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A nuclear-spin-based RASER (radio-frequency amplification by stimulated emission of radiation) is an ideal
experimental system to explore nonlinear interaction phenomena of nuclear spins coupled via virtual photons
to a resonator. This is due to the RASER being stable for several hours, allowing for extended observation of
these phenomena. Nonlinear phenomena in multimode RASERs range from mode oscillations in synchrony,
frequency shifts, frequency combs, period doublings, and even chaos. These phenomena are observed in a
parahydrogen-pumped two-compartment proton RASER. In two independently pumped compartments, the
separation in frequency space between the two RASER modes is precisely controlled with a magnetic field
gradient. By controlling the mode separation, we can select the type of nonlinear phenomena observed. A key
finding is that the ranges of mode separation where chaos and synchrony occur are very close together. The
experimental results are supported by numerical simulations, based on two-mode RASER equations.

DOI: 10.1103/PhysRevA.108.022806

I. INTRODUCTION

RASER (radio-frequency amplification by stimulated
emission of radiation) emission in nuclear spin 1/2 systems
requires a population inversion between two Zeeman levels,
d0 = N2–N1. This population inversion can be generated via
hyperpolarization techniques, where a large negative nuclear
spin polarization can be created, corresponding to a positive
population inversion d0.

The most common hyperpolarization techniques include
dynamic nuclear polarization (DNP) [1–4], spin exchange
optical pumping (SEOP) [5–8], metastability exchange
optical pumping (MEOP) [9], and parahydrogen (p-H2)-
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based approaches such as para-hydrogen-induced polarization
(PHIP) [10–14] and signal amplification by reversible ex-
change (SABRE) [15–19]. These hyperpolarization schemes
have been used to establish nuclear spin based RASERs
operating in the gas [20–22], liquid [23–26], and solid
phase [27–30].

SABRE is an efficient way to continuously hyperpolarize
(or pump) a liquid state 1H RASER at room temperature
and at low and high magnetic field [15,31]. In SABRE,
p-H2 and target substrates reversibly coordinate to a metal-
organic catalyst with a system-specific contact time. During
this time, the singlet state of p-H2 is transferred and con-
verted via J couplings into a highly polarized state of the
target nuclei [15,16]. Using this approach, the first para-
hydrogen-pumped 1H RASER demonstrated a substantial
increase in the precision of J-coupled nuclear magnetic
resonance (NMR) spectroscopy [32]. Subsequent work on
SABRE- and PHIP-pumped 1H RASERs at high and low
magnetic fields have shown strong connections to nonlinear
science and have extended the range of possible applications.
These include high-resolution NMR spectroscopy, gyroscopes
and magnetometry, membrane-pumped RASERs, RASER-
induced multinuclear signal enhancement, and RASER MRI
[31,33–39].
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In the present work, we analyze nonlinear phenomena in
these systems including synchrony and chaos. These two are
fundamental phenomena which play an essential role in many
disciplines of science and technology [40–44]. In the context
of a two-mode RASER, synchrony means that both modes
oscillate at a single frequency with a fixed phase relationship
between them [44]. This results in a single line in the RASER
spectrum. For a two-mode RASER, chaotic motion is asso-
ciated with a continuum of spectral lines, and the temporal
characteristics of the RASER signal are very sensitive to the
initial conditions [35,44].

Chaos arises in many nonlinearly interacting systems, in-
cluding nuclear spin 1/2 systems. [23,45–47] Recently, 1H
RASER experiments have shown that chaos and intermit-
tence can occur in a p-H2-pumped NMR RASER at 1.45
tesla [35]. However, for these experiments, the population
inversion d0 was generated outside of the magnet through
a hydrogenation reaction of vinyl acetate and hydroxyethyl
propionate. This initial population inversion was very high
at d0 ∼ 1019, and consequently the system “passed” through
several nonlinear regimes while d0 was decaying over time.
Spectra corresponding to two RASER modes of J-coupled
lines were observed for about 1 min. Period doubling and
chaos were also observed over short time windows (≈2 s).
This motivates the precise study of nonlinear phenomena in
RASER systems. Limitations of previous work include the
transient (non-steady-state) nature of the acquired signals as
well as the fixed frequency difference between the modes
given by the J coupling [35].

Here we describe an experimental system designed for
precise measurements of chaos, multiple-period doubling, and
synchrony in RASER systems. Stable continuous RASER
emission is generated using SABRE pumping and proton in-
ductive detection at 7.8 mT at a proton resonance frequency
of 333.3 kHz. Under these conditions, crucial experimental
parameters for RASER emission remain constant [33,39], as
will be discussed in Secs. II and III. A frequency separation
between two RASER modes is achieved and controlled by
a magnetic field gradient Gz over two individually pumped
compartments. Both compartments are pumped independently
by a continuous parahydrogen (p-H2) gas flow, generating
two stable 1H RASER modes which oscillate at two distinct
frequencies. The separation between the two modes can be
adjusted to arbitrary values by controlling the strength of a
magnetic field gradient Gz. Here the nonlinear phenomena are
dominated by radiation damping. Distant dipolar field effects
are averaged out through motion induced by the p-H2 flow
and primarily lead to an equal frequency shift of both modes
(see Appendix D). The resulting stable continuous RASER
signals can be observed over periods of minutes and allow
for a precise Fourier analysis of the signal to identify all
mentioned nonlinear phenomena.

II. EXPERIMENTAL

The experimental realization of the SABRE-pumped two-
compartment RASER is illustrated in Fig. 1. All experiments
were conducted in an electromagnet with a static magnetic B0

field ranging from 0 to 20 mT. Four shimming coils (Gx, Gy,
Gz, and G2

z) were used to attain a magnetic field homogeneity

FIG. 1. Experimental setup of the SABRE-pumped two-
compartment 1H RASER, adapted from Suefke et al. [32], depicting
the parahydrogen (p-H2) supply (red) consisting of the generator,
valves (V), a needle valve (NV), pressure gauge (p), and the injection
capillaries, as well as the external high-quality enhanced (EHQE)
NMR circuit48 (blue) and the magnetic field B0 with gradient-induced
additional term z Gz (green). Bottom left: para-hydrogen molecule
(p-H2) together with SABRE catalyst IMes-Ir used to create neg-
ative polarization PH ≈ −3 × 10−3 of pyrazine (pz). Bottom right:
Example for a 1H chaotic signal of pyrazine measured over a time
period of 20 s.

of about 1 ppm over a volume of 0.5 cm3. The gradient
strength Gz = CzIz [constant Cz = 0.192 mG/(cm × mA)]
was varied throughout the experiments by changing the cur-
rent Iz. For sensitive NMR detection, a cylindrical coil (inner
diameter = 10 mm, height = 10 mm) was connected to an ex-
ternal ferrite LC-resonator with a quality factor of Qext ≈ 300.
The combined input coil with external resonator had a total
Q ≈ 100 (EHQE-NMR [48]) at a 1H detection frequency of
333.3 kHz (B0 = 7.8 mT). The 1H RASER signal was fed into
a low-noise preamplifier and a custom-made lock-in ampli-
fier. Typical signal acquisition times were 100 s with a data
acquisition rate of a few kHz. In these RASER experiments,
off-resonance frequencies varied between 40 and 160 Hz.

The liquid sample was contained in a cylindrical dual-
chamber glass sample cell (inner radius r = 4 mm) with a
volume of 0.21 cm3 per chamber. The two chambers were sep-
arated by a glass slide with s = 1 mm thickness (see Fig. 3).
The total sample volume was Vs = 0.42 cm3, and the sensitive
volume of the detection coil was ≈0.64 cm3, resulting in a
filling factor (the fraction of the coil detection volume filled
with sample) estimated as η = 0.66.

