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Electronic excited states from a variance-based contracted quantum eigensolver
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Electronic excited states of molecules are central to many physical and chemical processes, and yet they are
typically more difficult to compute than ground states. In this paper we leverage the advantages of quantum
computers to develop an algorithm for the highly accurate calculation of excited states. We solve a contracted
Schrödinger equation (CSE)—a contraction (projection) of the Schrödinger equation onto the space of two
electrons—whose solutions correspond identically to the ground and excited states of the Schrödinger equation.
While recent quantum algorithms for solving the CSE, known as contracted quantum eigensolvers (CQEs), have
focused on ground states, we develop a CQE based on the variance that is designed to optimize rapidly to a
ground or excited state. We apply the algorithm to compute the ground and excited states of H2, H4, and BH.
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I. INTRODUCTION

Electronic excited states of molecules are critically impor-
tant in any physical or chemical process that is not confined
to the ground state such as photoabsorption and emission
[1], nonadiabatic dynamics [2,3], and electron scattering and
transport [4,5]. Despite their central importance, excited states
are more difficult to compute than ground states [6,7]. Typ-
ical approaches compute the excited states as a response to
the ground state [8–12], which has limitations whenever ex-
cited states differ substantially from the ground state, e.g.,
in double- or multi-excitation processes [13], charge-transfer
states [14,15], core excitations [16], Rydberg states [17], as
well as conical intersections [18,19].

One promising direction is to harness the potential advan-
tages of quantum computers [20,21]. In the absence of noise,
quantum computers can prepare and measure quantum states
whose wave functions are challenging to represent and ma-
nipulate on classical devices, potentially realizing significant
advantages relative to classical devices [22]. While recent
molecular algorithms have primarily focused on computing
ground states [21] or obtaining multiple excited states at
once from response theory [23–27] or a Krylov expansion
[23,28–44], quantum computers may be particularly well
suited to realizing more accurate and direct calculations of
excited states. The possible advantages for ground states are,
in principle, amplified for excited states, which are often
formed from excitations to degenerate orbitals that produce
significant multireference correlation even when the ground
state is minimally correlated.

In this paper we develop an algorithm for the highly ac-
curate state-specific calculation of excited states on quantum
devices. Consider the contraction of the Schrödinger equa-
tion onto the space of two electrons, known as the contracted
Schrödinger equation (CSE) [45–49]. The CSE has two signif-
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icant properties: (i) its solutions correspond identically to the
ground-and excited-state solutions of the Schrödinger equa-
tion [45,46], and (ii) its compact structure reveals an exact
two-body exponential parametrization of both ground and
excited states [50,51]. Recent quantum-computing algorithms
for solving the CSE or a part of the CSE, known as contracted
quantum eigensolvers (CQEs) [52–57], have mainly focused
on the ground state. We develop a CQE based on the energy
variance that is designed to optimize rapidly to a ground or
excited state. Using the CSE has a potential advantage over
other variance-based approaches [58–63] because consider-
ing the CSE in addition to the variance provides a compact,
exact ansatz for the wave function as a product of two-body
transformations [50,51]. Moreover, the product form of this
ansatz allows us to obtain exact results in the absence of
noise from optimizing only the parameters introduced in the
current iteration while variational methods—even those that
use an ansatz like the anti-Hermitian contracted Schrödinger
equation (ACSE) such as the adaptive variational quantum
eigensolver—require optimization of all parameters in the
calculation. To demonstrate, we apply the algorithm to com-
puting the ground and excited states of H2, H4, and BH.

II. THEORY

For a many-electron system consider the Schrödinger
equation

(Ĥ − En)|�n〉 = 0 (1)

in which Ĥ is the Hamiltonian operator and |�n〉 is the N-
electron wave function for the nth state. The CSE projects
the Schrödinger equation onto all two-electron transitions
[45–49,52]:

〈�n|â†
i â†

j âl âk (Ĥ − En)|�n〉 = 0, (2)

where â†
i and âi are the creation and the annihilation opera-

tors for the ith orbital. As proved by Nakatsuji [64] in first
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quantization and one of the authors [45] in second quan-
tization, the CSE is satisfied by a wave function |�n〉 if
and only if it satisfies the Schrödinger equation. The proofs
show that the CSE implies the energy variance which implies
the Schrödinger equation. Hence, the CSE determines a set
of ground and excited states that is identical to that of the
Schrödinger equation.

