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We propose the redistribution-reconfiguration (red-rec) algorithm to prepare large configurations of atoms
using programmable arrays of optical traps. Red-rec exploits simple heuristics and exact subroutines to solve
atom reconfiguration problems on grids. It admits a fast and efficient implementation suitable for real-time
operation. We numerically quantify its performance using realistic physical parameters and operational con-
straints, in both the absence and presence of loss. Red-rec enables assembling large configurations of atoms with
high mean success probability. Fast preparation times are achieved by harnessing parallel control operations
that actuate multiple traps simultaneously. Faster preparation times are achieved by rejecting configurations
of atoms containing fewer atoms than a given threshold. However, the number of traps required to prepare a
compact-centered configuration of atoms on a grid with a probability of 0.5 scales as the 3/2 power of the number
of desired atoms. This finding highlights some of the challenges associated with scaling up configurations of
atoms beyond tens of thousands of atoms.
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I. INTRODUCTION

Quantum many-body systems formed by configurations of
individual quantum particles, such as neutral atoms, charged
ions, and molecules, offer valuable features for quantum in-
formation processing (QIP) [1–5]. Operated as programmable
quantum simulators [6–13], these systems realize lattice spin
models, which can also be mapped onto other physical mod-
els relevant for applications. Realizing these models provides
access to their static and dynamic properties in regimes inac-
cessible to classical simulators.

Realizing QIP protocols often requires initializing the
system in a deterministic state. For neutral atoms, this re-
quirement implies assembling a configuration of individual
atoms according to some predefined spatial geometry. Pro-
grammable arrays of optical traps address this requirement by
enabling the assembly and dynamic rearrangement of individ-
ual atoms in optical traps.

Finding sequences of displacement operations to prepare
specific configurations of atoms from arbitrary ones requires
solving atom reconfiguration problems [14,15]. These prob-
lems are hard combinatorial optimization problems, each with
a potentially exponentially large number of valid solutions.
These problems are even harder when considering that atoms
might be lost during control operations.

*alexandre.cooper@uwaterloo.ca

Exact and approximation algorithms that admit efficient
implementations are known only for the simplest cases
[15,16]. These algorithms might not scale well with the
problem size, preventing an implementation fast enough for
real-time operation. For example, in the absence of loss, exact
algorithms exist for minimizing the total distance traveled by
all atoms. The Hungarian algorithm [17–19] is such an exact
algorithm with a complexity of O(N3

t ), where Nt is the number
of traps.

Heuristic algorithms [14,20–24] address the limitations of
exact and approximation algorithms. They trade off guaran-
tees of optimal performance for operational simplicity and
computational speed. Moreover, they exploit ad hoc princi-
ples derived from intuition and experience to define specific
control subroutines. For example, parallel control operations
might be exploited to speed up operational runtime [22,24].

In this paper we introduce the redistribution-
reconfiguration (red-rec) algorithm. Red-rec is a simple
and fast heuristic algorithm designed for preparing
two-dimensional (2D) configurations of atoms with lattice
geometries. We numerically benchmark its performance
against exact and approximation algorithms, in both
the presence and absence of loss. We specifically focus
on the problem of preparing centered-compact configurations
of atoms on grids. We show that red-rec can readily be
used to prepare configurations of a few thousand atoms with
high success probability at a fast rate. We also describe
an approach to reduce the mean wait time between the
preparation of two successful configurations. This speedup is
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achieved by rejecting configurations containing fewer atoms
than a given threshold. However, our evaluation exposes
important challenges in scaling up configurations of atoms
to larger sizes. These results support the main three goals of
this paper: (i) introducing a hardware-agnostic formalism for
reconfiguration problems to facilitate the shared development
of reconfiguration algorithms, (ii) providing a systematic
approach to quantify the performance of reconfiguration
algorithms in the absence and in the presence of loss,
and (iii) describing the red-rec algorithm for preparing
compact-centered configurations of atoms on grids and other
lattice geometries.

The presentation of our results proceeds as follows. We
first introduce the theory of atom reconfiguration problems
(Sec. II), as well as a benchmarking method to numeri-
cally evaluate the performance of reconfiguration algorithms
(Sec. III). We then describe the red-rec algorithm (Sec. IV)
and quantify its performance at preparing centered-compact
configurations of atoms in 1D chains (Sec. V) and 2D grids
(Sec. VI), in both the absence and presence of loss. We
then introduce and characterize an approach to decrease the
mean wait time between two successful configurations of
atoms (Sec. VII). We conclude by reviewing key results and
outlining opportunities to further improve the red-rec algo-
rithm (Sec. VIII). In the Appendixes we review exact and
approximation algorithms (Appendix A), benchmark their
performance against the red-rec algorithm in the absence of
loss (Appendix B), and prove the correctness of the red-rec
algorithm (Appendix C).

II. ATOM RECONFIGURATION PROBLEMS

To facilitate the shared development of reconfiguration al-
gorithms, we begin our discussion with formal definitions of
fundamental concepts. These definitions aim to reduce ambi-
guity in nomenclature, e.g., distinguishing configurations of
atoms from arrays of optical traps.

We refer to an atom at �x ∈ R3 by a(�x, p̃), where p̃ ∈ [0, 1]
is the probability of detecting the atom by performing a per-
fect measurement at �x. A perfect measurement at �x ∈ R3,
π (�x), detects an atom at �x if and only if there is an atom at
�x. If a perfect measurement detects an atom at �x, then the
probability p̃ of a(�x, p̃) is updated from a probabilistic value
p̃ ∈ [0, 1] to a deterministic value p ∈ {0, 1}. An atom a(�x, p)
with p = 0 is said to have been lost and can be disregarded.

A configuration of atoms C̃ = {a j (�x j, p̃ j )}Na
j=1 is defined

as a collection of Na atoms that can each be detected by a
collection of perfect measurements performed at the location
of each atom � = {π j (�x j )}Na

j=1. A deterministic configuration
of atoms C is a collection of atoms whose detection probability
is unity, i.e., p j = 1 for 1 � j � Na.

We denote a trap at �x ∈ R3 by t (�x, p̃), where p̃ ∈ [0, 1] is
the probability that the trap t contains an atom a(�x, p̃). We set
the probability p̃ that t contains an atom to the probability of
detecting a(�x, p̃) at �x.

We define a trap array A(V, S) = {t (�x j, p̃ j )}Nt
j=1 as a col-

lection of Nt = |V | traps. Here V = {�x j}Nt
j=1 specifies the

geometry of the trap array and S = { p̃ j}Nt
j=1 specifies the oc-

cupation state of the trap array. The trap array A contains

the configuration of atoms C̃ = {a(x j, p̃ j ) | x j ∈ V (A), p̃ j >

0}Nt
j=1 that can be mapped onto a deterministic configuration of

atoms C by performing perfect measurements at the location
of each trap of the array.

We distinguish a dynamic trap array from a static trap array
depending on whether the location and physical properties of
the traps can change over time. The set of all dynamic traps
is chosen to contain the static trap array. In this way, an atom
in a static trap can be displaced to any other static trap by
actuating the dynamic trap array. We refer to the set of static
traps containing the target configuration of atoms as the target
region of the array. We refer to the set of all remaining static
traps as the storage region.

In the remainder of this paper we focus our attention on
trap arrays located in a restricted field of view, which is de-
fined as the restricted plane [−L/2, L/2]2 ⊂ R2 whose square
side length is equal to L ∈ R. This restricted plane replaces R3

in the previous definitions. Typical geometries V in R2 include
(a) Bravais lattices (oblique, rectangular, centered rectangular,
square, or hexagonal), which are specified by their origin and
generator vectors; (b) sublattices, which are specified by their
origin, generator vectors of the parent lattice, and coordinate
numbers (indicating which elements in the parent lattice are
present); and (c) arbitrary geometries, which are specified by
a list of spatial coordinates.

We generally refer to a column as the primary generator
vector of the static trap array along which the number of traps
is the largest. When the generator vectors of the lattice are not
orthogonal, columns and rows can be understood as distinct
primary and secondary generator vectors of the array.