The required p-H2 delivery was realized by a custom-
made glass setup (see Fig. 1) in combination with one
glass capillary injecting gas into each chamber filled with
the SABRE solution (∼100 µm outer capillary diameter,
∼30 µm inner diameter). The p-H2 flow rate and pressure
were controlled with a needle valve in combination with a
flow meter and a pressure gauge. The p-H2 gas pressure was
varied between 2 and 7 bar with nearly equal p-H2 flow rate
in both chambers ranging from 10 to 100 sccm (standard
cubic centimeters per minute). The H2 gas (grade 5; purity
>99.999%) was enriched to 92%−93% p-H2 using a Bruker
BPHG 90 p-H2 generator. The sample solution was based on
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FIG. 2. Fourier and phase analysis of two nonlinear coupled oscillators. (a) Two beads at angular positions φ2 and φ1 rotate with angular
frequencies ω2 and ω1. (b) Numerical evaluation of separation �ν vs ν2 − ν1 based on Eqs. (1a) and (1b) and R = 12.6 s−1. Dotted lines
separate the linear, nonlinear, and mode-collapse regimes, where the vertical arrows indicate the three cases (c)–(e), with ν2 − ν1 = 8 Hz
(c), ν2 − ν1 = 4.3 Hz (d), and ν2 − ν1 = 3.5 Hz (e), respectively. Three top panels in (c)–(e) indicate simulated signals S = cosφ1 + cosφ2,
with their corresponding spectra (middle), and the phase evolution φ∗

μ = φμ − 2πν0t , μ = 1, 2 (bottom). The spectra (middle) with a center
frequency of ν0 = 50 Hz are transformed in the absolute mode over the time slice [100 s, 200 s] using a Gauss filter. The three panels in the
bottom show different phase evolutions starting with the same initial conditions φ2(0) = −π/2 and φ1(0) = π/2.

a composition known to yield high proton hyperpolarization
using SABRE [15,17] and prepared and handled under inert
gas conditions. A methanol-d4 solution contained the catalyst
precursor ([IrCl(COD)(IMes)]) at 5 mmol/L as well as the
target molecule pyrazine at cpyr = 100 mmol/L [49].

Pyrazine was chosen as the target molecule because it only
has a single-proton NMR resonance with npyr = 4 chemically
and magnetically equivalent protons. The catalyst was acti-
vated in situ with a continuous p-H2 flow of 40–70 sccm
at 4 to 5 bar overpressure for several minutes prior to each
experiment. p-H2 overpressure also helps minimizing sol-
vent evaporation, although the p-H2 bubbling does cause
methanol-d4 loss over time, limiting the measurement times
to about 1.5 h at a p-H2 flow rate of 70 sccm. The build-up of
population inversion d0 during the activation was monitored
by applying multiple 90° excitation pulses until the RASER
threshold is reached, which is marked by continuous RASER
oscillations. The pumping rate � of the SABRE process was
measured during the initial startup of the RASER signal. Typ-
ical values for � in the SABRE experiments were between
0.08 and 0.16 s−1. At flow rates <70 sccm, the polarization
is not high enough to observe period doubling or chaos. T1,
T ∗

2 for the pyrazine sample were measured, ranging from 5
to 12 s and from 0.4 to 0.7 s, respectively, depending on
the actual concentration of pyrazine and catalyst which both
change slowly over time due to methanol evaporation.

Each chamber generates its own mode in the presence of a
gradient, which is elaborated in detail in Sec. III. To generate
a mode separation �ν = ν2 − ν1, the current Iz was varied
in the range from −20 to +16 mA. For the given Cz, this
corresponds to a range of gradients −3.84 mG/cm < Gz <

3.07 mG/cm. Continuous RASER signals at different mode
separations were acquired for 50–100 s at each given gradient
Gz = CzIz.

III. THEORETICAL MODEL

A two-mode RASER model based on the RASER theory
[33,35] and with the additional inclusion of a magnetic field
gradient is described here to analyze and understand the ex-
perimental results. In Sec. II A, a frequency and phase analysis
is presented for two nonlinearly coupled oscillators moving in
the one-dimensional angular 	 space (1D model). Next, in
Sec. II B, the gradient-controlled two-compartment RASER
equations moving in the three-dimensional (d , A, 	) space
are presented (3D model). An intermediate case in the (A, 	)
space (2D model) is derived in Appendix B. All three models
are compared in Sec. IV.

A. Two nonlinear coupled oscillators in 1D � space

In this subsection we present a Fourier and phase analysis
of two nonlinear coupled oscillators in one dimension. The
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model is used to explain several phenomena, such as nonlinear
frequency shifts, frequency comb, and synchronous motion
(i.e., spectral line collapse). Furthermore, the results are used
as a reference to compare with the exact two-compartment
RASER model (Sec. III B). The model is represented by two
rotating beads [Fig. 2(a)] at angular positions φ1 and φ2,
which oscillate with angular frequencies ω1 and ω2. The two
oscillators are assumed to be frictionless and are coupled by
a nonlinear element described by R cos(φ2 − φ1), where R
is the strength of the coupling in units (s−1). The governing
equations of motion [44] are given in the bottom of Fig. 2(a).
Here we focus on a Fourier and phase analysis of the two
nonlinearly coupled oscillators and on the expected depen-
dence of the predicted mode separation �ν as a function of
the frequency difference ν2 − ν1. It is convenient to introduce
the phase difference 	 = φ2 − φ1, which represents the an-
gular variable of motion in one dimension. The equation of
motion with respect to 	 is obtained by subtraction of the two
equations in the bottom of Fig. 2(a), which results in

	̇ = (ω2 − ω1) − 2R sin 	. (1)

Figures 2(c)–2(e) show the numerical evaluation of the
projected total signal amplitudes cosφ2(t ) + cosφ1(t ) (top),
with the corresponding Fourier transformed spectrum (mid-
dle trace) and the evolution of the two transformed phases
φ∗

2 (t ) and φ∗
1 (t ) (bottom). The star indicates the transfor-

mation of the phases φ2 and φ1 into a frame which rotates
with the angular frequency ω0 = (ω2 + ω1)/2, which means
explicitly φ∗

2 = φ2 − ω0t and φ∗
1 = φ1 − ω0t . In the first case

in Fig. 2(c), where |ω2 − ω1| > 2R (|ν2 − ν1| > R/π ) holds,
the two modes oscillate nearly independently, and the cor-
responding spectrum (middle) is characterized by two lines
at frequencies ν2 and ν1 centered at ν0 = 0.5(ν2 + ν1) and
separated by �ν ≈ ν2 − ν1. The two lines are accompanied
on both sides by smaller lines, and two consecutive lines
are all separated by �ν. The transformed phases (bottom)
evolve as a linear function of time, φ∗

2 = (ω2 − ω0)t and
φ∗

1 = (ω1 − ω0)t , so d/dt (φ∗
2 − φ∗

1 ) = (ω2 − ω1). Provided
that |ν2 − ν1| � R/π , all side lines of the frequency comb
vanish, and the spectrum is characterized by exactly two
lines at frequencies ν2 and ν1 and separated by �ν = ν2 −
ν1. In the second case in Fig. 2(d), close to |ω2 − ω1| ≈
2R and|ω2 − ω1| > 2R, the spectrum is a dense frequency
comb with several side lines and with a center frequency at
ν0. The separation between two consecutive lines is �ν �
|ν2 − ν1|. The two phases φ∗

2 and φ∗
1 are linear functions of

time on average, and the slope is smaller than |ω1,2 − ω0|.
Each phase is superimposed by periodic wiggles which reflect
phase modulations caused by the nonlinear interaction. The
observed frequency comb in the spectrum is a result of this
phase modulation. In the third case in Fig. 2(e), |ω2 − ω1| <

2R, the signal (top) oscillates like a pure cosine, and the
corresponding spectrum has collapsed into one line at the
center frequency ν0. After a short transient evolution of about
100 ms (see bottom) the two phases become constant but
not equal. The two modes oscillate in synchrony at one fre-
quency ν0 with a fixed phase difference, 	s = (φ∗

2 − φ∗
1 )s =

arcsin(|w2 − w1|/2R).