As shown previously, the CSE can be solved for the
ground-state wave function by minimizing the following en-
ergy functional iteratively on a quantum computer [52–57]:

min
2Fm

E [2Fm], (3)

where

E [2Fm] = 〈�m|Ĥ |�m〉, (4)

in which

|�m〉 = eF̂m |�m−1〉 (5)

and

F̂m =
∑

pqst

2F pq;st
m â†

pâ†
qât âs. (6)

The F̂m is the two-body operator in the exponential transfor-
mation of the wave function at the mth iteration, and 2Fm is
the two-body transformation matrix, defining F̂m in Eq. (6)
where its elements are explicitly denoted by

2
F

pq;st
m . This wave

function is the CSE ansatz with the special property that its
iterative minimization with respect to each two-body operator
F̂m converges to an exact solution of the CSE and, hence,
an exact solution of the Schrödinger equation within a given
finite basis set [50,51]. The gradient of the energy with respect
to the latest 2Fm is the residual of the CSE. Hence, the gradient
vanishes if and only if the CSE is satisfied. We can also
implement subsets of the CSE ansatz on a quantum computer.
For example, we have restricted the two-body operators F̂m

to be anti-Hermitian which generates strictly unitary transfor-
mations [52–56]. In this case the vanishing of the gradient
causes the anti-Hermitian part of the CSE, known as the ACSE
[48,49,65–68], to be satisfied.

To extend to excited states, we replace the iterative min-
imization of the energy by an iterative minimization of the
energy variance:

min
2Fm

Var[2Fm], (7)

where

Var[2Fm] = 〈�m|(Ĥ − Em)2|�m〉, (8)

in which

Em = 〈�m|Ĥ |�m〉, (9)

with the wave function given by the CSE ansatz in Eq. (5)
and the two-body operator F̂m and transformation matrix 2Fm

defined in Eq. (6). Throughout we assume that the wave func-
tion |�m〉 has been renormalized to one if necessary. While
the excited states are saddle points of the energy, they are
minima of the variance. Moreover, any minimum is an exact
stationary-state solution of the Schrödinger equation (and the

CSE) if the variance vanishes. The variance has recently been
applied for excited states in the context of the variational
quantum eigensolver [58–63]; however, in these studies the
variance is not used to determine the variational ansatz for
the wave function. Here we use the CSE, which implies the
variance [45,64], to not only perform the optimization but also
to determine the iterative structure of the wave function via
Eq. (5). The CSE ansatz is formally exact with the important
property that it remains exact even without reoptimization of
the 2Fm−q for q > 0 from previous iterations. Assuming that
the Hamiltonian and wave function are real, the gradient of
the variance with respect to 2Fm evaluated in the limit that
2Fm = 0 can be computed as follows:

∂Var

∂
(2

F st ;pq
m

) = 2〈�m−1|
(
�̂

pq
st − 2Dpq

st

)
(Ĥ − Em−1)2|�m−1〉,

(10)

in which �̂
pq
st = â†

pâ†
qât âs and the elements of the two-particle

reduced density matrix (2-RDM) are
2Dpq

st = 〈�m−1|�̂pq
st |�m−1〉. (11)

Practically, we can approximate the minimization of the
variance at the mth iteration by selecting 2Fm to be propor-
tional to the direction of the gradient or a related search
direction from any gradient-descent method with the pro-
portionality constant (or step size) being determined by a
line search. Other related generalizations of the variational
principle in the CQE can also be considered. For example,
we can (1) solve the CSE or ACSE directly for the wave
function, (2) minimize the least-squares norm of the CSE
or ACSE, or (3) augment the variance functional with an
additional functional such as a small amount of the energy
functional.

Optimizing the energy variance is ideal for a quantum
computer. While computing the variance requires not only
the two-particle reduced density matrix (2-RDM) but also the
four-particle RDM on a classical computer, we can readily
compute it at the mth iteration on a quantum computer by
introducing an ancillary qubit to generate the extra wave func-
tion

|�̃m〉 = eiδ(Ĥ−Em )|�m〉 (12)

such that

〈�m|(Ĥ − Em)2|�m〉 ≈ 1 − Re〈�m|�̃m〉
δ2/2

, (13)

where Re(z) returns the real part of z, the approximation is
accurate to O(δ2), and δ is a small parameter. The schematic
circuit diagram in Fig. 1 shows how we can use the ancillary
qubit to prepare an entangled state of the two wave functions
whose tomography can yield the overlap between the two
states. This formula is an extension of the difference formulas
employed in previous CQE algorithms [52] as well as in the
context of open quantum systems [69]. As shown in previous
work, the limit of δ approaching zero can be computed by
using Richardson’s extrapolation from a series of δ values
[69,70].