A. Reconfiguration protocols

Atom reconfiguration problems are hidden stochastic prob-
lems: The presence of an atom in each trap is the realization of
a random variable (stochastic) whose value remains unknown
until a measurement is performed (hidden). These problems
differ from deterministic reconfiguration problems [25–28],
which have been studied in fundamental, graph-theoretic con-
texts [29,30] and operational, application-specific contexts
[31,32].

An atom reconfiguration problem seeks a sequence of con-
trol operations to prepare a predetermined target configuration
of atoms CT from an arbitrary one. An atom reconfiguration
problem is said to be solvable if CT is reachable in a finite
number of control steps. Furthermore, it is efficiently solvable
if it is solvable and the number of control steps in a solution
is polynomial in the size of the static trap array (the number
of static traps Nt ). An optimal solution with respect to a given
cost function is a solution that minimizes the cost function,
e.g., the total number of displacement operations.

The solution of an atom reconfiguration problem is a re-
configuration protocol R = (�0, T 1,�1, . . . , T K ,�K ). This
reconfiguration protocol is defined as an initial measurement
�0 followed by a sequence of K reconfiguration cycles,
each cycle comprising a control sequence T k and a perfect
measurement �k . The flowchart of a typical reconfiguration
protocol is presented in Fig. 1.

The kth control sequence is a sequence of elementary con-
trol operations T k = (Tk,1, Tk,2, . . . , Tk,Lk ), where Tk,l is the
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FIG. 1. Flowchart of a typical reconfiguration protocol. The re-
configuration protocol starts by performing measurements on an
initial configuration of atoms C̃0. In simulation, C̃0 is obtained by
adding an atom in each trap of the static trap array and equating
the corruption of each atom p̃ j to the loading efficiency ε. The
measurements return a deterministic configuration of atoms. A re-
configuration problem is formulated using the measured and desired
target configuration of atoms CT . The protocol first checks if the
problem is solvable. If there are fewer atoms than desired, the proto-
col declares failure and terminates. Otherwise, the protocol checks if
the problem is already solved. If the measured configuration contains
the desired configuration, the protocol declares success and ends.
Otherwise, if the problem is solvable but not yet solved, the protocol
solves the reconfiguration problem using the specified reconfigura-
tion algorithm. The algorithm returns a control sequence T k+1 to be
executed on a real or simulated system. The execution of the protocol
results in atom loss. Each atom in the resulting configuration of
atoms C̃k+1({ p̃}) is corrupted, i.e., the jth atom might have been lost
with probability p̃ j . Starting with a collection of measurements, the
protocol then undergoes another reconfiguration cycle until it ends in
failure or success.

lth elementary control operation of the kth reconfiguration
cycle and Lk is the number of elementary control operations
required to execute the kth control sequence. Each elementary
control operation Tk,l is chosen from a set of six elemen-
tary control operations {T ±,0

α,ν }, defined as follows: (i) transfer
operations T ±

α , which include extraction operations T +
α and

implantation operations T −
α that transfer atoms from (to) the

static trap array to (from) the dynamic trap array; (ii) dis-
placement operations T ±

ν j
, which displace a dynamic trap by

an elementary step along the generator vector �k j of the static
trap array, either forward T +

ν j
or backward T −

ν j
; and (iii) no-

op operations {T 0
α , T 0

ν }, which leave some traps undisturbed
while transfer and displacement operations are performed on
other traps. Explicitly defining no-op operations facilitates ac-
counting for the loss of idle atoms in both static and dynamic
traps.

The kth measurement step reveals the configuration of
atoms contained in the static trap array, effectively projecting
C̃k into the deterministic configuration Ck of Nk

a atoms. If the
number of detected atoms is less than the number of desired
atoms Nk

a < NT
a , then the reconfiguration problem is said to

be unsolvable. In this case, the protocol is said to have failed
and the execution of the protocol is aborted. If the number
of detected atoms is greater than or equal to the number of
desired atoms Nk

a � NT
a or, more generally, greater than a

given threshold Nk
a � N thresh

a � NT
a (see Sec. VII), then the

reconfiguration problem is said to be solvable. If the problem
is solvable and if the measured configuration contains the
target configuration Ck ⊇ CT , then the problem is said to have
been solved in K = k reconfiguration cycles and the execution
of the protocol is terminated. If the problem is solvable but has
not been solved yet, then the execution of the protocol con-
tinues until the target configuration has been reached or is no
longer reachable because the number of remaining atoms is no
longer sufficient. After solving the problem, the surplus atoms
located outside the target region are discarded, e.g., by turning
off the corresponding static traps outside the target region.

B. Control operations

Control operations might update the state S of both
the static trap array As(Vs, Ss) and the dynamic trap array
Ad (Vd , Sd ), as well as the geometry Vd of Ad (Vd , Sd ). Transfer
operations T ±

α (�xl ) update the state of the traps at �xl in both the
static and dynamic trap arrays. Given a static trap ts(�x, p̃) at
�x = �xl containing an atom with probability p̃ and an overlaid
dynamic trap td (�x, 0) at �x containing no atom, an extraction
operation transfers an atom from the static trap to the dy-
namic trap. An extraction operation thus updates the static and
dynamic traps from [ts(�x, p̃), td (�x, 0)] to [ts(�x, 0), td (�x, p̃′)],
where p̃′ = p̃pα exp(−tα/ttrap) is the updated state probability
(see the next paragraph for relevant definitions).

Similarly, an implantation operation transfers an atom from
a dynamic trap to a static trap, updating the static and dynamic
traps from [ts(�x, 0), td (�x, p̃)] to [ts(�x, p̃′), td (�x, 0)]. A transfer
operation acting on a pair of empty traps returns empty traps,
as no atom can be spontaneously created. In contrast, a trans-
fer operation acting on a pair of occupied traps returns a pair
of empty traps due to collisional loss. These definitions as-
sume that the static and dynamic traps are overlaid; otherwise,
implanting an atom in free space leads to its loss. In the same
vein, elementary displacement operations T ±

ν j
acting on the

dynamic trap td (�x, p̃) at �x will displace the trap and the atom
it contains from �x to �x ± �k j , where �k j is the generator vector
of the static trap array, e.g., �k j ∈ {�kx, �ky} with �kx ⊥ �ky on the
grid.

Control operations acting on different individual traps may
be executed in parallel by batching them into a sequence of
control operations acting on multiple traps simultaneously.
The batching rules used to batch control operations are de-
fined by operational constraints, e.g., the maximum number of
dynamic traps, and the set of allowed operations, e.g., whether
noncontiguous blocks of atoms can be simultaneously dis-
placed without affecting other trapped atoms.

In the presence of loss, each elementary control opera-
tion acting on a trap is imperfect, possibly inducing the loss
of the atom it contains. We define the survival probabili-
ties for transfer and displacement operations as pα and pν ,
respectively. To account for the finite trapping lifetime, we
multiply the survival probability by the exponential decay
factor exp(−t/ttrap), where t ∈ {tα, tν} is chosen as the time
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duration of each operation and ttrap is the trapping lifetime.
We thus refer to the corruption of an atom as the cumulative
probability of it being lost given its control history. More
formally, p̃ = pNα

α pNν
ν exp(−ttot/ttrap), where Nα and Nν are the

numbers of transfer and displacement operations performed
on the atoms, respectively, and ttot = N�

α tα + N�
ν tν is the total

duration of the reconfiguration cycle computed from the total
number N�

α,ν of batched control operations. Our calculation
ensures that we do not double count operations performed in
parallel.

We choose p̃ to denote both the detection probability and
the corruption, as the two quantities are equivalent for per-
fect measurements. The corruption thus corresponds to the
probability of identifying an atom as lost upon performing
a perfect measurement. These definitions imply a definition
for the survival probability for no-op operations performed on
certain atoms while others experience transfer or displacement
operations pα,ν

0 = exp(−tα,ν/ttrap). For simplicity, we assume
that the no-op survival probability is the same for both static
and dynamic traps. We also assume that control errors are lim-
ited to loss, that is, we ignore the probability of an atom being
left behind in its original trap during a transfer operation. Such
an error can however be modeled as a decrease in survival
probability.