FIG. 3. Cross section of a cylindrical sample cell with two sep-
arated compartments in the shape of equal circular segments. Both
compartments are exposed to a total magnetic field Bz = B0 + zGz,
where B0 is a homogeneous magnetic field and Gz the magnetic field
gradient. Both compartments are RASER active since they contain
sufficiently negative polarized 1H spins (d0 > 1017). Parahydrogen
(p-H2) bubbles (red) move the liquid fast enough such that all 1H
spins in each compartment experience an average magnetic field
strength given by Bav = B0 ± zcGz. The center of gravity zc is given
by Eq. (3). The averaging process produces two 1H Larmor frequen-
cies, ν2 and ν1 (black dotted lines on the right) in each compartment.
The two red lines on the right correspond to the observed frequencies
in the RASER spectrum, which are separated by �ν.

Figure 2(b) shows a plot of the numerically evaluated
frequency difference �ν as a function of the frequency dif-
ference ν2 − ν1. At a fixed value for the coupling strength
R = 12.6 s−1, the transition into the synchronized motion (the
collapse into one line with �ν = 0) occurs at |ν2 − ν1| =
R/π = 4.01 s−1. Far from this region, i.e., for |ν2 − ν1| �
R, �ν is linear in the argument ν2 − ν1, more specifically
|�ν/(ν2 − ν1)| = 1. For values of ν2 − ν1 between the linear
and the collapse regime, �ν vs ν2 − ν1 is a nonlinear function
with a corresponding differential slope in absolute units larger
than one.

In summary, for the two nonlinear coupled oscillators
moving in 1D space, either a frequency comb with an
associated nonlinear frequency shift or a synchronized (col-
lapsed) regime is observable. Multiple frequency doubling
and chaos could not be observed in the 1D space. This is
expected by the Poincaré-Bendixson theorem [44], which
predicts the existence of chaos to require at least three
dimensions.

B. Gradient-controlled two-compartment RASER
model in the (d, A, �) space

We derive here the simplest possible model for a RASER
with two independently pumped compartments, which in the
presence of a magnetic field gradient Gz oscillate at two aver-
age angular frequencies ω1 and ω2. The corresponding scheme
is shown in Fig. 3. A cross section of a cylindrical sample is
shown (bottom left), which is composed of two equal circular
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segments with radius r and separated by a slide of thick-
ness s. Both compartments contain a liquid with chemically
equivalent RASER active 1H spins, evolving in a magnetic
field B(z) = B0 + z Gz (top left). The 1H angular frequency
along the central position at z = 0 is given by ω0 = γHB0,
where the gyromagnetic ratio of the 1H spins is given by
γH = 2π × 4.257 Hz/mG. The gradient coil produces a field
z Gz = CzIz z. Without motion of the liquid, the 1H Larmor
frequency would be a linear function of z. We assume that by
the pumping mechanism, all voxels of the sample are moving
fast enough (a few centimeters per second; see Appendix D)
such that the 1H spins of each compartment experience an
average magnetic field strength. This average field, indicated
by red arrows in the top of Fig. 3, is given by the magnetic
field at the two centers of gravity at ±zc in each compartment,
i.e., by B(±zc) = B0 ± zcGz.

Assuming equal sample geometries and pumping con-
ditions, both compartments experience the same average
dipolar field 〈Bdip〉 = 6.4 nT (see Appendix D). The value
for 〈Bdip〉 adds to the static field B0 and generates only a
small offset. Although distant dipolar fields play a signifi-
cant role in several nonlinear NMR and MRI experiments
[18,23,29,30,45,46,50,51] they are insignificant for the phe-
nomena as presented here due to motional averaging. The
average angular 1H frequencies ωμ, μ = 1, 2 in both compart-
ments can be expressed as

ωμ = γH[B0 + (2μ − 3)Gzzc], μ = 1, 2. (2)

The center of gravity zc can be calculated for the known ge-
ometry of the sample. Assuming a homogeneous spin density,
the number of spins at a slice of thickness dz at position z is
Sd (z)dz, where the function Sd (z) in Fig. 3 describes a circular
arc with a maximum value at angle θ0 at position z = s/2. For
z > 0 the center of gravity for the right compartment is given
by zc = (1/N ) ∫r

0 Sd (z) z dz, where N = ∫r
0 Sd (z) dz is the to-

tal number of spins in the right compartment. By symmetry
arguments, the center of gravity in the left compartment is –zc.
After a coordinate transformation z = r cos θ the integral over
dz can be rewritten as an integral over dθ , and the center of
gravity becomes zc = r ∫θ0

0 sin2θ cosθ dθ/ ∫θ0
0 sin2θ dθ . The

maximum angle θ0, as indicated in the bottom of Fig. 3, is con-
nected to the radius r and thickness s by θ0 = arccos(s/2r).
An evaluation of the integrals leads to an analytical expression
for the center of gravity

zc = 4rsin3θ0

3[2θ0 − sin (2θ0)]
. (3)

As a result of the averaging process, the two compart-
ments of the RASER will oscillate at two frequencies νμ =
ν0 + (2μ − 3)(γH/2π )CzIzzc, μ = 1, 2, which are indicated
by the dashed lines at the bottom right of Fig. 3. Accord-
ing to Eq. (3) and with s = 1 mm, r = 4 mm (θ0 = 1.4454)
the center of gravity is calculated as zc = 0.197 cm. For
magnetic field gradients used in our experiments ranging
from −3.84 mG/cm < Gz < 3.07 mG/cm the range of fre-
quency separations between the two compartments is given
by −6.4 Hz < ν2 − ν1 < 5.12 Hz.

The simplest possible equation of motion for the two-
compartment RASER, which can be compared to experiments
of two interacting RASER modes with equal amplitudes, is
given by

ḋ = �(d0 − d ) − d

T1
− 8βA2(1 + cos 	 ), (4)

Ȧ =
(

βd − 1

T ∗
2

)
A + βdA cos 	, (5)

	̇ = γH2zcGz − 2βd sin 	. (6)

In Eqs. (4)–(6), d , A, and 	 are the population inver-
sion, transverse spin component, and phase difference 	 =
φ2−φ1. Both modes have equal amplitudes A1 = A2 = A
and population inversions d1 = d2 = d (see Appendix A for
the derivation). In the following, the model represented by
Eqs. (4)–(6) will be termed the 3D model, since the motion
is in the three-dimensional (d , A, 	) space. 1/T ∗

2 and 1/T1

are the effective transverse and the longitudinal relaxation
rates, respectively. d0 and � are the equilibrium population
inversion and the pumping rate, which are assumed to be
equal for both modes. The coupling constant between the
two modes is given by β = μ0 h̄γ 2

HηQ/(4Vs), where μ0 is the
vacuum permeability, h̄ is Planck’s constant, Q is the quality
factor of the LC resonator, Vs denotes the sample volume, and
η = [0, 1] denotes the filling factor of the detection coil.

The parameters used for the simulations were measured
or calculated based on the actual experimental conditions.
The coupling parameter β is calculated from experimental
parameters (Q = 100, Vs = 0.42 cm3, η = 0.66), i.e., β =
3.7 × 10−16s−1. For T ∗

2 = 0.4 s, T1 = 6 s, and � = 0.12 s−1,
the RASER threshold is dth = 1.6 × 1016 (see Appendix A).
For each compartment with Vs/2 = 2.1 × 10−4L the equi-
librium population inversion d0 can be estimated from the
1H polarization PH ≈ −3 × 10−3, the concentration of the
pyrazine molecules cpyr ≈ 0.1 mol/L, the number of protons
npyr = 4, and NA = 6.023 × 1023/mol. The estimated value
is d0 = cpyr (Vs/2) (−PH)npyrNA = 1.52 × 1017. A minus sign
in front of the negative-valued polarization PH ensures that the
condition d0 > 0 for RASER action holds. In a RASER exper-
iment with 100 s duration typical fluctuations of � and d0 are
on the order of 10%–20%. For the two compartments, and on
the timescale of our measurements (∼30 s), this fluctuation in
d0 corresponds to a dipolar-field-induced frequency difference
of about ±27 mHz, which is superimposed by frequency drifts
of ∼100 mHz induced by B0 field fluctuations in the field of
the electromagnet.