Recently, we have shown how the residuals of both the
CSE and ACSE can be efficiently calculated on a quantum
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FIG. 1. We first prepare the initial state |�m〉 on the main
qubits and apply the Hadamard gate to the ancillary qubit to
generate (|0〉 ⊗ |�〉 + |1〉 ⊗ |�〉)/

√
2. We then apply a controlled

unitary operation that generates the extra wave function |�̃m〉 in
Eq. (12) when the ancillary qubit is 1 to produce (|0〉 ⊗ |�m〉 +
|1〉 ⊗ |�̃m〉)/

√
2. Applying a second Hadamard gate to the ancillary

qubit yields (|0〉 ⊗ |�m + �̃m〉 + |1〉 ⊗ |�m − �̃m〉)/2. Measuring
the ancillary qubit in the z basis 〈σz〉 gives the real part of the
overlap Re(〈�m|�̃m〉) that allows us to compute the variance as
in Eq. (13) [71].

computer from only a 2-RDM-like tomography [52,57]. Sim-
ilarly, the key term in the gradient of the variance with respect
to 2F in the CSE wave-function ansatz can be computed from
a 2-RDM-like tomography:

〈�m|�̂pq
st (Ĥ − Em)2|�m〉 ≈

2Dpq
st − Re〈�m|�̂pq

st |�̃m〉
δ2/2

, (14)

where the approximation is accurate to O(δ2). While the left
side formally depends on the six-particle RDM, through a
combination of state preparation and tomography, we can ob-
tain the gradient of the variance with the CSE ansatz from only
the measurement of the two-particle reduced transition matrix
between the states |�m〉 and |�̃m〉. Because of the ancillary
qubit, the tomography of the 2-RDMs of each state as well as
their two-particle reduced transition matrix can be performed
by standard techniques—measuring the two-particle expecta-
tion values expressed as Pauli strings, as discussed in previous
work [52,57], although more advanced sampling techniques
like shadow tomography [72] could also be employed. The
circuit to generate the state for measuring the two-particle
reduced transition matrix is similar to that given in Fig. 1 for
the transition overlap in the variance. Formulas in Eqs. (13)
and (14) assume that the Hamiltonian and wave function are
real, but as in Refs. [52,69], they can be readily generalized
through additional measurements to treat complex Hamilto-
nians and wave functions as well as to realize higher-order
approximations. The algorithm for the variance-based CQE
for excited states is summarized in Table I. In Step 5 we
compute the gradient descent direction F̂m+1 which can be

TABLE I. Variance-based CQE algorithm.

Algorithm: Variance-based CQE
Given m = 0 and convergence tolerance ε.
Choose initial wave function |�0〉.
Repeat until the energy variance is less than ε.
Step 1: Prepare |�̃m〉 = eiδ(Ĥ−Em )|�m〉
Step 2: Measure variance using Eq. (13)
Step 3: Measure 〈�m|â†

pâ†
qât âs|�̃m〉 in Eq. (14)

Step 4: Compute gradient from Eqs. (10) and (14)
Step 5: Compute gradient-descent search direction F̂m+1

Step 6: Prepare |�m+1〉 = eF̂m+1 |�m〉
Step 7: Optimize magnitude of F̂m+1 via Steps 1, 2, and 6
Step 8: Set m = m + 1

the gradient, as in Eq. (14), or a second-order update from a
conjugate gradient or quasi-Newton method [73]; in Step 7 we
optimize the magnitude of F̂m+1 by performing a line search
along the descent direction.

III. APPLICATIONS

After a discussion of the methodology in Sec. III A, we
present the results from the excited-state CQE algorithm in
Sec. III B.