Finally, to simplify their experimental implementation, we
restrict displacements to elementary displacement operations
executed in constant time along the generator vectors of
the static trap array. Furthermore, to ensure compatibility
with acousto-optic deflectors generating dynamic trap arrays,
we restrict parallel control operations to chains of atoms.
These chains correspond to horizontal subrows or vertical
subcolumns in the grid of the static trap array. More elab-
orate strategies for parallel control operations might achieve
greater performance. These strategies include simultaneously
displacing contiguous or noncontiguous blocks of atoms or
displacing atoms along arbitrary trajectories at variable speed.

III. METHODS FOR QUANTIFYING PERFORMANCE

We now describe our approach to quantify the performance
of reconfiguration algorithms. We categorize the performance
into three distinct types: (a) Operational performance mea-
sures how fast and with which success probability a target
configuration of atoms can be prepared, (b) runtime perfor-
mance measures how fast a specific implementation of the
algorithm can be executed on a processor, and (c) algorithmic
performance measures the complexity of the algorithm and its
scaling with relevant parameters. In the following evaluation
we specifically focus on the operational performance.

A. Operational performance in the absence of loss:
Baseline success probability

In the absence of loss, we quantify operational perfor-
mance by the total number of transfer and displacement
operations. We further quantify operational performance in
terms of the baseline success probability. The baseline success
probability is defined as the probability that the initial config-
uration of atoms contains at least as many atoms as needed to
prepare the target configuration of atoms, p0 = P(N0

a � NT
a ).

The number of atoms in the initial configuration (N0
a ) follows

a binomial distribution N0
a ∼ B(Nt , ε). The binomial distribu-

tion is determined by the size of the static trap array Nt and
the mean loading efficiency ε.

The baseline success probability is thus given by the com-
plementary cumulative distribution function of the binomial
distribution p0 = BCCDF(Nt , ε; NT

a ), which has a known ana-
lytical expression. The baseline success probability provides
an exact upper bound on the mean success probability in the
presence of loss. It also provides an estimate of the minimum
number of static traps required to prepare a given target con-
figuration of atoms with a given success probability.

Quantifying performance in the absence of loss decouples
the analysis from the realization of random processes and the
choice of specific experimental parameters like the duration of
control operations. It also provides the means to establish an
upper bound on the operational performance in the presence
of loss.

Furthermore, quantifying performance in the absence of
loss enables a quantitative comparison against exact and
approximation algorithms (see Appendix A). Here we bench-
mark the operational performance of red-rec against two
algorithms: an exact assignment algorithm and a three-
approximation algorithm. The exact assignment algorithm ex-
actly minimizes the total number of displacement operations.
The three-approximation (3-approx) algorithm seeks to mini-
mize the total number of transfer operations; it provides a so-
lution where the total number of transfer operations is at most
three times larger than the optimal value (see Appendix B).

B. Operational performance in the presence of loss:
Mean success probability

In the presence of loss, we quantify the operational per-
formance in terms of the mean success probability p̄. The
mean success probability cannot exceed the baseline success
probability, i.e., p̄ � p0. To calculate the mean success prob-
ability, we average the probability of successfully preparing
a target configuration of atoms over an ensemble of randomly
sampled initial configurations of atoms and randomly sampled
realizations of loss processes.

The mean success probability finds practical applications
in remote-access scenarios for which the user is different from
the operator. The user first specifies the desired configuration
of atoms. The operator then confirms whether this configura-
tion of atoms is achievable. If achievable, the operator informs
the user with which probability the configuration of atoms will
be prepared. The mean success probability depends on the
number of reconfiguration protocols executed and the mean
wait time between two successful protocols; it thus correlates
with total execution cost.

The performance of different shared-access platforms can
thus be compared by computing the mean success probability
for a given target configuration or the largest configuration
achievable at a fixed mean success probability. Reporting
the largest configuration that can be prepared without indi-
cating the mean number of trials required to prepare that
configuration is otherwise misleading, as obtaining a con-
figuration of that size might rely on very unlikely sampling
realizations.
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C. Operational performance benchmarking module

We numerically quantify the operational performance of
reconfiguration algorithms using a custom-built benchmark-
ing module that exploits the Monte Carlo sampling method
implemented in PYTHON.

The module takes as input a reconfiguration problem, a set
of physical parameters, and a set of sampling parameters. The
reconfiguration problem defines the static trap array, including
its geometry and dimensions, and the target atom configura-
tion. The physical parameters include the loading efficiency
and the survival probability for displacement and transfer
operations. The sampling parameters include the number of
simulation repetitions, the number of atoms in the initial con-
figuration (if fixed), and the name of the algorithm to be used.

First, the module constructs a configuration of N0
a atoms.

If N0
a is not fixed, the module samples N0

a from the binomial
distribution defined by the loading efficiency ε and total num-
ber of traps Nt . Given N0

a , the module then randomly assigns
an atom to each of N0

a randomly chosen traps. It does so, for
example, by randomly selecting N0

a integers in a list of Nt trap
indices.

Second, given the initial and target configurations, the
module solves the reconfiguration problem using the specified
algorithm. The solution is a sequence of control operations.
The module performs these operations on a simulated system
to compute the numbers of transfer, displacement, and idle op-
erations for each atom. Given the history of control operations
for each atom and the survival probability for each control
operation, the module computes the corruption of each atom.

Third, given the corruption of each atom, the module
generates a configuration of atoms that would be obtained
following a perfect measurement. This configuration is com-
puted by sampling a number μ from the uniform distribution
on [0,1] for each atom. If μ > p̃, the atom is lost, i.e., the state
of the trap containing the atom is set to 0. If μ � p̃, the atom
is kept in the trap and the state of the trap containing the atom
is set to 1.

These configuration sampling and problem solving steps
continue until the problem has been solved or is no longer
solvable. Each data point is typically averaged over 1000
initial configurations.

D. Typical experimental parameters and limitations

To quantify the expected performance under realistic ex-
perimental conditions, we numerically compute the mean
success probability using realistic physical parameters. We
choose the duration of elementary transfer and displacement
operations to be tα = 15 µs and tν = 67 µs, respectively, and
the survival probability to be pν = pα = 0.985 [22]. The sur-
vival probability typically decreases with the displacement
distance; however, this decrease can typically be mitigated
by increasing the displacement time [33]. We conservatively
choose the trapping lifetime to be ttrap = 60 s, although it
could be further enhanced up to at least 6000 s using cryo-
genics [34].

We further choose the mean loading efficiency to be ε =
0.60, which is typical for 87Rb atoms loaded in the colli-
sional blockade regime [35]. An efficiency ε � 0.60 has also
been achieved using enhanced-loading techniques [36–42].

To quantify performance under enhanced loading, we choose
an increased loading efficiency of ε = 0.90. We assume that
the loading efficiency is the same for all traps in the static
trap array, as can be achieved using closed-loop optimization
routines [43].

To quantify the size of the largest configuration of atoms
that could be realistically prepared given typical experimental
limitations, we restrict the accessible range of trap parameters.
An important bottleneck in scaling up atom configurations
beyond a few thousand atoms is the limit on the number
of optical traps. Limits may be due to restrictions in opti-
cal power, diffraction efficiency of active diffractive optical
devices like spatial light modulators and acousto-optic de-
flectors, and transmission efficiency of optical elements. As a
realistic, near-term operational limit on the number of optical
traps, we choose the maximum size of the static trap array to
be Nmax

t = 2048 traps and set the stretch value to twice that
amount, i.e., Nmax

t = 4096.
A trap array with such a number of traps could be realized

with approximately 5 W in laser power at the source given
1 mW per optical trap in the focal plane of the optical system
and a total power delivery efficiency of 0.4 from the laser
source. This power value is typical for a Ti:sapphire laser
operating at 813 nm that is pumped with an 18-W pump laser
at 532 nm. Further increase in the number of traps might be
achieved by exploiting advances in laser technology. Exam-
ples include pumping Ti:sapphire lasers at a higher power,
using multiple laser sources, either coherently combined or
not (e.g., if operating at a magic trapping wavelength is not
crucial), or using high-power fiber lasers and fiber amplifiers.