The 3D model Eqs. (4)–(6) opens the possibility for chaotic
motion, since according to the Poincaré-Bendixson theorem
the minimum number of dimensions for chaos is three [44].
The chaotic regime might eventually be accompanied by
multiple period doubling and by mode collapse. In order
to explore experimentally at which frequency differences all
these phenomena occur, it is crucial that the mode separa-
tion ω2 − ω1 = γH2zcGz can be controlled precisely while the
other parameters T1, T ∗

2 , d0, β, and � are known and kept
constant.
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FIG. 4. Measured separation between two RASER modes �ν

vs the gradient Gz. (a) Top: 1H RASER signal of SABRE-
pumped pyrazine measured at B0 = 7.8 mT (333.3 kHz1 H Larmor
frequency) and for Gz = 1.152 mG/cm. Bottom: The correspond-
ing Fourier transformed spectrum shows two lines separated by
�ν = 2.52 Hz. The RASER signal has been folded with a Hamming
window in order to avoid sinc artifacts. The off-resonance center
frequency is ν0 = 50 Hz. (b) Measured mode separation �ν (cir-
cles) vs gradient Gz. All data points with |Gz| > 0.77 mG/cm fit
well to two linear functions (solid lines) with a slope given by
|(2π )−1γH2zc| = 1.771Hz cm/mG.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY

Figure 4(a) shows the measured signal from the two-
compartment 1H RASER for an applied gradient Gz =
1.15 mG/cm and a small residual laboratory gradient. The
total gradient (applied and residual gradient) corresponds to a
mode separation of |ν2 − ν1| = 2.52 Hz. The beat signal with
a minimum amplitude of nearly zero indicates the presence
of two equal RASER modes A1,2 = A. The corresponding
spectrum in the absolute mode on the bottom of Fig. 4(a)
consists of two lines with similar amplitudes separated by
�ν = 2.52 Hz.

The value for the rate R, which corresponds to the
two-dimensional RASER model, obtained after adiabatic
elimination of the fast-changing variable d (slaving princi-
ple) and by assuming d0 = 1.2 × 1017, results in R = βd0 ≈
44.4 s−1 (see Appendix B). According to the 1D model, a
line collapse is expected for |ν2 − ν1| < R/π = 14.1 Hz, and
a frequency comb appears for |ν2 − ν1| > 14.1 Hz. Here we
note that a collapse for the adiabatically eliminated 2D model
occurs at |ν2 − ν1| < 3.85 Hz (see Appendix B). Our mea-
surements reveal that for |ν2 − ν1| > 2.5 Hz (for gradients
|Gz| > 2.04 mG/cm) neither a collapse nor a frequency comb
is observed. This is in stark contrast with the expectations of

both the 1D and the 2D model. For the 3D model given by
Eqs. (4)–(6), all nonlinear phenomena occur at the much lower
values |ν2 − ν1| < 2.5 Hz, and for |ν2 − ν1| > 2.5 Hz a linear
dependence �ν = ν2 − ν1 = (γH/π )2zcGz is expected. This
is experimentally proven by Fig. 4(b), where the measured
values for �ν (blue circles) are plotted versus the applied
Gz. An exact proportionality between �ν and Gz is observed
outside the range −1 mG/cm < Gz < 0.67 mG/cm. The two
slopes with positive and negative sign are determined by
linear regressions (solid blue lines), which have the same
absolute values |(γH/π )2zc| = 1.771 Hz cm/mG. From this
slope, the center of gravity is given as zc = 0.208 cm. This
value zc is slightly higher than the theoretically expected
value of zc = 0.197 cm, which follows from Eq. (3) using
θ0 = arccos(s/2r) with r = 4 mm, s = 1 mm. The difference
of about 5% between the measured and the theoretical zc

can be explained by the adhesive used to fix the glass slide
within the glass cylinder, increasing the average thickness of
the slide. The regression functions in Fig. 4(b) intersect the
Gz axis at an offset gradient Goff

z = −0.299 mG/cm. In sum-
mary, as a result from the measurements shown in Fig. 4, the
frequency separation is given by ν2 − ν1 = 1.771 Hz cm/mG
(Gz + 0.299 mG/cm).

We will now discuss the cases of mode separations of
|ν2 − ν1| < 2 Hz. Figure 5 shows five different scenarios,
which correspond to (a) frequency comb, (b) period dou-
bling (p-2), (c) twofold period doubling (p-4), (d) chaos, and
(e) mode collapse (synchrony). On the left side in blue the
measured spectra are shown together with the corresponding
RASER signals (insets). The signals are measured over a time
period ranging from 20 s to 85 s. A symmetrical Hamming
window is applied to the signal prior to the Fourier transfor-
mation to suppress sinc wiggles. The chosen signal lengths
and corresponding Hamming windows are a good compro-
mise between the lowest possible influence of magnetic field
fluctuations and sufficient spectral resolution. The five panels
on the right (red) are the results from numerical simulations,
which are based on the 3D model described by Eqs. (4)–(6).
The corresponding initial conditions and the simulation pa-
rameters β, �, T1, T ∗

2 , d0, and ν2 − ν1 are given in the caption
of Fig. 5. The values of these parameters are derived from
measurements or from experimental parameters, as described
at the end of Sec. III B. As a key result, there is excellent
agreement between all five measured and the simulated non-
linear phenomena, given the common set of parameters and
the same preset values for ν2 − ν1.

In Fig. 5(a) on the left, at ν2 − ν1 = 1.57 Hz, a first glimpse
of a frequency comb is visible, showing two major lines sep-
arated by �ν = 1.49 Hz accompanied by two smaller lines
separated by the same �ν from their larger neighbors. Most
features of the spectrum and the signal, such as shape, line
amplitudes, and separation �ν, agree well with the simulation
shown on the right.

In Fig. 5(b) on the left, at ν2 − ν1 = 1.26 Hz the spec-
trum of the measured frequency comb shows a separation
of �ν = 1.12 Hz between two consecutive lines. Additional
lines can be identified exactly at half the distance �ν/2 be-
tween two consecutive major lines. This is the first sign for
a period doubling (p-2) process. The simulated spectrum on
the right reflects nearly all the basic features of the measured
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FIG. 5. Comparison between five measured (blue) and simulated (red) nonlinear phenomena which can arise in a two-mode 1H RASER.
These five phenomena are (a) frequency comb, (b) period doubling (period-2), (c) twofold period doubling (period-4), (d) chaos, and (e)
mode collapse (synchronous motion). All panels show spectra in the absolute mode obtained after Fourier transformation of the corresponding
RASER signals shown in the insets. The simulations (a)–(e), which are based on the 3D-theory given by Eqs. (4)–(6), are calculated for
five different mode separations ν2 − ν1 = {1.57, 1.26, 0.44, 0.88, 0.17} Hz. The corresponding parameters are β = 3.7 × 10−16s−1, T1 = 6 s,
and T ∗

2 = {0.4, 0.39, 0.36, 0.4, 0.4} s, d0 = {1.5, 1.56, 1.6, 1.5, 1.2, 1.23} × 1017, � = {0.12, 0.116, 0.16, 0.12, 0.12} s−1. Initial conditions:
φ1(0) = φ2(0) = 0, A(0) = 1010, d (0) = 0. The zero time in the insets is not identical to the initial time at t = 0. For high resolution, and to
prevent sinc artefacts in the simulated spectra, 100 s of the simulated signal duration is folded with a Gauss window. For the measurements,
this window is typically 20 to 40 s, which is a good compromise between magnetic field fluctuations and spectral resolution.

spectrum, except for a slightly larger separation �ν =
1.16 Hz and simulated amplitudes of the p-2 lines that differ
from the amplitudes in the measured spectrum.

