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Calculation of isotope shifts and King-plot nonlinearities in Ca+
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Many-body perturbation theory is implemented to calculate the isotope shifts of 4s, 4p1/2, 4p3/2, 3d3/2, and
3d5/2 energy levels of Ca+ for even isotopes A = 40, 42, 44, 46, 48. The results are presented for mass shift
and field shift, as well as for higher-order field shifts, quadratic mass shift, nuclear polarization correction, and
the cross term between field and mass shifts. Additionally, we examine King-plot nonlinearities introduced
by higher-order isotope-shift corrections to the combinations of 3d3/2 → 4s, 3d5/2 → 4s, and 4p1/2 → 4s
transitions. For these transitions, second-order mass shift and nuclear polarization correction are identified as
the dominant sources of King-plot nonlinearity.
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I. INTRODUCTION

High-precision atomic spectroscopy is currently in the
spotlight of experimental research, particularly as a means of
testing physics beyond the standard model [1–3]. The recent
advances in experimental technique allows one to determine
atomic transitions with high accuracy, which, in certain cases,
reaches 0.1 Hz [4–9]. One of the precision-spectroscopy
methods aimed at detecting new interactions is the King-plot
analysis; the basic idea was proposed in Refs. [2,10] and
later refined in Refs. [3,11,12]. Roughly speaking, the King
plot is a plot constructed from normalized isotope shifts of
atomic transitions which are measured in a series of isotopes
of a given element; such plots can be proven to be linear to
a high precision. However, it has been shown that an inter-
action between the electron cloud and the nucleus mediated
by a hypothetical light boson would distort this linearity [2].
Hence, if a nonlinearity in a King plot is detected in the
experiment, it could be attributed to a new boson given that
any other explanation is ruled out [2]. On the other hand,
as one may expect, there are numerous sources of King-plot
nonlinearities found already in the framework of the standard
model.

Recently, a significant King-plot nonlinearity was discov-
ered in Yb and Yb+ transitions [3,13,14] and the efforts of its
interpretation are still ongoing, see, e.g., Refs. [13,15]. In con-
trast, King plots in a succession of Ca+ isotopes were found
to be linear within experimental uncertainties [16–18]. Isotope
shifts were measured for 4s 2S1/2 → 4p 2P1/2 and 3d 2D3/2 →
4p 2P1/2 transitions with accuracy below 100 kHz [19,20], for
4s 2S1/2 → 3d 2D5/2 with accuracy below 10 Hz [16], and for
the interval 3d 2D3/2 − 3d 2D5/2 with ∼20 Hz accuracy [18].
One can expect that, in the future, the measurement accuracy
reaches 1 Hz; in such a case, the King-plot linearity might
no longer hold and a careful theoretical examination of the
origins of nonlinearity will be needed. In this contribution,
therefore, we aim to lay the groundwork for an analysis of the
Ca+ King-plot nonlinearity.

It should be noted that, as a system intended for isotope-
shift spectroscopy, Ca+ has several advantages. First, calcium
has five even-even stable (A = 40, 42, 44, 46) or long-lived
(A = 48) isotopes, which is a welcome fact for building a
King plot. Isotopes with zero nuclear spin are preferred for
King-plot analysis because their spectra lack hyperfine split-
ting. Second, the electronic structure and atomic transitions
of Ca+ are theoretically well understood given its alkali-like
electronic configuration. Third, Ca+ is a convenient object
for experimental study: as was mentioned above, a series of
experiments has already been conducted to determine several
of its atomic transitions with high accuracy [16–20], with a
realistic possibility for future improvement.

In the present work, we calculate the main contributions
to isotope shift in Ca+ ions and evaluate their impact on
King-plot linearity. The relativistic units (h̄ = c = m = 1) are
used throughout this paper unless explicitly specified. The
paper is structured as follows. In Sec. II we introduce the
theoretical origins of isotope shift terms: we discuss mass
shift (Sec. II A), field shift (Sec. II B), nuclear polarization,
and the field- and mass-shift cross terms (Sec. II C). The
total isotope shift (the sum of all considered contributions)
is presented in Sec. II D. In Sec. III the specific methods for
many-body calculations are laid out, which we subsequently
use in Sec. IV to evaluate each of the isotope shift terms.
Finally, we discuss Ca+ King plots and their nonlinearity in
Sec. V and summarize our results in Sec. VI.