Another bottleneck is restrictions in the field of view
(FOV) of the high-resolution microscopy system used to pro-
duce optical traps and image individual atoms. We upper
bound the width and height of the trap arrays by Ny,max

t =
Nx,max

t = 100 traps. Such bounds result, for example, from a
grid with an intertrap spacing of 3.0 µm in an optical system
with a FOV of 300 µm. An important challenge in increasing
the FOV of the optical system is avoiding aberration. Aber-
ration distorts optical traps and their loading efficiency [43].
Significant advances have been made towards solving this
problem. A research group in molecular biology has recently
reported on the design of a mesolens for operation in the wave-
length range of 400–750 nm with a FOV of 6 mm, a lateral
resolution of 0.6 µm, and a numerical aperture of 0.5 [44].

IV. THE RED-REC ALGORITHM

In this section we describe the various steps of the red-
rec algorithm (see Algorithm 1 and Fig. 2). Before solving
the problem, red-rec checks whether the problem is solvable.
Given a measured configuration of Na atoms, where we drop
the cycle index k to improve clarity, red-rec compares the
number of measured atoms Na to the number of desired atoms
NT

a . The problem is solvable if Na − NT
a � 0. Additionally,

red-rec checks if the atom surplus exceeds a user-defined
threshold value N thresh

a , i.e., Na − NT
a � N thresh

a . If the problem
is unsolvable or the threshold is not met, red-rec aborts and
declares failure.

If the problem is solvable and the threshold is met, red-rec
proceeds to compute the atom imbalance for each column.
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FIG. 2. Single realization of the red-rec algorithm in the absence of loss. (a) Sequence of control operations to prepare a target configuration
of NT

a = 8×8 atoms (green shaded disks) in a static trap array of Nt = 8 (width of the trap array) ×16 (height of the trap array) = 128 traps
(circles) from an arbitrary configuration of N0

a = 64 atoms (black dots). After computing the imbalance of each column as the difference
between the number of detected and desired atoms, the algorithm sequentially reconfigures individual neutral columns, neighboring pairs of
donor-receiver columns, and then distant pairs of donor-receiver columns. (b) An individual neutral column is solved by extracting atoms from
the static trap array into the dynamic trap array (orange squares), displacing all atoms to their desired target locations while avoiding collisions,
and implanting the atoms back into the static trap array. (c) A pair of donor-receiver columns is solved using a sequence of control operations
that [steps (1)–(3)] reconfigures the donor column while displacing atoms to be exchanged to open rows, [steps (4)–(5)] redistributes surplus
atoms from the donor column to the receiver column in a single parallel displacement step, and [steps (6)–(8)] reconfigures the receiver column.

The imbalance of the jth column, denoted by �N j
a , is calcu-

lated as N j
a − NT, j

a , where N j
a and NT, j

a represent the numbers

Algorithm 1. The red-rec algorithm.

Require: A trap array A(V, S) with a grid geometry, the number of
rows r, the number of columns c, the number of measured atoms
Na, the number of desired atoms NT

a , and a user-defined threshold
value N thresh

a ,
if Na − NT

a < N thresh
a then

return “failure”
end if
for j ← 1 to c do

compute the atom imbalance for column j in A
if column j in A is a neutral column then

solve column j in A using the exact 1D algorithm
end if

end for
while there exists a column with negative imbalance in A do

select the closest pair of donor-receiver columns in A
(tie-breaking rules are applied whenever necessary)

solve the selected pair in A following six steps:
1. donor extraction
2. donor displacement
3. donor implantation
4. donor-column redistribution
5. receiver extraction
6. receiver displacement and implantation

end while
for j ← 1 to c do

if column j in A is not solved then
solve column j in A using the exact 1D algorithm

end if
end for

of atoms in the jth column of the measured and desired con-
figurations, respectively. Here we use the shorthand notation
N j

a to represent Nk, j
a , where Nk, j

a denotes the number of atoms
in the jth column during the kth reconfiguration cycle. Based
on the imbalance, each column is labeled as (a) a donor,
if �N j

a > 0; (b) neutral, if �N j
a = 0; or (c) a receiver, if

�N j
a < 0.
After labeling the columns, red-rec breaks down the 2D re-

configuration problem into simpler reconfiguration problems
involving individual columns and pairs of columns.

First, red-rec solves each neutral column using an exact
reconfiguration algorithm on chains, referred to as the exact
1D algorithm (see Appendix A), which runs in time lin-
ear in the number of traps. When applied to an individual
column, the algorithm minimizes the total number of displace-
ment operations and ensures that each atom is extracted and
implanted at most once. However, in the presence of loss,
it does not guarantee the overall minimization of displace-
ment and transfer operations across multiple reconfiguration
cycles.

Solving neutral columns facilitates the redistribution of
atoms among distant pairs of donor and receiver columns.
Doing so creates distribution rows in which no obstructing
atoms are present between the donor and receiver columns.

Second, red-rec solves pairs of donor-receiver columns.
It begins with adjacent pairs where the donor column can
fully satisfy the receiver column, i.e., �Ndonor+�Nreceiver � 0.
Next, it solves adjacent pairs of columns. Finally, it solves
distant pairs, starting with the pairs that can exchange the
highest number of atoms in a single redistribution sequence.

Pairs of donor-receiver columns are solved using one or
more redistribution sequences [Fig. 2(c)]. To realize a re-
distribution sequence, the atoms in the donor column are
categorized into three groups.
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(i) Reconfigured atoms populate the target region of the
donor column. They are selected in a way that minimizes the
total number of displacement operations. The identification of
reconfigured atoms involves utilizing the exact 1D algorithm
(see Appendix A).

(ii) Redistributed atoms populate the target region of the
receiver column. They are chosen from the storage region
of the donor column using a heuristic. The heuristic selects
atoms starting from those located farthest away from the
target region. These atoms are assigned to the traps in the
receiver column that are situated on the nearest distribution
row. The selection of redistributed atoms aims to have approx-
imately equal numbers of atoms above and below the target
region.

(iii) Idle atoms remain undisturbed in the donor column
and do not undergo any displacement.

The redistribution sequence then involves executing the
following six steps.

(1) Donor extraction. The redistributed and reconfig-
ured atoms are extracted from the donor column [Fig. 2(c),
step (2)].

(2) Donor displacement. The reconfigured atoms are dis-
placed to traps in the target region of the donor column. The
redistributed atoms are displaced to traps located on distribu-
tion rows in the storage region of the donor column [Fig. 2(c),
step (3)].

(3) Donor implantation. The reconfigured atoms in the
target region are implanted into the static traps [Fig. 2(c), step
(4)]. Meanwhile, the redistributed atoms remain extracted in
the dynamic traps.

(4) Donor-receiver redistribution. The extracted redis-
tributed atoms are simultaneously displaced to the receiver
column [Fig. 2(c), step (5)].

(5) Receiver extraction. The atoms in the receiver column
are extracted [Fig. 2(c), step (6)].

(6) Receiver displacement and implantation. The receiver
column is solved using the exact 1D algorithm [Fig. 2(c),
step (7)].

This approach ensures that the redistributed atoms are only
extracted and implanted once, which helps minimize the over-
all number of transfer operations.

If not all redistributed atoms can be redistributed from
the donor column to the receiver column in a single re-
distribution sequence, then the redistribution sequence is
repeated until the donor column has donated all its sur-
plus atoms. Such a situation could occur, for example, if
the number of distribution rows is less than the number of
atoms to be distributed. If the receiver column has not been
fully solved, then it participates again in the donor-column
pairing.

Pairs of donor-receiver columns are thus solved using
redistribution sequences until all columns achieve non-
negative imbalances. In Appendix C we show that this
step requires solving a finite number of donor-receiver col-
umn pairs, which implies the correctness of the red-rec
algorithm.