A. Methodology

To demonstrate, we apply the variance-based CQE
algorithm to computing the excited states of the molecules
H4, BH, and H2. Both BH and H4 are solved classically
with all unitary transformations performed with respect
to a wave function that is represented by a vector. These
calculations demonstrate the algorithm in the absence of
either noise or sampling errors. We also compute the excited
states of H2 which is simulated in Qiskit [74] using both
a state-vector simulator without noise or sampling errors
as well as a simulator with a Qiskit noise model that
reproduces the errors of the IBM quantum computer Lagos.
We encode the fermionic molecular H2 Hamiltonian onto
four qubits through the Jordan-Wigner mapping [75]. After
decomposing the operators in the Pauli basis, we implement
the unitary propagators by first-order Trotter expansions. The
addition of a fifth, ancillary qubit allows us to measure the
transition overlap and the two-particle transition matrix in
Eqs. (13) and (14), respectively. We measure the 2-RDM
and two-particle transition matrix by standard techniques
where the fermionic operators are expressed as Pauli strings
[52,57]. The fake-Lagos simulator employs 8192 shots for its
measurements.

The H4 molecule is treated in its linear conformation
with adjacent hydrogen atoms separated by 1 Å. We use
a minimal Slater-type orbital (STO-3G) basis set [76] for
H2 and an STO-6G basis set for H4 and BH as well as a
frozen 1s core for the boron atom in BH. Molecular orbitals
from the Hartree-Fock method and one-and two-electron in-
tegrals are obtained with the Quantum Chemistry Package
in Maple [77]. In implementing the algorithm in Table I,
we restrict the F̂ operators to be anti-Hermitian, making
the two-body exponential transformations unitary. For H2 we
use the gradient for the gradient-descent direction in Step 5
and determine the magnitude of the F̂m+1 in Step 7 from a
fixed step ε along the gradient with ε = 0.15 for the state-
vector and fake-Lagos simulators, but for H4 and BH we
compute a quasi-second-order gradient descent direction in
Step 5 from a limited-memory Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method [73] and determine the magnitude
of the F̂m+1 in Step 7 from an exact line search. The δ pa-
rameter in Step 1 and Eqs. (13) and (14) is taken in the
infinitesimal limits for the classical and state-vector sim-
ulations while it is set to a finite value δ = 0.01 for the
fake-Lagos simulator to distinguish the measured change from
the noise.

Initial guesses for the wave function are the Slater deter-
minants from the Hartree-Fock orbitals; when 〈Ŝz〉 = ±1, we
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TABLE II. The energy, energy error, variance, and least-squares CSE norm of the ground state and each of the first 15 excited states of
linear H4 from the variance-based CQE are shown. Energies are given in hartrees.

State 2S + 1 〈Ŝz〉 Energy Iterations Energy error Variance CSE norm

0 1 0 −2.180 965 69 20 6.6×10−7 8.0×10−7 4.3×10−8

1 3 −1 −1.950 190 88 8 4.0×10−7 4.1×10−7 3.4×10−8

2 3 0 −1.950 190 89 7 3.9×10−7 5.2×10−7 2.3×10−8

3 3 1 −1.950 190 88 8 4.0×10−7 4.1×10−7 3.4×10−8

4 3 −1 −1.736 546 45 13 6.4×10−7 3.7×10−7 3.9×10−8

5 3 0 −1.736 545 43 9 1.7×10−6 7.8×10−7 3.9×10−8

6 3 1 −1.736 546 45 13 6.4×10−6 3.7×10−7 3.9×10−8

7 1 0 −1.667 110 63 17 8.6×10−7 9.8×10−7 6.5×10−8

8 1 0 −1.638 926 31 9 4.1×10−7 3.3×10−7 2.0×10−8

9 3 −1 −1.457 133 77 17 7.9×10−7 6.0×10−7 7.1×10−8

10 3 0 −1.457 134 48 21 7.7×10−8 9.5×10−7 7.6×10−8

11 3 1 −1.457 133 77 17 7.9×10−7 6.0×10−7 7.1×10−8

12 1 0 −1.349 401 00 37 9.1×10−7 8.6×10−7 5.4×10−8

13 3 −1 −1.303 974 95 37 9.8×10−6 7.3×10−7 6.4×10−8

14 3 0 −1.303 984 43 11 2.8×10−7 3.7×10−7 2.2×10−8

15 3 1 −1.303 971 02 39 1.4×10−5 9.6×10−7 1.0×10−7

use a single high-spin Slater determinant, but when 〈Ŝz〉 = 0,
unless noted otherwise, we use an equal linear combination
of two determinants that are related by switching the α (spin
up) and β (spin down) orbitals with the relative phases being
+1 for a singlet and −1 for a triplet. Specific excited states
are targeted by selecting particle-hole excitations from the
Hartree-Fock ground state and, if necessary, spin adapting the
excitations. Further control on the target states can be obtained
by adding a second objective function to the optimization
that biases the energy landscape towards a specific energy or
energy range.