II. ISOTOPE SHIFT: THEORY

In the first-order approximation, the isotope shift of an
energy level in the ith isotope with respect to a reference
isotope a can be written as

�Eia = K

(
m

Mi
− m

Ma

)
+ F

(
R2

i − R2
a

)
, (1)

where m is the electron mass and Mj denote nuclear masses
( j = a, i). Here, we introduce a dimensionless nuclear charge
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radius

R2
j = 〈r2〉 j/λ̄

2
C, (2)

which is a mean-square nuclear charge radius 〈r2〉 j divided
by (the square of) the reduced Compton wavelength of an
electron, λ̄C . The first term in Eq. (1) corresponds to mass
shift (MS) and the second term to field shift (FS); the first
is the consequence of the change in nuclear mass and the
second of the change in nuclear charge distribution between
two isotopes. Note that in the first-order approximation (1)
the electronic structure constants K and F do not depend on
the nuclear parameters of the ith isotope, while they may still
implicitly include the parameters of the reference isotope a.
Effectively, Eq. (1) assumes that electronic wave functions do
not yet “notice” the change in nuclear mass and the shape
between isotopes.

In the present work, we investigate the effects beyond the
first-order approximation (1). We take into account that both
electronic “constants” K and F depend on the isotope i in
question and hence the energy shift can be written as

�Eia = Kia

(
m

Mi
− m

Ma

)
+ Fia

(
R2

i − R2
a

)
. (3)

Below, we will examine the isotope dependence of Kia and Fia,
treating the mass shift and field shift separately. Moreover, we
will consider further contributions to isotope shifts which do
not, strictly speaking, belong either to the mass or field shift:
nuclear polarization correction and the cross term between the
field and mass shifts. At the end, we will show how to extend
Eq. (3) to take those additional effects into account. Note that,
in this work, we will use the 40Ca isotope as our reference
isotope a (Aa = 40).

A. Mass shift

Isotope mass shift arises from the difference in nuclear
recoil effect between two isotopes. For light atomic systems
it is sufficient to describe the nuclear recoil by means of non-
relativistic operators [21]. Thus, let us write the Schrödinger
Hamiltonian of the atom

H = �P2

2M
+

∑
k

�p 2
k

2m
+ VC . (4)

Here �P refers to the nuclear momentum, �pk to the momentum
of the kth electron. By VC we denote the Coulomb potential

VC = −
∑

k

Zα

|�r0 − �rk| +
∑
k<l

α

|�rk − �rl | , (5)

where α is the fine-structure constant and �r0 and �rk are the po-
sition vectors of the nucleus and the kth electron, respectively.
Choosing the center-of-mass reference frame, we obtain �P =
−∑

k �pk and Eq. (4) becomes [22]

H =
∑

k

�p 2
k

2mr
+ VC + 1

M
VSMS, (6)

where mr = mM/(m + M ) is the reduced mass. In this equa-
tion, the first term is the normal mass shift (NMS) operator

whose effect can be observed already in hydrogen-like sys-
tems, while the last term VSMS is the many-electron specific
mass shift (SMS) operator

VSMS =
∑
k<l

�pk · �pl . (7)

To further evaluate Eq. (6), we introduce μ = mr/m and shift
the variables in Eq. (6) as �r → μ−1�r and, therefore, �p → μ �p.
Thereby we obtain

H = μ

[∑
k

�p 2
k

2m
+ VC + μ

M
VSMS

]
≡ μ

[
H0 + μ

M
VSMS

]
,

(8)

where H0 is the nonrelativistic atomic Hamiltonian in the
infinite nuclear mass limit. If we denote the eigenfunctions
of H0 as ψ0, its eigenvalues as E0, and expand the eigenvalues
of H in the powers of m/M, we obtain the first- and second-
order nuclear recoil (or mass-shift) corrections to an electronic
energy level

δE (1)
MS = m

M

(−E0 + K (1)
SMS

)
, (9)

δE (2)
MS =

( m

M

)2(
E0 − K (1)

SMS + K (2)
SMS

)
. (10)

Here, the first- and second-order specific mass shift constants
are given by

K (1)
SMS = 〈ψ0|VSMS|ψ0〉, (11)

K (2)
SMS =

∑
n �=0

|〈ψ0|VSMS|ψn〉|2
E0 − En

. (12)

By defining the MS constants of the first and second orders

K (1) ≡ −E0 + K (1)
SMS, (13)