Finally, red-rec solves all columns that have not yet been
solved. The termination of the second step guarantees that all
such columns have positive imbalance, meaning they can be
individually solved.
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FIG. 3. Baseline success probability for 1D chains: probabil-
ity of successfully preparing a centered-compact configuration of
NT

a atoms in a 1D chain of Nt traps for a loading efficiency of
(a) ε = 0.60 and (b) ε = 0.90 in the absence of loss. A transition
region separates regions of near-certain failure (p̄ � 0.02, red) and
near-certain success ( p̄ � 0.98, blue). The maximum number of traps
is set to Nmax

t = 100 (white shaded region). The transition midline
at p0 = 0.5 is realized for Nt = NT

a /ε traps, showing that, in the
absence of loss, the number of needed traps scales linearly with the
number of desired atoms.

V. PERFORMANCE FOR 1D CHAINS

The red-rec algorithm solves atom reconfiguration prob-
lems on grids by reducing them to a sequence of reconfig-
uration problems on 1D chains. These problems on chains
can be efficiently solved using the exact 1D algorithm. The
performance of the red-rec algorithm is thus intrinsically tied
to the performance of the exact 1D algorithm.

We thus start our analysis by numerically evaluating the
performance of the exact 1D algorithm (see Sec. III C for
its detailed description). We perform the analysis in both the
absence and presence of loss. For this analysis, we compute
the baseline success probability for preparing a compact chain
of NT

a atoms at the center of a chain of Nt static traps for
various values of NT

a , Nt , and ε ∈ {0.6, 0.9}.
In the absence of loss, the baseline success probability

surfaces (Fig. 3) exhibit a sharp transition between a region of
near-certain failure (p0 � 0.02) and a region of near-certain
success (p0 � 0.98). We note that the values delineating the
regions have been chosen arbitrarily without implications for
the key results of this paper.

The transition region is centered around the isoprobabil-
ity line p0 = 0.5 realized for N0

t = η0NT
a = NT

a /ε, i.e., for
a baseline overhead factor η0 = 1/ε. The largest centered-
compact configuration of atoms that can be prepared in chains
of 100 (120) static traps with near-certain success thus con-
tains NT

a = 50 (61) atoms for ε = 0.60 and 83 (101) atoms
for ε = 0.90.

In the presence of loss, the mean success probability
surface (Fig. 4) exhibits the same two regions of near-certain
success and near-certain failure as in the lossless case. There
is a sharp transition region whose boundary is determined
by the loading efficiency and loss parameters. In contrast
to the lossless case, however, the transition curve is
nonlinear. The nonlinearity indicates that an increasingly
large overhead factor is required to prepare increasingly
large chains of atoms with near-certain success. We find that
the overhead ratio for p̄ ≈ 0.50 is well approximated by
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FIG. 4. Mean success probability for 1D chains: mean proba-
bility of successfully preparing a centered-compact configuration
of NT

a atoms in a 1D chain of Nt traps for a loading efficiency of
ε = 0.6 in the presence of loss. The number of traps at the transition
midline (dashed line) scales quadratically with the number of desired
atoms Nt ∼ O((NT

a )2). The inset shows the mean success probability
of preparing a chain of NT

a = 32 atoms in the absence (disks) and
presence (squares) of loss for varying success probability during
control operations (bottom). At least Nt = 64 traps are required to
prepare a compact chain of NT

a = 32 atoms with p̄ � 0.5.

η(NT
a ) ≈ η0 + η1NT

a , where η0 = 1.50(3) and η1 = 0.014(3).
This statement implies that Nt = η0NT

a + η1(NT
a )2 ∼

O((NT
a )2) traps are required to successfully prepare a chain

of NT
a atoms. The largest centered-compact configuration of

atoms that can be prepared with near-certain success in a
chain of 100 (120) static traps thus contains NT

a = 34 (42)
atoms in the presence of loss, as opposed to NT

a = 50 (61)
atoms in the absence of loss.

Because of its relevance for preparing 2D configurations
of 32×32 = 1024 atoms, we further analyze the problem of
preparing a chain of NT

a = 32 atoms in an array of Nt =
64 traps. The mean success probability is equal to p̄ ≈ 0.5
and increases to unity as the survival probability during
control operations increases to unity (inset of Fig. 4). Focus-
ing on successful and unsuccessful reconfiguration protocols
(Fig. 5), we observe that the mean number of control cy-
cles is smaller for unsuccessful protocols than for successful
protocols. Consequently, protocols are quicker to fail than to
succeed: Half of unsuccessful protocols fail after one cycle,
whereas half of the successful protocols require at least two
cycles to succeed [Fig. 5(a)].

We also observe that successful protocols have more atoms
on average in their initial configurations than unsuccessful
protocols [Fig. 5(b)]. The surplus atoms are used in late recon-
figuration cycles to replace atoms lost in early reconfiguration
cycles. This information is also contained in the probability
distribution functions for the numbers of control cycles and
the numbers of atoms in the initial configuration for successful
and unsuccessful protocols [Figs. 5(c) and 5(d)].

These observations indicate that rejecting configurations
containing less than a certain number of loaded atoms might
prevent the execution of protocols unlikely to succeed (see
Sec. VII). For example, the probability that a control protocol
is successful given that N0

a atoms have been loaded is greater
than 0.5 for N0

a � 37; configurations containing fewer atoms
could be rejected (see Sec. VII).

0 1 2 3 4 5 6
Control cycles

0

25

50

75

100

P
ro

ba
bi

lit
y 

(%
) 10

0
2

4

6

8

F
re

qu
en

cy
 (

%
)

Success

Failure

Number of loaded atoms
20 25 30 35 40 45 50

Number of loaded atoms

0
1
2
3
4
5
6

20 25 30 35 40 45 50

Failure

1
2
3
4
5
6 Success

Number of loaded atoms
20 25 30 35 40 45 50

FIG. 5. Control cycles for 1D chains. (a) Cumulative distribu-
tion function of the number of control cycles performed during
unsuccessful (red) and successful (blue) protocols for preparing a
configuration of NT

a = 32 atoms in a chain of Nt = 64 traps. Pro-
tocols fail faster than they succeed: Half of unsuccessful protocols
have failed after one cycle, whereas half of the successful protocols
require at least two cycles to succeed. (b) Stacked distributions of the
number of atoms loaded in the static trap array. Successful protocols
start with more atoms on average. (c) and (d) Distribution of (c) the
number of control cycles and (d) the number of atoms loaded in the
static array. Integrating over control cycles returns the stacked dis-
tributions of (b). Unsuccessful protocols fail in a few control cycles
because the number of loaded atoms is not enough to compensate for
loss.

VI. PERFORMANCE FOR 2D GRIDS

We now quantify the performance of the red-rec algorithm
at solving reconfiguration problems on 2D grids. We specif-
ically focus on the problem of preparing a configuration of
NT

a = √
NT

a ×√
NT

a atoms at the center of a square lattice of
Nt = Nx

t ×Ny
t static traps. Here we choose the width of the

trap array to be equal to the width of the target configuration,
i.e., Nx

t = √
NT

a . We further choose the height of the trap array
to contain a larger number of traps Ny

t = η
√

NT
a , where η � 1.

Figure 2 provides an example of such a grid with rectangular
dimensions.