B. Results

The ground state and the first 15 excited states of linear
H4 as computed from the variance-based CQE are shown
in Table II. The algorithm is performed iteratively until the
energy variance is less than 10−6 a.u. The number of iterations
required for convergence varies from 7 for the second-excited
state to 39 for the fifteenth excited state. At convergence the
energy error is also less than 10−6 hartrees except for the
fifth, thirteenth, and fifteenth excited states. Even though the
energies of the excited states need not be upper bounds to the
energies from exact diagonalization, we find that all excited-
state energies are strictly above those from diagonalization.
We also compute the least-squares error in the CSE—the sum
of the squares of the errors in the CSE, which is approximately
an order of magnitude less than the energy variance for each
state. For the fifth excited state, Fig. 2 shows the convergence
of the energy error, variance, and least-squares CSE norm.
We observe superlinear convergence toward zero in all three
metrics for the error.

The energies of the ground state and the first three excited
states of BH are shown as functions of the bond distance
in Fig. 3. The solid lines denote the ground- and excited-
state energies from exact diagonalization while the symbols
denote the energies from the variance-based CQE. In each
case the energy variance in the CQE is converged to less than

10−5 a.u. We observe that the CQE reproduces the potential-
energy curves with maximum energy errors of 0.000 01,
0.000 08, 0.000 04, and 0.000 24 hartrees for the ground
and first three excited states, respectively. Additional results
from the BH calculations are available in the Supplemental
Material [78].

The ground and first-three excited states of H2 with
〈Ŝz〉 = 0 are computed. The five-qubit experiments were con-
ducted with and without noise on fake-Lagos and state-vector
quantum simulators in Qiskit, respectively. To demonstrate
convergence, we consider the H2 molecule at an internu-

FIG. 2. Superlinear convergence of the energy error, variance,
and least-squares CSE norm is shown for the fifth excited state of
linear H4.
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FIG. 3. Energies of the ground state and the first three excited
states of BH are shown as functions of the bond distance. Symbols
represent variance-based CQE energies while solid lines represent
energies from exact diagonalization.

clear separation of 2.0 bohr. As shown in Fig. 4, using the
state-vector simulator, we converge to the exact excited-state
energy within 10−6 hartrees in less than 10 iterations; using
the fake-Lagos simulator, we obtain the exact excited-state
energy with an error of about 0.03 hartrees in about eight

FIG. 4. The convergence of an excited-state energy of H2 at
2.0 bohr on a quantum simulator with (fake-Lagos) and without
(state-vector) noise.

FIG. 5. The dissociation curves for the ground and first-three
singlet excited states of H2 are shown with (fake-Lagos) and without
noise (state-vector).

iterations. For the first and second excited states we use single
particle-hole excitations of the Hartree-Fock Slater determi-
nant as initial guesses while for the third excited state we
use a doubly excited Hartree-Fock Slater determinant. The
dissociation curves of H2 are shown in Fig. 5 with and without
noise. The errors do not show significant differences for the
various states, and they are also quite uniform throughout the
dissociation. Additions results from the H2 calculations are
available in the Supplemental Material [78].

IV. CONCLUSIONS

Here we present a variance-based CQE for computing
highly accurate molecular excited states on quantum comput-
ers. The CQE is a family of algorithms in which a contraction
of the Schrödinger equation to the space of two particles
(CSE) is solved for stationary-state energies and their 2-
RDMs. The structure of the CSE implies an exact ansatz
for any ground- or excited-state wave function in which a
two-body exponential transformation is iteratively applied and
optimized to update a trial wave function. Importantly, unlike
iterative variational quantum eigensolvers, the CQE does not
need to re-optimize previous transformations to satisfy the
CSE and thereby solve the Schrödinger equation. While re-
cent work with CQE has focused on the ground state, here
we present a CQE algorithm for excited states in which we
iteratively minimize the energy variance with respect to the
CSE (or ACSE) ansatz. We show that the variance-based
CQE yields highly accurate ground- and excited-state ener-
gies for the example cases of H4 and BH in the absence
of noise and H2 in the presence of noise. Future work will
examine the application of the variance-based CQE on noisy
intermediate-scale quantum (NISQ) computers. The present
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approach represents an important step towards the accurate
modeling of molecular excited states on NISQ and fault-
tolerant quantum computers.

Example notebooks of the code and calculations are avail-
able on Github [79].
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