K (2) ≡ E0 − K (1)
SMS + K (2)

SMS, (14)

we obtain an expression for the mass shift in an isotope j
relative to a hypothetical infinite-mass isotope

�EMS, j = K (1) m

Mj
+ K (2) m2

M2
j

. (15)

Accordingly, the mass shift of an isotope i with respect to the
reference isotope a is

�EMS,ia = K (1)

(
m

Mi
− m

Ma

)
+ K (2)

(
m2

M2
i

− m2

M2
a

)
. (16)

It should be noted that, when calculating K (1) and K (2) in
Sec. IV B and presenting the results in Table I below, we
use the experimental values of binding energies as our E0.
Strictly speaking, experimental energies E are not equal to
the eigenvalues E0 of the infinite-mass-isotope Hamiltonian;
however, the difference |E − E0| is negligible for our purposes
since the uncertainties of our many-body atomic calculations
are much larger.

B. Field shift

The nuclei of two isotopes differ not only in mass, but
also in the parameters of the nuclear charge distribution. Elec-
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TABLE I. Mass shift and field shift constants in Ca+, see Eq. (33) and Eqs. (13) and (14); the respective units are described in Sec. IV A,
Eqs. (46a) to (46d). Our results for K̃ (1)

SMS and F̃ (1)(Ra) are compared with the SMS and FS constants calculated in Refs. [29,30]. The
dimensionless nuclear charge radius Ra [see Eq. (2)] belongs to the 40Ca isotope. The overall sign of the field-shift constants from Refs. [29,30]
was reversed to conform to the definition used in the present work.

Units 4s 4p1/2 4p3/2 3d3/2 3d5/2

K̃ (1) GHz amu 1324 940 951 −1136 −1124
K̃ (1)

SMS GHz amu −251 −221 −206 −2487 −2474
MBPT+RPA [29] −259 −204 −200 −2601 −2595

RCCSD(T) [30] −243 −208 −204 −2364 −2357
K̃ (2) GHz amu2 −3.26 −8.79 −8.78 −3.87 −3.85
K̃ (2)

SMS GHz amu2 −2.53 −8.27 −8.26 −4.49 −4.46

F̃ (1)(Ra) MHz fm−2 266.8 −19.6 −19.9 −112.2 −111.6
MBPT+RPA [29] 266.6 −19.6 −19.9 −111.8 −111.2

RCCSD(T) [30] 263.3 −15.9 −19.5 −93.9 −112.3
F̃ (2)(Ra) kHz fm−4 −89.25 6.58 6.65 37.50 37.30

tronic energy shifts which result from the difference in nuclear
charge distribution (or, more precisely, from the difference in
nuclear potential) are called field shifts (FS). For the purposes
of the present investigation, it is sufficient to assume that all
isotopes have the same shape of the nuclear charge distri-
bution and differ only by the values of the charge radii. In
this approximation, the electrostatic potential V of a nucleus
depends solely on the nuclear charge radius V = V (R); its
total isotopic variation would be δVia = V (Ri ) − V (Ra). In the
second-order perturbation theory, the field shift is given by

�EFS,ia = 〈ψa|δVia|ψa〉 +
∑
n �=a

|〈ψa|δVia|ψn〉|2
Ea − En

. (17)

Here ψa is the electronic wave function and Ea the electronic
energy level in the reference isotope a.

Let δR2
ia = R2

i − R2
a be the difference between (squares of)

dimensionless radii. In Eq. (17), we would like to isolate the
dominant first-order field shift F (1)δR2

ia [see Eq. (1)] from
other field-shift contributions. To do this, we introduce the
standard field-shift operator VFS ≡ ∂V (R)/∂ (R2) and rewrite
δVia as

δVia = VFS δR2
ia +

(
δVia

δR2
ia

− VFS

)
δR2

ia. (18)

Now we can express the first term in Eq. (17) as follows:

〈ψa|δVia|ψa〉 = F (1)(Ra)δR2
ia + δRi F

(1)(Ra)δR2
ia. (19)

Here, the first coefficient

F (1)(Ra) = 〈ψa|VFS|ψa〉, (20)

is the standard FS constant in Eq. (1). The remaining part of
the field shift is the higher-order correction

δRi F
(1)(Ra) =

〈
ψa

∣∣∣∣ δVia

δR2
ia

− VFS

∣∣∣∣ψa

〉
. (21)

Since the second term of Eq. (17) is a small correction,
one can replace δVia by VFS in it. Hence, we introduce the
second-order field-shift electronic constant

F (2)(Ra) =
∑
n �=a

|〈ψa|VFS|ψn〉|2
Ea − En

. (22)

Finally, we can express the resulting field shift as

�EFS,ia = [
F (1)(Ra) + δRi F

(1)(Ra)
]
δR2

ia + F (2)(Ra)
(
δR2

ia

)2
.