In the absence of loss, the baseline success probability
surfaces exhibit a region of near-certain failure (p̄ � 0.02) and
a region of near-certain success (p̄ � 0.98) (Fig. 6). The tran-
sition region is much sharper than in the 1D case (Fig. 3). In
square-lattice trap arrays containing at most Nt = 2048 (4096)
optical traps, the largest centered-compact configuration of
atoms that can be prepared with near-certain success contains
NT

a = 342 = 1156 (422 = 1756) atoms [Fig. 6(a)]. Increasing
the loading efficiency to ε = 0.90 increases the configuration
size to NT

a = 482 = 2304 (602 = 3600) atoms [Fig. 6(b)].
Assuming height limits of 100 (120) traps, the largest con-
figuration of atoms that can be prepared with near-certain
success contains NT

a = 582 = 3364 (702 = 4900) atoms for
ε = 0.60 and NT

a = 882 = 7744 (1062 = 11 236) atoms for
ε = 0.90. Given a loading efficiency of ε = 0.60, preparing a
configuration of 100×100 = 10 000 atoms with near-certain
success would thus require at least 100×330 = 33 000 static
traps, a formidable operational challenge.
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FIG. 6. Baseline success probability for 2D grids: probability of
successfully preparing a centered-compact configuration of NT

a =√
NT

a ×√
NT

a atoms in a square-lattice array of Nx
t ×Ny

t traps, where
Nx

t = √
NT

a in the absence of loss. Increasing the loading efficiency
from (a) ε = 0.60 to (b) ε = 0.90 narrows down the failure region
(red). The largest achievable configuration is ultimately restricted by
the maximum number of optical traps along each direction (Nx,y

t �
100) and in total [Nt � 2048 (4096)]. As for 1D chains, the transition
midline at p0 = 0.5 is realized for Nt = NT

a /ε traps (Ny
t = √

NT
a /ε).

In the absence of loss, the number of needed traps scales linearly
with the number of desired atoms.

In the presence of loss, the near-success region is achieved
for a larger numbers of traps (Fig. 7) than in the lossless
case. These additional traps are required to load the surplus
atoms needed to compensate for loss during control opera-
tions. The transition curve evaluated at p̄ ≈ 0.5 shows that
the height of the trap array scales approximately quadrat-
ically with the width of the trap array, Ny

t ∼ O((Nx
t )2) =

O(NT
a ), and thus linearly with the number of atoms. Choos-

ing Ny
t ≈ η0 + η1NT

a , we find that η0 = 0.015 64 and η1 =
1.579 from linear regression. This relationship implies that
the number of traps required to assemble a configuration of
NT

a atoms scales as Nt = Nx
t ×Ny

t ∼ O((NT
a )3/2), in contrast

to the linear scaling observed in the absence of loss. This
result is consistent with the red-rec algorithm solving ap-

FIG. 7. Mean success probability for 2D grids: mean probabil-
ity of successfully preparing a configuration of NT

a = √
NT

a ×√
NT

a

atoms in a grid of Nx
t ×Ny

t traps in the presence of loss. The loading
efficiency is set to ε = 0.60. The midline curve of the transition
region scales quadratically with the width Nx

t = √
NT

a of the grid,
Ny

t ∼ O((Nx
t )2) = O(NT

a ), and thus linearly with the number of traps.
In the presence of loss, the number of traps needed thus scales as the
3/2 power of the number of desired atoms Nt ∼ O((NT

a )3/2).

FIG. 8. Largest achievable configuration of atoms: maximum
configuration size achievable with near-certain success in the absence
(blue disks) and presence (red squares) of loss for a loading efficiency
of ε = 0.6. Preparing a configuration of 322 = 1024 atoms with
near-certain success requires 2304 traps. The inset shows that the
maximum configuration size achievable with 2048 traps increases
with the survival probability during displacement and transfer opera-
tions. We choose pν = pα . The red square is the data point associated
with the specific survival probability used in the performance study.
The purple triangles are the data points associated with other typical
values for the survival probability.

proximately Nx
t = √

NT
a columns, each column being solved

with the 1D exact algorithm, which scales as Ny
t ∼ O(

√
NT

a )2

(see Fig. 4).
The largest configuration of atoms that can be prepared

with near-certain success increases with the number of traps
(Fig. 8) and the survival probability during control opera-
tions. Fixing the total number of traps to be Nmax

t = 2048
(32×64), the mean success probability for preparing a config-
uration of 32×32 atoms is p̄ = 0.21(1). Increasing the total
number of traps to Nt = 2304 (32×72) increases the mean
success probability to p̄ = 0.993(2). Increasing the survival
probability during control operations from pν = pα = 0.985
to pν = pα = 0.990 increases the mean success probability
from p̄ = 0.21(1) to p̄ = 0.996(4) (inset of Fig. 8). Further
increasing the total number of traps to be Nmax

t = 4096 limits
the configuration size for near-certain success to NT

a = 402 =
1600 atoms. The results highlight once again the challenges
of scaling to large configuration sizes.

To identify the conditions required for red-rec to succeed,
we compute the mean total number of displacement and trans-
fer operations performed during each reconfiguration cycle
(Fig. 9). We restrict our analysis to the problem of preparing
a 2D configuration of NT

a = 32×32 atoms in a static array of
Nt = 32×64 traps.

First, we observe that successful protocols perform fewer
transfer and displacement operations during their first recon-
figuration cycle [Fig. 9(a)] and more control operations in
all their subsequent reconfiguration cycles than unsuccessful
protocols [Fig. 9(b)]. Second, we observe that the relative total
number of control operations decreases in later reconfigura-
tion cycles. Specifically, fewer operations lead to less loss
and thus fewer atoms to be replaced, ad infinitum, so that
the late cycles perform fewer control operations to replace
fewer lost atoms [Fig. 9(c)]. Third, we observe that the rela-
tive numbers of displacement and transfer operations increase
with the size of the configuration of atoms [Fig. 9(d)]. We
explain the increase in the relative numbers of displacement
operations by the fact that, in larger arrays, surplus atoms left
in their original positions must travel large distances to replace
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FIG. 9. Control operations for 2D grids. (a) Distribution of the
total number of transfer and displacement operations during the first
reconfiguration cycle of successful (blue) and unsuccessful (red)
protocols. The protocols seek to prepare a configuration of NT

a =
32×32 atoms in an array of Nt = 32×64 traps. During the first
cycle, unsuccessful protocols perform more operations than suc-
cessful protocols. (b) Distribution of total transfer and displacement
operations performed during all the subsequent reconfiguration cy-
cles expressed relative to the first reconfiguration cycle. Successful
protocols perform more displacement and transfer operations than
unsuccessful protocols during their subsequent reconfiguration cy-
cles. (c) Probability that a successful protocol will perform at least
Nc control cycles (shaded disks). Less than 10% (2%) of successful
protocols perform more than 15 (19) reconfiguration cycles. The total
numbers of transfer (orange) and displacement (green) operations
performed during successful protocols, expressed relative to the first
cycle, monotonically decrease. (d) Given a fixed overhead factor
(here η = 2 with Ny

t = ηNx
t ), these numbers increase with the desired

configuration size: Increasingly more operations are performed in
subsequent reconfiguration cycles to compensate for loss.

lost atoms in subsequent cycles. Because more displacement
operations result in greater loss, more reconfiguration cycles
are required to replace the lost atoms. We explain the increase
in the relative numbers of transfer operations by the fact that
receiver columns in late reconfiguration cycles are typically
paired with multiple donor columns. Each pairing requires
executing multiple redistribution sequences, each of which
requires extracting and implanting the atoms.

VII. REDUCING MEAN WAIT TIME
VIA CONFIGURATION REJECTION

Besides improving the mean success probability of prepar-
ing a target configuration of atoms, an important operational
requirement is increasing the duty cycle of experiments by
reducing the mean wait time between two successful recon-
figuration protocols. The mean success probability depends on
the number of atoms in the initial configuration. These atoms
are needed to prepare the target configuration of atoms and
replace atoms lost during the multiple reconfiguration cycles.