In Fig. 5(c) on the left, at ν2 − ν1 = 0.44 Hz the frequency
comb now consists of 10 lines, and the separation is �ν =
0.61 Hz > |ν2 − ν1| = 0.44 Hz. The same is true for the sim-
ulated spectrum on the right. This is in stark contrast to the
predictions made by the 1D and 2D models, which predict
�ν < |ν2 − ν1| in the nonlinear regime. Moreover, a twofold
period doubling (p-4) is visible in both the measured and
simulated spectrum. In each frequency interval �ν between
two consecutive major lines, three smaller lines appear, which
divide the interval �ν into four subintervals of �ν/4.

In Fig. 5(d) on the left, at ν2 − ν1 = 0.88 Hz, the spectrum
as well as the RASER signal contains chaotic features. A first
hint for chaos is that in the measurement window of 85 s, the
RASER signal envelope for a certain interval of several sec-
onds at t = t0 never repeats at a later time t = t1. The second
hint for chaos is referring to certain features of the spectrum.
Both the experimental and simulated spectrum show a con-
tinuum of lines distributed over a frequency interval of about
4 Hz. The envelope of this spectrum roughly decays from the
center at ν0 = 50 Hz in a hyperbolic manner, i.e., proportional
to 1/(ν − ν0). This decay is consistent with a criterion for
chaos shown by Haken [52]. Clear evidence for chaos based

on the exponential divergence of initially close trajectories
will be shown at the end of this section. In Fig. 5(e), at
ν2 − ν1 = 0.17 Hz, the measured and simulated spectra have
collapsed into one line, and the corresponding RASER signals
are pure sinusoidal waves. The lines of the two compartments
oscillate in synchrony at one common central frequency (here
ν0 = 50 Hz) and with a constant phase shift.

Figure 6 is an overview of the measured and simulated
mode separations �ν vs ν2 − ν1 for the 1D, 2D, and 3D
models. Figure 6(a) shows the results of three numerical sim-
ulations in order to compare the 1D (green line), 2D (brown
line), and 3D model (red line). To ensure a valid compari-
son, the same rates R1D = 44.6 s−1 and R2D = βd0 = 44.6 s−1

(d0 = 1.2 × 1017) are assumed for the 1D and 2D model,
respectively. Since no pumping rate � occurs in the 2D theory
(see Appendix B) and no rate R in the 3D theory, the 2D and
3D simulations can be compared only if the same common
parameters are chosen (here T1 = 6s, T ∗

2 = 0.4 s, d0 = 1.2 ×
1017, β = 3.7 × 10−16s−1). The blue circles, triangles, and
squares in Figs. 6(a) and 6(b) indicate measured values for line
separations �ν, �ν/2 (p-2), and �ν/4 (p-4). The shaded area
in (a) indicates the region where frequency combs, period n,
chaos, and synchrony are experimentally observed. Only the
3D model is in accordance with all of the experimental results.
The three points of collapse at ν2 − ν1 = {14, 3.8, 0.23} Hz
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FIG. 6. (a) Comparison between 1D (green), 2D (brown), and 3D model (red) for two nonlinear interacting oscillators (1D), and the
two-compartment RASER in two and three dimensions. The simulated frequency separation �ν is plotted vs the frequency difference ν2 − ν1.
Solid circles in (a) and (b) represent measured line separations �ν; triangles and squares symbolize measured separations �ν /2 (period-2) and
�ν /4 (period-4), respectively. The gray shaded area in (a) indicates the range where frequency combs, period doublings, chaos, and synchrony
(mode collapse) are observed. (b) Expanded view of the gray area in (a), showing more details. Symbols p-2 and p-4 stand for measured
period doubling and twofold period doubling, respectively. The three simulated chaotic regimes (1, 2, 3, red areas) are located left and right
from the region of synchrony (green area). Simulation parameter for 1D model: R = 44.6 s−1. 2D model: T ∗

2 = 0.4 s, � = 100 s−1 � 1/T ∗
2 ,

d0 = 1.2 × 1017, β = 3.72 × 10−16s−1. 3D model: T ∗
2 = 0.4 s, T1 = 6 s, � = 0.12 s−1, d0 = 1.2 × 1017, β = 3.72 × 10−16s−1.

for the 1D, 2D, and 3D model are far from each other. A possi-
ble explanation is that with increasing number of dimensions,
the corresponding two RASER trajectories are less restricted
in their configuration space. This reduces their effective inter-
action, with the consequence that the regime of mode collapse
becomes smaller.

The enlarged view in Fig. 6(b) shows the measured and
simulated windows for period-n, chaos, and synchrony. All
measurements (blue circles) associated with frequency combs,
period-2, period-4, chaos, and mode collapse are marked by
arrows. Three chaotic regimes indicated by 1, 2, and 3 (red
areas) left and right from the regime of mode collapse (green
area) are predicted by the simulation. The experimentally
observed chaos at ν2 − ν1 = 0.88 Hz lies within the simulated
region 3 of chaos with 0.83 Hz < |ν2 − ν1| < 1.09 Hz. In the
3D (d , A, 	) space, chaos is characterized by a never-closing
strange attractor [44]. Close to each chaotic window, the as-
sociated trajectory of period-n circles n times per period in
the (A,d) space before closing. Note that both chaotic win-
dows denoted by 1(0.22 Hz � |ν2 − ν1| < 0.32 Hz) are lying
very close to the regime of synchrony given by |ν2 − ν1| <

0.22 Hz. We remark that a larger number of additional
period-n windows (n = 3, 5, 6, 8, 10) have been found in sim-
ulations, but not experimentally verified (see Appendix C).

Finally, we present a more concise test that the measured
and simulated RASER signals in Figs. 5 and 6 indeed repre-
sent a chaotic regime. One intrinsic characteristic of chaotic
behavior is the extreme sensitivity towards changes in ini-
tial conditions. Two trajectories are chaotic when they start
extremely close together and very soon diverge in an ex-
ponential manner. This is demonstrated in Fig. 7. In each
panel two RASER trajectories (red and green lines) are
simulated, which differ only by their initial small phase differ-
ence 	red(0) = φred

2 (0) − φred
1 (0) = 0 and 	gr (0) = φ

gr
2 (0) −

φ
gr
1 (0) = 10−13. All other simulation parameters and initial

values are equal for both trajectories (see caption). The two
RASER trajectories in Figs. 7(a) and 7(b) were chosen as
a reference in order to compare with the adjacent chaotic
regimes. The first two RASER signals in Fig. 7(a) represent
a period-4 trajectory, with ν2 − ν1 = 1.107 Hz located close
above the chaotic window 3(0.85 Hz < ν2 − ν1 < 1.09 Hz).
Figure 7(b) corresponds to a period-2 trajectory simulated
at ν2 − ν1 = 0.35 Hz, which is close to the chaotic win-
dow 1(0.21 Hz < ν2 − ν1 < 0.32 Hz). If the trajectories in
Figs. 7(a) and 7(b) were not chaotic, the signals and the
spectra (insets) should be insensitive to a small change in the
initial conditions. Indeed, neither the two trajectories (red and
green) nor the corresponding two spectra in Figs. 7(a) and 7(b)
can be distinguished.

This high sensitivity to small changes in the initial con-
ditions is shown in Fig. 7(c). Two RASER signals with a
phase difference of 10−13 are simulated at ν2 − ν1 = 0.88 Hz,
which is inside the chaotic window 3. The two signals are
identical for the first 40 s, but for t > 40 s they become signif-
icantly different. The corresponding two spectra in the inset,
which result from a Fourier transformation on the window
60 s < t < 260s, are broad and very different. The diverg-
ing two trajectories can also be observed in Fig. 7(d) with
ν2 − ν1 = 0.27 Hz, which lies close above the point of col-
lapse (synchrony) at 0.22 Hz. Compared to Fig. 7(c), the two
chaotic trajectories start to diverge at a later time t > 60 s, and
the two different chaotic spectra are broader.

