larger gain in op-
erational performance is achieved by the ARO algorithm,
which further includes a rerouting subroutine and an ordering
subroutine.

[1] E. Tervonen, A. T. Friberg, J. Westerholm, J. Turunen, and
M. R. Taghizadeh, Opt. Lett. 16, 1274 (1991).

[2] D. W. Prather and J. N. Mait, Opt. Lett. 16, 1720 (1991).
[3] J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207,

169 (2002).
[4] W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M.

Birch, Opt. Express 11, 2053 (2003).
[5] S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A.

Browaeys, and P. Grangier, J. Opt. Soc. Am. B 21, 1889 (2004).
[6] W. Lee, H. Kim, and J. Ahn, Opt. Express 24, 9816 (2016).
[7] H. Kim, W. Lee, H.-G. Lee, H. Jo, Y. Song, and J. Ahn,

Nat. Commun. 7, 13317 (2016).
[8] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.

Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner,
and M. D. Lukin, Science 354, 1024 (2016).

[9] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, Science 354, 1021 (2016).

[10] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A.
Browaeys, Nature (London) 561, 79 (2018).

[11] L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky, W. Ketterle,
K.-K. Ni, and J. M. Doyle, Science 365, 1156 (2019).

[12] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, 1994).

[13] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).

[14] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,
2313 (2010).

[15] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).
[16] M. Morgado and S. Whitlock, AVS Quantum Sci. 3, 023501

(2021).
[17] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M.

Troyer, and P. Zoller, Nature (London) 607, 667 (2022).
[18] K.-N. Schymik, V. Lienhard, D. Barredo, P. Scholl, H.

Williams, A. Browaeys, and T. Lahaye, Phys. Rev. A 102,
063107 (2020).

[19] A. Cooper, S. Maaz, A. E. Mouawad, and N. Nishimura, in
WALCOM: Algorithms and Computation, Proceedings of the
16th International Conference and Workshops, Jember, 2022,
edited by P. Mutzel, M. S. Rahman, and Slamin, Lecture
Notes in Computer Science Vol. 13174 (Springer, Cham, 2022),
pp. 263–274.

[20] B. Cimring, R. El Sabeh, M. Bacvanski, S. Maaz, I. El Hajj,
N. Nishimura, A. E. Mouawad, and A. Cooper, preceding paper,
Phys. Rev. A 108, 023107 (2023).

[21] H. W. Kuhn, Nav. Res. Logist. Q. 2, 83 (1955).
[22] J. Edmondsand R. M. Karp, J. ACM 19, 248 (1972).
[23] W. Lee, H. Kim, and J. Ahn, Phys. Rev. A 95, 053424 (2017).
[24] G. Călinescu, A. Dumitrescu, and J. Pach, SIAM J. Discrete

Math. 22, 124 (2008).
[25] C. Sheng, J. Hou, X. He, P. Xu, K. Wang, J. Zhuang, X. Li,

M. Liu, J. Wang, and M. Zhan, Phys. Rev. Res. 3, 023008
(2021).

[26] T. Mamee, W. Anukool, N. Thaicharoen, N. Chattrapiban, and
P. Sompet, J. Phys.: Conf. Ser. 2145, 012024 (2021).

023108-23

https://doi.org/10.1364/OL.16.001274
https://doi.org/10.1364/OL.16.001720
https://doi.org/10.1016/S0030-4018(02)01524-9
https://doi.org/10.1364/OE.11.002053
https://doi.org/10.1364/JOSAB.21.001889
https://doi.org/10.1364/OE.24.009816
https://doi.org/10.1038/ncomms13317
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1126/science.aax1265
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1116/5.0036562
https://doi.org/10.1038/s41586-022-04940-6
https://doi.org/10.1103/PhysRevA.102.063107
https://doi.org/10.1103/PhysRevA.108.023107
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1145/321694.321699
https://doi.org/10.1103/PhysRevA.95.053424
https://doi.org/10.1137/060652063
https://doi.org/10.1103/PhysRevResearch.3.023008
https://doi.org/10.1088/1742-6596/2145/1/012024

REMY EL SABEH et al. PHYSICAL REVIEW A 108, 023108 (2023)

[27] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A.
Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho et al.,
Nature (London) 595, 227 (2021).

[28] Z.-J. Tao, L.-G. Yu, P. Xu, J.-Y. Hou, X.-D. He, and M.-S. Zhan,
Chin. Phys. Lett. 39, 083701 (2022).

[29] C. Sheng, J. Hou, X. He, K. Wang, R. Guo, J. Zhuang, B.
Mamat, P. Xu, M. Liu, J. Wang, and M. Zhan, Phys. Rev. Lett.
128, 083202 (2022).

[30] W. Tian, W. J. Wee, A. Qu, B. J. M. Lim, P. R. Datla, V. P. W.
Koh, and H. Loh, Phys. Rev. Appl. 19, 034048 (2023).

[31] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha,
Robot. Sci. Syst. 2, 2 (2009).

[32] J. van den Heuvel, in Surveys in Combinatorics 2013, edited
by S. R. Blackburn, S. Gerke, and M. Wildon (Cambridge
University Press, Cambridge, 2013), pp. 127–160.

[33] K. Soloveyand D. Halperin, Int. J. Robot. Res. 33, 82 (2014).
[34] E. D. Demaine, S. P. Fekete, P. Keldenich, H. Meijer, and C.

Scheffer, SIAM J. Comput. 48, 1727 (2019).
[35] N. Nishimura, Algorithms 11, 52 (2018).

[36] N. Bousquet, A. E. Mouawad, N. Nishimura, and S. Siebertz,
arXiv:2204.10526.

[37] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M.
Sideri, R. Uehara, and Y. Uno, Theor. Comput. Sci. 412, 1054
(2011).

[38] R. Diestel, Graph Theory, 4th ed., Graduate Texts in Mathemat-
ics Vol. 173 (Springer, Heidelberg, 2012).

[39] S. Brandhofer, I. Polian, and H. P. Büchler, Proceedings
of the 2021 IEEE/ACM International Conference on Com-
puter Aided Design, Munich, 2021 (IEEE, Piscataway, 2021),
pp. 1–7.

[40] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M.
Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner,
V. Vuletić, and M. D. Lukin, Nature (London) 604, 451 (2022).

[41] B. Tan, D. Bluvstein, M. D. Lukin, and J. Cong, Proceedings
of the 41st IEEE/ACM International Conference on Computer-
Aided Design (ACM Press, New York, 2022).

[42] R. W. Floyd, Commun. ACM 5, 345 (1962).
[43] A. B. Kahn, Commun. ACM 5, 558 (1962).

023108-24

https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1088/0256-307X/39/8/083701
https://doi.org/10.1103/PhysRevLett.128.083202
https://doi.org/10.1103/PhysRevApplied.19.034048
https://doi.org/10.1177/0278364913506268
https://doi.org/10.1137/18M1194341
https://doi.org/10.3390/a11040052
http://arxiv.org/abs/arXiv:2204.10526
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/368996.369025