We partition the distribution of the number of atoms in the
initial configuration partitioned for successful and unsuccess-
ful protocols [Fig. 10(a)]. We identify a first threshold below
which a protocol is guaranteed near-certain failure (p̄ � 0.02)
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FIG. 10. Reducing mean wait time via configuration rejection.
(a) Stacked distributions of the number of atoms loaded into a square-
lattice array of Nt = 32×64 = 2048 traps for successful (blue) and
unsuccessful (red) protocols when preparing a configuration of NT

a =
32×32 = 1024 atoms. The threshold (vertical orange line) indicates
the number of atoms N thresh

a below which configurations are rejected.
(b) Distribution of the number of control cycles per control protocol
and the number of atoms loaded for successful (blue) and unsuccess-
ful (red) protocols. Integrating over control cycles returns the stacked
distributions of (a). (c) Number of measurements performed between
two successful protocols for various threshold values. Measurements
are performed whenever the algorithm fails to load more than N thresh

a

atoms (purple) or fails (red) or succeeds (blue) in preparing the
target configuration given more than N thresh

a atoms. (d) Stacked wait
times between two successful protocols for various threshold values.
The time is spent loading the magneto-optical trap (green), imaging
configurations of atoms (orange), or performing control operations
(yellow). The threshold (vertical orange line) is chosen so as to
minimize the total wait time.

and a second threshold below which a protocol is more likely
to fail than to succeed. Rejecting configurations containing
fewer atoms than either one of those two thresholds would
increase the probability of successfully solving the recon-
figuration problems for the retained configuration. However,
even though the probability of success increases with the
number of atoms in the initial configuration, the probability of
measuring configurations with such a large number of atoms
decreases. Thus, rejecting these configurations monotonically
decreases the probability of success. Still, because unsuccess-
fully solving a problem might require multiple reconfiguration
cycles [Fig. 10(b)] and thus more time than sampling a new
configuration, there exists an optimal rejection threshold (or-
ange vertical line in Fig. 10) that minimizes the mean wait
time between two successful protocols. This threshold is ob-
tained by discarding as many unsuccessful configurations as
possible while rejecting as few successful configurations as
possible without letting the number of measurements diverge
[Fig. 10(c)].

The mean number of measurements needed to sample
a configuration of atoms that contains more atoms than
the threshold is 1/P(N0

a � N thresh
a ), where P(N0

a � N thresh
a ) is

given by the cumulative distribution function of the binomial
distribution. The mean amount of time spent preparing a con-
figuration of atoms containing more atoms than the threshold
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is therefore tMOT + timage/P(N0
a � N thresh

a ). Here tMOT is the
time needed to cool and trap atoms in a magneto-optical trap
(MOT) and timage is the time needed to image the configuration
of atoms. We calculate the time elapsed between successful
preparations of the target configuration by considering the
MOT loading time, the time required to measure a configura-
tion of atoms (imaging time), and the time required to execute
the control operations. We take the MOT loading time to be
tMOT = 100 ms, the time required to image the static array to
be timage = 20 ms, and the execution time of parallel transfer
and displacement operations to be tα = 15 µs and tν = 67 µs,
respectively (see Sec. III D). Atoms are loaded into the MOT
and then continuously imaged in the static trap array until a
configuration with sufficient atoms is measured. The MOT
loading time is thus incurred only once for each attempted
reconfiguration protocol.

From our numerical analysis, we find that the threshold
value at which the minimum wait time occurs is N thresh

a =
1255 atoms. As a result, a total of 87.6% of all configura-
tions are discarded. Among these discarded configurations,
90.7% of them would have otherwise resulted in failure. After
thresholding, 61.2% of control protocols result in success.
For a configuration of NT

a = 32×32 atoms in a square-lattice
array of size Nt = 32×64, thresholding reduces the mean time
between successful preparations of the target configuration by
a factor of approximately 2, from 1.84 s to 0.932 s. We also
observe that post-thresholding, the distributions in the mean
number of reconfiguration cycles and the control time for
successful and unsuccessful protocols are similar [Fig. 10(d)].
These results indicate that achieving success depends mostly
on random realizations of atom loss rather than on the number
of atoms in the initial configuration.

VIII. CONCLUSION

We introduced the red-rec algorithm to solve atom re-
configuration problems on lattices, specifically focusing on
grids. The red-rec algorithm reduces reconfiguration problems
on grids to simpler reconfiguration problems on individual
columns and pairs of columns. These problems are solved
quickly and efficiently using simple algorithms. Individual
columns are solved using the exact 1D algorithm; pairs of
donor-receiver columns are solved heuristically by redistribut-
ing atoms from a donor column to a receiver column.

Although we described the red-rec algorithm over grids, it
can be extended to other lattice geometries, as well as other
sublattice geometries embedded in the grid. Examples are
checkerboard sublattices and oblique lattices with rhomboidal
boundaries, including triangular lattices (with two generator
vectors of equal norm oriented at a relative angle of π/3; e.g.,
see Ref. [24]).

We numerically compared the performance of the red-
rec algorithm against exact and approximation algorithms,
in both the absence and presence of loss. In the absence of
loss, we showed that red-rec performs well at minimizing
displacement operations. However, it performs more transfer
operations than the value achieved by the 3-approx algorithm
(see Fig. 12 in Appendix B). Further reduction in transfer
operations might be achieved by allowing for the redistribu-
tion of atoms in the target region and solving for blocks of

columns containing more than two columns, e.g., containing
two donors and one receiver.

Improved reconfiguration algorithms enable preparing
large configurations of atoms for a given mean success proba-
bility. In the presence of loss, red-rec prepares configurations
of 256 atoms in 512 traps with a mean success probability of
p̄ = 0.913(2). Moreover, it prepares configurations of 1024
atoms in 2048 traps with a mean success probability of p̄ =
0.21(1).

Equivalently, improved algorithms facilitate achieving fast
preparation times for a given configuration sizes. Rejecting
configurations of atoms containing fewer atoms than a given
threshold enables even faster preparation times.

The red-rec algorithm is readily and efficiently imple-
mentable. It is also compatible with standard acquisition and
control systems. Future work should focus on extending red-
rec to other geometries and higher dimensions, implementing
it on parallel-processing computing devices, and quantifying
its operational performance experimentally.

In addition, further opportunities exist to develop exact
and approximation algorithms that simultaneously optimize
multiple-objective functions. These algorithms might in turn
guide the development of improved exact-heuristic algorithms
for atom reconfiguration problems, which might also support
other domains of applications.

Finally, we refer the interested reader to our comple-
mentary study on the assignment-rerouting-ordering (ARO)
algorithm [45]. The ARO algorithm exploits subroutines to
improve the performance of typical assignment algorithms.
Among others, we provide a constructive algorithm to find
a partial ordering of displacement trajectories that guarantee
that each atom is displaced at most once.

The source code for the benchmarking module and recon-
figuration algorithms will be made available upon reasonable
request.
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APPENDIX A: EXACT AND APPROXIMATION
ALGORITHMS

A reconfiguration algorithm provides a deterministic
procedure that can be implemented as a sequence of pro-
grammable instructions to compute a valid solution to a given
reconfiguration problem. Exact algorithms return solutions
that are provably optimal, whereas approximation algorithms
return approximate solutions with provable guarantees on
their distance to an optimal solution. In other words, μ-
approximation algorithms return solutions that are at most (at
least) μ times the optimal value in the case of a minimization
(maximization) problem.
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FIG. 11. Minimal example for exact and approximation algo-
rithms. (a) The MWMCM algorithm minimizes the total displace-
ment distance without concern for the number of atoms displaced,
here displacing two atoms (black circles), each by an elementary
step. (b) The 3-approx algorithm approximately (in this specific
example, exactly) minimizes the number of atoms displaced without
concern for the total displacement distance, here displacing one atom
by four elementary steps.

We have previously studied exact and approximation al-
gorithms to solve reconfiguration problems on graphs from
a theoretical standpoint [15]. We now briefly describe four
such algorithms: (1) the exact tree algorithm, (2) the exact
1D algorithm, (3) the minimum-weight maximum-cardinality
matching (MWMCM) algorithm, and (4) the 3-approx
algorithm.

The exact tree algorithm is an exact reconfiguration algo-
rithm on trees, i.e., graphs in which any pair of vertices is
connected by exactly one path, which is defined as a finite
sequence of edges. The exact tree algorithm returns a se-
quence of elementary displacement operations whose number
is the minimum required to solve the reconfiguration problem.
These operations can be further batched into a sequence of
parallel control operations that minimize the number of con-
trol steps or total reconfiguration time. This algorithm runs
in time linear in the number of vertices in the tree [16] and
is readily amenable to efficient implementation on computing
hardware.