V. CONCLUSION AND OUTLOOK

In conclusion, the physics of the two-compartment RASER
has been investigated with respect to nonlinear phenom-
ena such as frequency combs, nonlinear frequency shifts,
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FIG. 7. Proof of chaos using the method of divergence for two RASER trajectories starting initially very close together. (a)–(d) Simulations
of two-mode RASER signals at four different values ν2 − ν1 = 1.107 Hz (a), 0.35 Hz (b), 0.88 Hz (c), and 0.27 Hz (d). Corresponding spectra
are shown in the insets. The simulation parameters and initial values for two trajectories in red and green are identical: T1 = 6 s, T ∗

2 = 0.4 s,
d0 = 1.2 × 1017, β = 3.72 × 10−16s−1, and � = 0.12 s−1, d (0) = 0, A(0) = 1010. The initial phase difference 	(0) = φ2(0) − φ1(0) between
the two trajectories differ by only 10−13: 	 red(0) = φred

2 (0)−φred
1 (0) = 0 and 	gr (0) = φ

gr
2 (0) − φ

gr
1 (0) = 10−13. In (a), ν2 − ν1 = 1.107 Hz,

two identical period-4 RASER trajectories are shown. The two corresponding spectra cannot be distinguished. The same is true for the period-2
signals and spectra in (b) with ν2 − ν1 = 0.35 Hz. In (c), ν2 − ν1 = 0.88 Hz, which is an example for chaos, the two trajectories diverge for
t > 45 s. The two corresponding broad spectra differ significantly. Similar features for chaos are shown in (d), for ν2 − ν1 = 0.27 Hz, where
the divergence starts at t > 60 s. All spectra have been transformed using a time window 60 s < t < 260 s.

multiple-period doublings, chaos, and synchrony (mode col-
lapse). Only the two-mode RASER theory evolving in the
3D (d , A, 	) space is in full agreement with all experi-
mental results. Therefore, the 3D-RASER theory should be
able to predict chaos and synchrony in regimes not acces-
sible for current experiments. This includes the physics of
N > 2 interacting RASER modes at exceedingly high pump-
ing rates and/or close to the maximum possible polarization
PH = −1.

One remarkable result is that under appropriate conditions,
the range of mode separation for chaos and synchronous mo-
tion lie very close together (see Appendix C). Currently, it
is not evident what defines the number of chaotic windows
at specific parameter values and how many chaotic windows
exist for N > 2 modes. These questions will be the focus of
future investigations.

We believe that the present experimental and theoretical
results are important for several reasons. First, for RASER
MRI [39], which has been discovered recently, a deeper un-
derstanding of the image formation process is necessary. In

RASER MRI, many RASER active slices interact in the pres-
ence of a magnetic field gradient, so synchrony and eventually
chaos play an important role for understanding image forma-
tion.

Second, spectra showing chaos and multiple period dou-
bling were demonstrated at mode separations ν2 − ν1 much
smaller than the line width �νL = 1/(πT ∗

2 ) = 0.8 Hz. This
might open a new avenue for high-resolution NMR spec-
troscopy, where chemical shift differences and J-coupling-
induced splittings well below the line width �νL can be
measured. The prerequisite is a mathematical model, which
assigns the measured spectral features (i.e., the location of
chaos and period-n signals) to all involved J couplings and
chemical shift differences.

Third, calculations based on the EHQE approach [32,48]
show that RASERs pumped with p-H2, by DNP, or by SEOP
can be miniaturized to scales smaller than 100 µm with a mod-
erate loss in signal-to-noise ratio. This approach enables the
implementation of microfabricated RASER devices, which
can be integrated into electronic circuits, for example, as
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on-chip local frequency synthesizers or magnetic field and
rotational sensors, or as chaos-based true random generators.
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APPENDIX A: GENERAL EQUATION OF MOTION
OF THE TWO-COMPARTMENT RASER

In the following, the RASER equations for two com-
partments will be described. According to the multi-mode
RASER equations [33,35,39], the equations of motion for
μ = 1, 2 modes are given by a set of six nonlinear coupled
differential equations for the population inversions dμ, the
transverse spin components Aμ, and the phases φμ:

ḋμ = �μ(dμ,0 − dμ) − dμ

T1
− 4β

2∑
σ,τ=1

Aσ Aτ cos (φσ − φτ ),

(A1)

Ȧμ = −Aμ

T ∗
2

+ βdμ

2∑
τ=1

Aτ cos(φτ − φμ), (A2)

φ̇μ = γH[B0 + (2μ − 3)Gzzc] + β
dμ

Aμ

2∑
τ=1

Aτ sin(φτ − φμ).

(A3)

For simplicity, the six variables {d1, A1, φ1, d2, A2, φ2} in
Eqs. (A1)–(A3) have two common relaxation rates: one is
the effective transverse relaxation rate 1/T ∗

2 for A1,2, and the
other is the longitudinal relaxation rate 1/T1 for d1,2. The
coupling constant between the two modes is given by β =
μ0h̄γ 2

HηQ/(4Vs), where μ0 is the vacuum permeability, h̄ is
Planck’s constant, Q is the quality factor of the LC resonator,
and Vs denotes the sample volume. The factor η = [0, 1] de-
notes the filling factor of the detection coil with respect to the
sample volume Vs.

The first term on the right side of Eq. (A1) drives the
population inversions dμ into the equilibrium population in-
versions dμ,0 by the time-dependent pumping rate �μ, the
second term describes the loss due to T1 relaxation, and the
third term denotes a nonlinear decay process proportional to
the quadratic terms Aσ Aτ . Eq. (A2) describes the evolution of
Aμ, where the first term on the right side is a decay of A with
the rate 1/T ∗

2 . The second term for μ = τ increases Aμ with
the rate β dμ, while for μ � τ the term represents a modula-
tion of Aτ with the factor cos(φτ − φμ). Eq. (A3) describes the
evolution of the phases φμ, which evolve with their specific
angular frequencies ωμ given by the first term on the right of
Eq. (A3). The second term causes either a phase modulation

by the factor sin(φτ − φμ) or is responsible for a synchronized
motion (a mode collapse) of both modes, depending on the
value of β dμ and on ω2 − ω1. The time-dependent pump-
ing rate and the equilibrium population inversion dμ,0 for
each mode are assumed to be different. Under these assump-
tions, the evolution in the six-dimensional space is highly
complicated. Therefore, it makes sense to reduce further the
complexity described by Eqs. (A1)–(A3) from the six- into
the three-dimensional space. This is achieved by assuming for
both modes a constant pumping rate �μ = � and the same
value dμ,0 = d0. By introducing the phase difference given by
	 = φ2 − φ1, a differential equation for 	 alone is obtained
by subtracting the two Eqs. (A3) for μ = 1, 2 from each other.
As a result, Eqs. (A1)–(A3) reduce from six- to the three-
dimensional (d , A, 	) space [see Eqs. (4)–(6)], which serve
as the base model of the two-compartment RASER with two
equal amplitudes. A threshold population inversion dth from
where RASER activity starts can be derived from Eqs. (4) and
(5). If β d > 1/T ∗

2 , the bracket on the right side of Eq. (5)
becomes positive and dA/dt > 0, so the RASER signal starts
to grow. Equation (4) states that prior to RASER action
(A = 0), the maximum value of d is decreased by the factor
(� + T −1

1 )/�. This, together with Eq. (5), leads to the RASER
threshold condition given by dth = (� + T −1

1 )/(�βT ∗
2 ). Pro-

vided � � T −1
1 holds, T1 relaxation can be neglected, and the

threshold condition becomes simply dth = 1/(βT ∗
2 ).