(23)

Note that the residual potential (δVia/δR2
ia − VFS) is local-

ized in the nuclear region similarly to the dominant field-shift
potential VFS. Hence, it makes sense to represent the higher-
order correction δRi F

(1)(Ra) as a factor fho(Ra, Ri ) multiplied
by the field-shift constant

δRi F
(1)(Ra) = −F (1)(Ra) fho(Ra, Ri )10−3. (24)

This form is convenient for presenting the results of our nu-
merical calculation. We will report the numerical results for
FS constants F (1)(Ra), δRi F

(1)(Ra), and F (2)(Ra) in Sec. IV C.

C. Additional terms

1. Nuclear polarization

Not only the nuclear shape, but also the disposition of
a nucleus to be polarized by an electric field changes from
isotope to isotope. Nuclear polarization (np) manifests itself
in a correction to electronic energy levels; varying nuclear
polarization between isotopes thus results in a contribution to
isotope shift. Our treatment of the nuclear polarization follows
the approach developed in Refs. [23,24]. This approach in-
volves several approximations. First, it neglects the distortion
of the nuclear excitation spectrum by the electrons. Second,
it discards the transverse part of the interaction between the
electron and the nucleus. Within these approximations, the
nuclear polarization correction for the electron state ζ can be
written as [23,24]

�Enp = −α
∑
LM

B(EL)
∑

n

|〈ζ |FLYLM |n〉|2
En − Eζ + sgn(En)ωL

, (25)

where n runs over the complete spectrum of electronic states
including the positive and negative continua, L denotes the
multipolarity of nuclear excitations, B(EL) = B(EL; L → 0)
are the reduced probabilities of nuclear transitions from the
excited (“L”) to the ground state (“0”), ωL are the nuclear
excitation energies with respect to the ground state, YLM the
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spherical harmonics, and FL are characteristic radial functions
in the sharp-edge-nucleus approximation [24]

FL=0(r) = 5
√

π

2r3
0

[
1 − r2

r2
0

]
θ (r0 − r), (26)

FL>0(r) = 4π

(2L + 1)rL
0

[
rL

rL+1
0

θ (r0 − r) + rL
0

rL+1
θ (r − r0)

]
,

(27)

where r0 =
√

〈r〉2 is the radius of the nuclear sphere and θ the
step function.

The main contributions to the sum in Eq. (25) arise from
two kinds of transitions: giant resonances and lowest-lying
rotational transitions. The first are dominant because of their
large transition strengths B(EL), while the second are en-
hanced due to the small denominator containing the transition
frequency ωL. Accordingly, the dominant low-lying-level con-
tribution to �Enp in the vast majority of even-even nuclei
comes from the electric quadrupole transition from the first
rotational level to the ground state, 2+ → 0+.

To facilitate numerical calculations in many-electron sys-
tems, we introduce a nuclear polarization potential Vnp defined
by its matrix elements between single-electron atomic states

〈ζ |Vnp|ξ 〉 = −α
∑
LM

B(EL)
∑

n

〈ζ |FLYLM |n〉〈n|FLYLM |ξ 〉
En − m + sgn(En)ωL

.

(28)

Here we replace Eζ with electron mass, thereby discarding the
(very weak) dependence of Vnp on the binding energy of the
state ζ .

Similarly to the field-shift operator VFS, the operator Vnp is
mainly localized in the nuclear region. Hence it is convenient
to present the np correction to a given energy level in Ca+ as

�Enp ≡ −gnp, j R2
j F (1)(Ra)10−3, (29)

where Rj is the dimensionless nuclear charge radius (2), F (1)

is defined in Eq. (20), and gnp, j is an np coefficient which
depends both on the isotope and on the electronic state in
question. Accordingly, the isotope shift due to nuclear polar-
ization in a given calcium isotope i with regards to the isotope
a would be

�Enp,ia = −F (1)(Ra)
(
R2

i gnp,i − R2
a gnp,a

)
10−3. (30)

The numerical methods for calculating the np coefficients gnp

are described in Sec. IV D 2.