The exact 1D algorithm is an exact reconfiguration algo-
rithm on linear chains. While it is possible to execute the
exact tree algorithm on linear chains (given that linear chains
are trees), the exact 1D algorithm is computationally more
efficient, even if marginally. If the number of atoms is equal
to the number of target traps (�Na = Na − NT

a = 0), then
there exists a unique assignment of atoms to target traps
because atoms cannot move past each other. The assignment
can be computed in time linear in the number of traps in
the chain. In this case, the exact 1D algorithm assigns the
farthermost atoms to the farthermost target traps, from the
edges to the center of the array, in order of their position. Such
an assignment minimizes the total number of displacement
operations in a single extraction-displacement-implantation
(EDI) sequence [Fig. 2(b)]. This EDI sequence simultane-
ously extracts, displaces, and implants the atoms that are not
located in their target traps. In addition, it leaves the atoms that
do not need to be displaced in their respective static traps. The
exact 1D algorithm is also capable of solving reconfiguration
problems where �Na > 0 in time linear in the number of traps
in the chain [46].

The MWMCM algorithm [Fig. 11(a)] is an assign-
ment algorithm that can be easily adapted into an exact
reconfiguration algorithm valid on any graph. This al-
gorithm returns an optimal solution to the problem of

minimizing the total distance traveled by atoms, i.e., the
total number of displacement operations, and it does so
in polynomial time. The atoms in the initial and target
configurations of atoms, associated with occupied traps in the
static trap array, naturally define a weighted bipartite graph
upon which this problem may be solved. Here the weight of
an edge represents the length of a shortest path in the original
graph. This algorithm does not consider transfer operations,
i.e., it does not distinguish between moving one atom twice or
two atoms once. Indeed, for any pair of initial and final traps,
the algorithm chooses any arbitrary path among the set of all
of shortest paths, irrespective of the number of atoms on that
path. The operational performance of the algorithm could be
further improved by choosing the shortest paths that minimize
the number of atoms displaced. This algorithm has a running
time that is cubic in the number of vertices in the graph [17].

The 3-approx algorithm [Fig. 11(a)], which is valid for any
graph, returns a three-approximate solution to the problem of
minimizing the total number of atoms displaced. This problem
is NP-complete even on grid graphs [16]. Given a graph, the
algorithm partitions the graph into a collection of balanced
trees, where a balanced tree is a tree containing as many
atoms as target traps. It does so by solving the U -Steiner
problem [16], removing edges in order to transform the graph
into a collection of balanced trees. It then applies the exact
tree algorithm to each tree. This algorithm could be further
improved with regard to the total number of displacement
operations by choosing a weighting function that penalizes
convoluted paths through trees. In addition, the function could
consider “useful” trees to be those that reduce the number of
displacement operations, or more generally, the total weighted
distance traveled by all atoms.

Both the MWMCM algorithm, an exact algorithm that
minimizes total displacement operations, and the 3-approx
algorithm, an approximation algorithm that seeks to min-
imize transfer operations, target the minimization of a
single-objective function. However, they are not optimal for
any nontrivial linear combinations of both parameters, i.e.,
multiple-objective functions. There exist no known optimal
or approximation algorithms on grids, graphs, or any other
relevant geometries that solve reconfiguration problems for
multiple-objective functions. Examples of such functions
might minimize a linear combination of the numbers of dis-
placement and transfer operations, in polynomial time. In fact,
we know that such algorithms do not exist unless P = NP,
because minimizing the number of transfer operations alone is
NP-complete [16]. Since optimizing for the multiple-objective
function is a more general problem, solving it in polynomial
time would imply a polynomial-time algorithm for minimiz-
ing the number of transfer operations. Our proposed red-rec
algorithm heuristically seeks to simultaneously minimize the
total number of displacement and transfer operations.

APPENDIX B: BENCHMARKING PERFORMANCE
AGAINST EXACT ALGORITHMS

To obtain bounds on the minimum number of displace-
ment and transfer operations required to solve a given atom
reconfiguration problem, we further benchmark the red-rec
algorithm against the MWMCM and 3-approx algorithms.
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FIG. 12. Relative numbers of control operations in the absence
of loss. (a) Relative numbers of transfer and displacement opera-
tions performed by the red-rec algorithm expressed relative to the
3-approx and MWMCM algorithms, respectively. The numbers are
reported for varying configuration sizes at constant overhead factor
η = 2 with no surplus atoms (N0

a = NT
a ). The relative number of

transfer operations increases with configuration size. (b) Distribu-
tion of the number of transfer operations relative to 3-approx and
displacement operations relative to MWMCM for preparing a config-
uration of 32×32 atoms in an array of 32×64 traps. Red-rec extracts
and implants significantly more atoms than the 3-approx algorithm.
(c) Distribution of the number of displacement operations performed
per atom for the red-rec (blue) and MWMCM (yellow) algorithms.
Red-rec displaces some atoms more times than the largest number
of displacements achieved by MWMCM. (d) Distribution of the
number of transfer operations per atom for the red-rec (blue) and
3-approx (purple) algorithms. As opposed to the 3-approx algorithm
that extracts and implants each atom at most once, red-rec extracts
and implants the same atom more than once.

The MWMCM algorithm minimizes the total number of dis-
placement operations and the 3-approx algorithm bounds the
total number of transfer operations by at most three times its
optimal value (see Appendix A for a description of these two
algorithms).

We specifically focus on the problem of preparing a square-
compact configuration of NT

a = √
NT

a ×√
NT

a atoms in the
center of rectangular array of Nt = √

NT
a ×2

√
NT

a traps, i.e.,
with twice as many traps as desired atoms (η = 2). We set the
number of surplus atoms to zero by choosing the number of
atoms in the initial configuration to be equal to the number of
atoms in the target configuration, i.e., N0

a = NT
a .

The red-rec algorithm performs slightly more displace-
ment operations than the optimal value achieved by the
MWMCM algorithm. The relative numbers of displacement

operations decrease with increasing system size and reach
a value of 1.04(1) for a configuration of NT

a = 322 = 1024
atoms [Fig. 12(a)]. The slight excess in displacement oper-
ations results from a small fraction of atoms, such as those
redistributed across distant pairs of donor-receiver columns,
undergoing up to twice as many displacements as the max-
imum per-atom displacement value measured for MWMCM
[Fig. 12(b)]. The number of displacement operations is pos-
itively correlated with the number of transfer operations
[Fig. 12(c)]. Compared to the 3-approx algorithm, the red-rec
algorithm performs 1.5 to 2.0 times more transfer operations.
We note that transfer operations include both extraction and
implantation operations, so the total number of transfer oper-
ations is even by construction, that is, all extracted atoms are
implanted back in the static trap array. The relative numbers
of transfer operations increase with increasing system size, up
to a value of 1.8(1) for a configuration of NT

a = 322 atoms
[Fig. 12(a)]. Whereas the 3-approx algorithm leaves nearly
half of the atoms idle, the red-rec algorithm moves nearly
all atoms at least once as it sequentially reconfigures each
column at least once with fewer than 7% of the columns
getting reconfigured more than twice [Fig. 12(d)].

APPENDIX C: TERMINATION OF THE RED-REC
ALGORITHM

We claim that, as long as the problem is solvable, there
always exists at least one pair of donor-receiver columns for
which at least one atom can be redistributed from the donor
to the receiver (where at least one distribution row exists
between the columns). This invariant guarantees that the red-
rec algorithm indeed terminates. To see why, suppose instead
that there are no distribution rows between any of the donor-
receiver pairs. Consider the donor-receiver pair that minimizes
the distance between the donor column and the receiver col-
umn and denote this pair by (cd , cr ). By assumption, these
two columns cannot be adjacent as otherwise we have at least
one distribution row. Assume that distribution rows between
adjacent columns are not restricted to the storage region.
Moreover, since we select (cd , cr ) by minimizing the distance
between the two columns, there cannot exist any donor col-
umn or receiver column between cd and cr . Otherwise, we can
find a donor-receiver pair consisting of two columns separated
by fewer columns than (cd , cr ), contradicting our choice of
pair. Hence, all columns between cd and cr must be neutral
columns that have therefore been previously solved. This in
turn implies that the storage region between cd and cr must
be free of atoms and each row in this region can be used as a
distribution row.
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