APPENDIX B: COLLAPSE CONDITION FOR 2D RASER
AFTER ADIABATIC ELIMINATION

The dynamics of two RASER modes moving in the (A, 	)
space (2D model) after adiabatic elimination and an analyt-
ical expression for the point of collapse is derived from the
equations in the three-dimensional (d , A, 	) space [Eqs. (4)–
(6)]. We briefly recall the derivation of the equations of
motion through adiabatic elimination of fast-varying variables
[33,35,52]. Starting with Eqs. (4)–(6), which move in the 3D
(d , A, 	) space, the population inversion d can be eliminated
if � � 1/T ∗

2 , 1/T1. Then T1 relaxation in Eq. (4) can be
neglected and the fast-changing variable d can be eliminated
by setting dd/dt = 0. So Eq. (4) becomes

d = d0 − 8β

�
A2(1 + cos 	 ). (B1)

The adiabatic elimination of d means that d follows the
slowly changing variables A and 	 [52]. Now d in Eqs. (5)
and (6) is replaced by the right side of Eq. (B1). This leads to
the 2D model given by

Ȧ =
[

R(1 + cos 	 ) − 1

T ∗
2

]
A − 2L(1 + cos 	 )2A3, (B2)

	̇ = (ω2 − ω1) − (2R − 4LA2) sin 	 + 2LA2 sin 2	. (B3)

The two rates in R and L in Eqs. (B2) and (B3) are given by

R = βd0 and L = 4β2

�
. (B4)

Since the evolution in Eqs. (B2) and (B3) of the two
RASER modes is restricted to the 2D (A, 	) space,
multiple-period doubling and chaos are impossible. Numer-
ical simulations reveal the occurence of frequency combs,
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nonlinear frequency shifts, and synchrony (mode collapse),
similar to the 1D model of two coupled oscillators [Eq. (1)].
We are now interested in where the collapse of Eqs. (B2) and
(B3) occurs and compare this result with the collapse in the
1D and 3D model.

The condition for collapse for the 1D model is sim-
ply proportional to dcol, i.e., (ν2 − ν1)col = R/π = (β/π )dcol

where (ν2 − ν1)col is the frequency difference of where the
collapse should occur. For the 2D model, the functional de-
pendence between (ν2 − ν1)col and dcol is more complex. At
the collapse, two stationary conditions have to be fulfilled
in Eqs. (B2) and (B3), i.e., dAs/dt = 0 and d	s/dt = 0.
From the first condition dAs/dt = 0 the squared station-
ary amplitude can be calculated as A2

s = [R(1 + cos	) −
1/T ∗

2 ]/[2L(1 + cos	)2]. After replacing A2
s in Eq. (B3) and

setting d	s/dt = 0, a transcendent condition for the station-
ary phase 	s at a given (ν2 − ν1)col can be calculated,

sin 	s

1 + cos 	s
= T ∗

2 (ω2 − ω1)col

2
= (ν2 − ν1)col

�νL
, (B5)

where in Eq. (B5) �νL = 1(πT ∗
2 ) is the line width. An elegant

expression for dcol can now be derived by inserting the known
values for A2

s and 	s into Eq. (A4). After some algebraic
transformations, the result is

dcol = 1

βT ∗
2 (1 + cos 	s)

= dth

(1 + cos 	s)
,

π

2
� 	s � π.

(B6)

In Eq. (B6), dth = 1/(βT ∗
2 ) is the threshold population

inversion. The pair of Eqs. (B5) and (B6) constitutes two
equations which for a given (ν2 − ν1)col and line width �νL

implicitly fix the stationary phase 	s and dcol. Note that the
range of the stationary phase must be within π/2 � 	s � π .
For 0 � 	s < π/2, which is the possible range for the 1D
model, Eq. (B6) predicts dcol � dth. So for the 2D model
the range 0 � 	s < π/2 can be excluded since there is no
RASER activity below the threshold. Close to threshold, i.e.,
close to dth = 1/(β T ∗

2 ), the stationary value for the phase
difference is 	s = π/2, (ν2 − ν1)col = �νL and dcol = dth.
Equation (B5) states that for any given frequency difference
(ν2 − ν1)col > �νL there always exists a corresponding sta-
tionary phase 	s, and the population inversion for collapse
dcol is a monotonically increasing function of (ν2 − ν1)col.
Finally, for the 3D model we have not found an analytical
expression for the point of collapse. Therefore, we have to
rely on numerical simulations.

APPENDIX C: DESCRIPTION OF PERIOD DOUBLING
AND CHAOTIC REGIMES IN FIG. 6

In this section we present details for all regimes where
chaos and multiple-period doubling occur. The simulations
are based on Eqs. (4)–(6) and on the set of parameters given
in Fig. 6. Due to the symmetry of the simulated spectra with
respect to the (ν2 − ν1) axis, it is sufficient to evaluate only the
positive frequency range, i.e., 0 � ν2 − ν1 < 3 Hz. Starting at
ν2 − ν1 = 0, the different frequency intervals in units (Hz) for
the case of chaos and period-n doubling are listed in square
brackets in ascending order. Before each square bracket the
following shorthand is introduced: “sy” for synchrony, “ci”

for chaos at window number i = 1, 2, 3, and p-n for a period-n
process (n = 1, 2, 3 . . .). p-1 represents a frequency comb.
The total sequence S reads

S = {sy[0, 0.23], c1[0.23,0.32], p-6[0.325], p-3[0.33],
p-4[0.345], p-2[0.35], p-1[0.26,0.38], c2[0.385,0.39],
p-6[0.394], p-4[0.395], p-2[0.4,0.46], p-1[0.48,59],
p-2[0.6,0.78], p-4[0.79], p-8[0.8,0.809], p-n[0.81,0.819],
c3[0.82,1.09], p-10[1.101], p-5[1.102,1.105], p-4[1.107,
1.109], p-2[1.11, 1.17], p-1[1.18,2]}.

As already shown in Fig. 6, the sequence starts as
sy[0,0.23], followed by c1[0.23,0.32]. The chaotic regime
c1 is followed by a period-doubling sequence p-6[0.325], p-
3[0.33], p-4[0.345] and p-2[0.35], where the number [X] in the
brackets stands for a very narrow frequency interval around
X. Next comes a frequency comb p-1[0.36,0.38], followed
by a second narrow chaotic window c2[0.385,0.39], then a
narrow period-n doubling sequence p-6[0.394], p-4[0.395],
p-2[0.4,0.46]. It follows a frequency comb p-1[0.48,0.59],
and a period-doubling sequence p-2[0.6,0.78], p-4[0.79], p-
8[0.8,0.809], p-i[0.81,0.819] (i > 16). Then the third chaotic
regime c3[0.82,1.09] is followed by a period-n sequence p-
10[1.101], p-5[1.102,1.105], p-4[1.107, 1.109], and p-2[1.11,
1.17]. Finally, at ν2 − ν1 = 1.18 Hz a frequency comb p-
1[1.18,2] is observed and is observable in the spectrum up
to ν2 − ν1 = 3 Hz. For ν2 − ν1 > 2 Hz, the distance �ν in-
creases linearly with ν2 − ν1. Note the chaotic region c3 is
flanked by two period-n sequences, which is a typical precur-
sor for the onset of chaos. This is not the case for the chaotic
regions c1 and c2, which have a period-n process only on one
side. Specifically, the left border of the c1 window is adjacent
to the region of synchrony.

Another remarkable fact is that the numbers n =
1, 2, 3, 4, 5, 6, . . . for period-n processes are observed, which
occur similarly to the famous universal U sequence given by
U = 1, 2, 2 × 2, 6, 5, 3, 2 × 3, 5, 6 . . . as first discovered by
Metropolis and Feigenbaum [53,54]. Our results do not ex-
actly reflect the order of the U sequence. One possible reason
is that the parameter ν2 − ν1 is not in one-to-one correspon-
dence with the scaling factor α used in the bifurcation map for
the 1D logistic equation [44]. Another possible explanation
is that the U sequence is valid only for weak chaos, where
the corresponding strange attractor has a fractal dimension
close above two. Examples for weak chaos are the Lorentz
and Rössler attractors [55,56]. If in our case chaos is not
weak, and the condition for the U sequence is not fulfilled.
Further detailed investigations are necessary to explain all
these findings

APPENDIX D: CAVITY PULLING AND DISTANT
DIPOLAR FIELDS

In the following, we estimate the effects of cavity pulling
and distant dipolar fields (DDFs) for our experimental con-
ditions. We conclude that cavity pulling is negligible and the
longitudinal and transversal DDFs are about 100-fold smaller
than the radiation damping field.