2. FS and MS cross term

Finally, let us turn to the isotope shift contribution which
is a mixture of mass shift and field shift. It is convenient to
present it as a nuclear-mass-dependent correction to the field-
shift constant. The leading nonrelativistic effect comes from
the reduced mass and could be included into the isotope shift
by the substitution [25] (see also Ref. [26])

F → μ3F = F
(

1 − 3
m

M
+ · · ·

)
. (31)

In calculating the cross term below, we use F (1)(Ra) in place
of the total F since the difference between the two cases is

minuscule in the already small cross term

�F = −3
m

M
F (1)(Ra). (32)

Additionally, the contributions of the same order induced by
the specific mass-shift operator are expected to be smaller than
the reduced-mass effect and are likewise neglected.

D. General isotope shift formula

The total isotope shift of an energy level consists of
mass shift (Sec. II A), field shift (Sec. II B), and additional
terms (Sec. II C). Let us denote F (1) ≡ F (1)(Ra) and F (2) ≡
F (2)(Ra); written as a single sum, the main contributions to
the isotope shift between the isotopes i and a are

�Eia = K (1)

(
m

Mi
− m

Ma

)
+ K (2)

(
m2

M2
i

− m2

M2
a

)

+
[

1 − fho(Ra, Ri )10−3 − 3

(
m

Mi
− m

Ma

)]
F (1)δR2

ia

− F (1)
(
R2

i gnp,i − R2
a gnp,a

)
10−3 + F (2)

(
δR2

ia

)2
.

(33)

III. MANY-BODY PERTURBATION THEORY

We describe an atom with the relativistic no-pair Dirac-
Coulomb Hamiltonian H which is a sum of the zeroth-order
Hamiltonian

H0 =
∑

i

[αi pi + βi m + Vnuc(ri ) + U (ri )], (34)

where αi and β are the Dirac matrices, Vnuc is the nuclear
Coulomb potential, and the residual electron-electron interac-
tion

VI =
∑
i< j

�++ I (ri j ) �++ −
∑

i

�+ U (ri ) �+. (35)

In the later expression, �++ and �+ are the projection opera-
tors to the positive-energy part of the Dirac spectrum, I is the
electron-electron interaction operator in the Breit approxima-
tion, given by

I (ri j ) = α

ri j
− α

2ri j
[αiα j + (αi r̂i j )(α j r̂i j )], (36)

where the first and the second terms correspond to the
Coulomb and the Breit interaction, respectively. Here r̂ =
r/|r| and U is a screening potential introduced in the
zeroth-order Hamiltonian to partially account for the electron-
electron interaction. An important instance of such a potential
is the Dirac-Hartree-Fock potential VHF whose matrix ele-
ments are given by

〈i|VHF| j〉 ≡ (VHF)i j =
∑

a

Iai;a j, (37)

where Iab;cd ≡ Iabcd − Iabdc, Iabcd ≡ 〈ab|I|cd〉, and I is the op-
erator of the electron-electron interaction defined in Eq. (36).
Here, we will adopt the standard notation from Ref. [27]: the
letters a, b, c, . . . designate occupied core orbitals; n, m, r, . . .

signify excited orbitals outside the core, including the valence
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orbital; i, j, k, . . . can be either excited or occupied orbitals.
The letter v stands for the valence orbital.

Within the many-body perturbation theory (MBPT), the
energy of the valence state Ev is presented as a perturba-
tion expansion Ev = E (0) + E (1) + E (2) + · · · . When only
the contributions to the valence ionization energy (“val”) are
considered, the expansion terms can be obtained [27]

E (0)
val = εv, (38a)

E (1)
val = (VHF − U )vv, (38b)

E (2)
val =

∑
amn

Ivamn Imn;va

εav − εmn
−

∑
abm

Iabmv Imv;ab

εab − εvm

+ 2
∑
am

(VHF − U )am Imv;av

εa − εm

+
∑
i �=v

(VHF − U )vi (VHF − U )iv

εv − εi
, (38c)

where εab ≡ εa + εb. The expressions for the third-order
MBPT correction E (3) are quite lengthy; they are presented
in Ref. [27] and the angular reduction of these formulas is
described in Ref. [28]. In practical calculations, it is typical
to choose the screening potential U to be the frozen-core
Dirac-Fock potential. In such a case, all terms which include
the matrix elements of (VHF − U ) can be omitted. However,
these terms should be preserved if we plan to perturb the above
formulas with an additional potential; a perturbation of this
kind will be described at the end of this section.

In the present work, we aim to calculate the matrix ele-
ments of one-body (field shift) and two-body (specific mass
shift) operators. Moreover, we need to compute the second-
order iterations of such operators. The simplest way to achieve
this is to use the finite-difference approach: the perturbing
operators are first added to the Hamiltonian and then the
numerical derivative with respect to the perturbations is evalu-
ated. Specifically, for calculating the field-shift constants F (1)

and F (2), we add the perturbing potential VFS with an arbitrary
prefactor λ to the nuclear potential, i.e., Vnuc → Vnuc + λVFS.
Then the valence energies Ev (λ) of the modified Hamiltonian
are calculated. Finally, the field-shift constants are obtained by
computing numerical derivatives with respect to the parameter
λ:

F (1) = ∂Ev (λ)

∂λ

∣∣∣∣
λ=0

, F (2) = 1

2

∂2Ev (λ)

∂λ2

∣∣∣∣
λ=0

. (39)

Similarly, the specific mass-shift constants K (1)
SMS and K (2)

SMS
are calculated by adding the perturbing potential VSMS to
the electron-electron interaction I (ri j ) → I (ri j ) + β VSMS(ri j )
and finding the derivative of the perturbed valence energies
Ev (β ) with respect to β,

K (1) = ∂Ev (β )

∂β

∣∣∣∣
β=0

, K (2) = 1

2

∂2Ev (β )

∂β2

∣∣∣∣
β=0

. (40)

The parameters λ and β are chosen in such a way that the
resulting changes in energy are much larger than the round-
off errors in the numerical calculation, and at the same time,
are sufficiently small for the numerical derivative to be stable
against variations of λ and β.

In our calculations, we choose the potential U in the
zeroth-order H0 to be the Dirac-Fock potential. When a pertur-
bation is added to the Hamiltonian H0 in the finite-difference
approach, we can include this perturbation into the self-
consistent procedure of computing the Dirac-Fock potential.
It was demonstrated in Ref. [31] that such an inclusion is
advantageous because it accounts for the infinite sequence of
diagrams known as the random-phase-approximation (RPA)
corrections, thus yielding a substantial improvement in the
accuracy of calculations. We adopt this approach and ensure
the self-consistency of the Dirac-Fock potential after the per-
turbation is added to H0 for each value of the parameters λ

and β.
Apart from the finite-difference method, we also imple-

ment a more traditional perturbative approach for calculating
the first-order matrix elements of one-body operators, specifi-
cally, the nuclear polarization correction and the higher-order
finite nuclear size correction. Let V be the one-body poten-
tial; we consider the linear-in-V perturbations of the MBPT
formulas for energy levels. Accordingly, the perturbations of
single-electron energies and wave functions are

εi → 〈i|V |i〉 ≡ Vii, |i〉 → |δi〉 =
∑
k �=i

|k〉Vki

εi − εk
. (41)

The perturbations of the first two contributions in Eq. (38a)
yield

δE (0)
V = Vvv, (42)

δE (1)
V =

∑
k �=v

(VHF − U )vk Vkv

εv − εk
+ 2

∑
a

Iδav;av. (43)

Formulas for the next-order correction δE (2)
V are easily

obtained from Eq. (38c) by perturbing all single-electron ener-
gies and wave functions according to Eq. (41) and preserving
only the part which is linear in V .

To obtain results equivalent to those delivered by the finite-
difference approach, we need to include the contributions
from RPA explicitly. This can be achieved by defining the
RPA-corrected single-particle matrix elements as [29]

V RPA
an = Van +

∑
bm

V RPA
bm Iam;nb + Iab;nm V RPA

mb

εb − εm
, (44)

and solving the equation iteratively, obtaining the “dressed”
single-particle matrix elements V RPA

an . Then, in the calculation
of δE (1)

V , the resulting V RPA
an are used instead of Van. We can

demonstrate that the first-order RPA iteration accounts for a
part of δE (2)

V , while the higher-order RPA iterations corre-
spond to an infinite sequence of higher-order diagrams.