To estimate the cavity pulling, we consider the case that the
line width �νL of the atoms or the spins is much smaller than
the frequency width �νc of the cavity or the LC resonator: If
�νL � �νc = νc/Q holds, the observed RASER frequency

022806-11



LARS LOHMANN et al. PHYSICAL REVIEW A 108, 022806 (2023)

at frequency ν∗
μ deviates from the free 1H RASER frequency

νμ by [57,58]

ν∗
μ − νμ = (νc − νμ)

�νL

�νc
. (D1)

For our two-compartment RASER the 1H line width
for T ∗

2 = 0.4 s is �νL = 1/(πT ∗
2 ) = 0.8 Hz, and the two

modes oscillate at frequencies νμ = (2π )−1γH[B0 + (2μ −
3)Gzzc], μ = 1, 2. Given the quality factor Q = 100 of the
LC resonator resonating at νc = 333 KHz, so �νc = 3.33 kHz
and a typical resonance offset (νc − νμ) ∼ 50 Hz, Eq. (D1)
predicts for two modes lying close together (a few Hz) a
frequency shift towards νc of (νμ − ν∗

μ) ∼ 12 mHz. Specifi-
cally for two RASER modes differing by ν2 − ν1 = 1 Hz the
relative frequency shift due to cavity pulling is 0.24 mHz,
which is much smaller compared to our observed frequency
shifts and line splittings (at least a few tens of mHz). Therefore
cavity pulling effects can be neglected in all our experiments.

Distant dipolar fields (DDFs) and their nonlinear effects
play a significant role in highly polarized nuclear spin en-
sembles with high spin densities. One recent example is
the DNP-pumped solid state 1H RASER [51], where strong
DDF effects (chirped RASER pulses) and frequency shifts
in the kHz regime have been observed at low temperatures
(T ∼ 1.2 K). The number of polarized 1H spins in this ex-
periment were about d0 > 5 × 1021 for a sample volume
Vs ∼ 0.8 cm3. In a solid the 1H spins are not moving on
the timescale of the RASER experiments so DDF effects
do substantially contribute to the spin evolution in addition
to radiation damping effects. A review of nonlinear NMR
spectroscopy in liquids including DDF and radiation damping
effects has been published by Desvaux [50].

In our model for two coupled RASER modes [Eqs. (4)–
(6)], the radiation damping field β·d(t) is about 18 s−1, which
is nearly 100-fold larger than the DDFs (0.27 Hz, see below).
For each experiment the ratio between radiation damping and
DDF effects can be evaluated by inspection of the corre-
sponding time constants τrd and τd, respectively. The radiation
damping rate is given by 1/τrd = (μ0/2)γHηQM0, with pos-
itive or negative values for 1/τrd depending on the sign of
the 1H magnetization M0 = (h̄/2)γHnsPH (ns is the 1H num-
ber density and PH the polarization). We define the rate of
evolution due to an average DDF field as 1/τd = |〈δωd〉| =
|μ0ξγHM0|. In both expressions for 1/τrd and 1/τd the vacuum
permeability μ0, the 1H gyromagnetic ratio γH and magne-
tization M0 are common. For radiation damping the product
between the filling-and the quality factor ηQ is important,
while for DDFs the shape factor ξ of the sample matters.
This shape factor ranges from −1/2 � ξ � 1 and is a function
of the sample geometry with ξ = 0 representing a sphere,
ξ = −1/2 a long cylinder, and ξ = 1 a thin disk. The absolute
of the ratio R between the two time constants τrd and τd can
now be defined as a function only depending on ξ , η, and Q:

R =
∣∣∣∣τrd

τd

∣∣∣∣ = 2|ξ |
ηQ

. (D2)

For R = 0 (ξ = 0, spherical sample) any DDF effects
are absent, for R � 1 radiation damping dominates the

spin evolution, and for R � 1 DDFs dominate the spin
evolution. An extreme example for DDF effects in the 10 mHz
regime including slow diffusional motion in the gas phase is
reported in [59], where the chemical shift of hyperpolarized
129Xe in liquid toluene was measured in the Earth magnetic
field. At higher polarization the Xe line of the resting liquid
phase shows a substantial line distortion, broadening, and
frequency shift with respect to the Xe gas line. Since the ex-
perimental conditions in [59] were Q ∼ 10, η = 0.04 (2 cm3

sample volume, 50 cm3 coil volume), and |ξ | ∼ 0.8 (slanted
cylinder), we get R = 4, so DDFs dominate over radiation
damping effects. Therefore distant dipolar fields inside the liq-
uid compartment distort and broaden the line shape. However,
the shape of the Xe gas line is identical to the Xe gas peak
at much lower Xe polarization (with small DDF and radiation
damping effects), so apart from a very small average dipolar
shift there is no line distortion, although the Xe atoms in the
gas phase experience different DDF fields from the liquid
phase at different locations in the sample. This is explained
by the Xe gas diffusion (coefficient DXe ∼ 0.1–0.2 cm2/s at
1 bar and RT), which average out the local distant dipolar
fields’ interaction on the timescale of the measurement (tens
of seconds). In the resting liquid phase this is not the case
since DXe in liquid toluene is about four orders of magnitude
smaller compared to the gas phase, so there is no averaging
out of DDF inhomogeneities.

In contrast to the above case in the present two-mode
RASER experiments the parameters Q = 100, η = 0.66, and
ξ = −1/2 (approximately a long half cylinder for each com-
partment) lead to R = 0.015 � 1, and radiation damping
dominates the spin. Furthermore, the p-H2 bubbles lead to a
rather intense convective and turbulent motion of all volume
elements in both compartments. The average velocity of these
bubbles was estimated to be several cm/s, so the fast random
motion corresponds to a diffusion coefficient D � 1cm2/s.
Consequently, if the RASER is in a stationary state, all DDF
inhomogeneities which lead to a line broadening or to a com-
plex magnetization evolution average out and only an average
dipolar field 〈Bdip〉 given by

〈Bdip〉 = ξμ0

(
h̄

2

)
γHnsPH (D3)

remains. Given ξ = −1/2, ns = 2.4 × 1026/m3 for a pyrazine
concentration of cpyr = 0.1 mol/L and a 1H polarization PH ∼
−3 × 10−3 the average dipolar field in each compartment is
〈Bdip〉 ∼ 6.3 nT. This corresponds to an average frequency
shift of (γH/2π )〈Bdip〉 = 0.27 Hz. This shift is in agree-
ment with the measurement of initial relaxation oscillations
of the pyrazine two-compartment RASER (at Gz = 0). The
measured frequency difference between the oscillations be-
fore and after the first maximum of the initial RASER signal
(where magnetization Mz changes sign) was measured to be
between 0.2 Hz and 0.4 Hz depending on the pumping condi-
tions.

Since both compartments have nearly the same shape,
volume Vs, polarization PH, and spin density ns, both corre-
sponding RASER frequencies are shifted by the same amount
of 0.27 Hz, so averaged distant dipolar fields can be neglected
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to first order. Only fluctuations of the bubbling and pump-
ing rates between the two compartments, which are on the
order of 10%, could be responsible to dipolar differential shift
effects in the order of ±27 mHz. This small shift could be
relevant if the frequency difference between the two modes is
at the boundary between mode collapse and chaotic window 1
(ν2–ν1 = 0.21 Hz; see Fig. 6). In this case the RASER signal
could change randomly from a collapsed state (one single
oscillation) to a chaotic signal.

In conclusion, in the experimentally observed time win-
dows neither cavity pulling nor DDF effects have an
appreciable influence on the evolution of the two 1H RASER
modes. All measured different scenarios shown in Fig. 6,
the chaotic windows, the mode collapse, and multiple period
doublings, can be solely explained by the coupling of the two
modes by radiation damping, and thus the transitions between
these different scenarios can be predicted by the model given
by Eqs. (4)–(6).
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