Furthermore, the dressed RPA matrix elements can be
implemented in calculations of δE (2)

V , thus accounting for
additional sequence of higher-order contributions. Of course,
the double-counting terms should be removed from the
RPA-corrected δE (1)

V and δE (2)
V contributions. A very similar

approach was used in Ref. [29] for the first-order field-shift
correction.
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TABLE II. Higher-order field-shift and nuclear-polarization contributions for the ground and first excited states of Ca+ evaluated with
different methods. The methods (i), (ii), and (iii) are described in Secs. IV D 1 and IV D 2. The higher-order field-shift constant correction
δR46 F (1) = δR46 F (1)(R40) is evaluated for the nuclear charge radii r40 = 3.4776 fm and r46 = 3.4953 fm [32]; note that Rj = r j/λ̄C . Nuclear
polarization correction �Enp to the electronic energy levels is found for the 40Ca+ isotope. Units for δR46 F (1) are kHz fm−2, while �Enp is
given in MHz.

4s 4p1/2 4p3/2 3d3/2 3d5/2

Method δR46 F (1) fho δR46 F (1) fho δR46 F (1) fho δR46 F (1) fho δR46 F (1) fho

(i) −4.810 0.0238 0.642 0.0238 0.645 0.0237 3.814 0.0238 3.794 0.0238
(ii) −5.354 0.0238 0.452 0.0238 0.456 0.0237 2.011 0.0238 1.998 0.0238
(iii) −6.202 0.0238 0.447 0.0238 0.453 0.0237 2.519 0.0238 2.506 0.0238

�Enp gnp �Enp gnp �Enp gnp �Enp gnp �Enp gnp

(i) −0.891 0.364 0.119 0.365 0.119 0.363 0.709 0.366 0.705 0.366
(ii) −0.991 0.364 0.084 0.365 0.084 0.363 0.374 0.366 0.372 0.366
(iii) −1.148 0.364 0.083 0.365 0.084 0.363 0.469 0.366 0.466 0.366

IV. CALCULATION OF ISOTOPE SHIFT PARAMETERS

A. Units

Before we consider the specifics of Ca+ numerical cal-
culations, let us briefly discuss the units of isotope shift
parameters. According to our definition in Eq. (3), the param-
eters Kia and Fia have units of energy since both m/Mj and R2

j
are dimensionless. Such a definition is useful for theoretical
treatment, e.g., when we consider the small-parameter expan-
sion in Sec. II A. In the literature, however, the mass-shift
constant is expressed in GHz amu and the field shift constant
in MHz fm−2. In this case, Eq. (3) would have the following
form:

�Eia = K̃ia

(
1

Mi
− 1

Ma

)
+ F̃iaδ〈r2〉ia. (45)

The connection between the two definitions of the isotope-
shift constants is as follows:

h K̃ (1) = mK (1), (46a)

h K̃ (2) = m2K (2), (46b)

h F̃ (1) = λ̄−2
c F (1), (46c)

h F̃ (2) = λ̄−4
c F (2). (46d)

For clarity, here we explicitly included the Planck constant
h. To make our results more accessible for calculating isotope
shifts, in Table I we present the numerical results in the form
of K̃ (1), K̃ (2), F̃ (1), and F̃ (2).

It should be mentioned that, in all the calculations reported
in this work, we do not include the contributions induced
solely by the core electrons: they are the same for all states
investigated here and cancel when the transitions between two
states are considered.

B. Mass shift

Our calculations of the first- and second-order specific-
mass-shift constants K (1)

SMS and K (2)
SMS are performed with the

finite-difference approach described in Sec. III, which reduces
the problem at hand to the computation of energies. We in-
cluded all MBPT corrections to energy up to the third order,
i.e., up to the three-photon exchange. This approach accounts

for both the two-photon-exchange corrections to the matrix
element of the SMS operator and an infinite sequence of
higher-order corrections delivered by the random-phase ap-
proximation. The nuclear charge distribution was represented
by the two-parameter Fermi distribution model, with the root-
mean-square nuclear charge radii taken from Ref. [32]. The
summation over the Dirac spectrum was performed using
the finite-basis-set B-spline method [34]. Actual calculations
of the one- and two-photon exchange corrections were per-
formed with N = 50–60 splines of the order 6 and the cavity
radius of 35 a.u. The three-photon exchange corrections were
computed with N = 40 splines and the partial-wave expansion
extended up to l = 6. The numerical results for the mass-shift
constants are presented in Table I. Our values for the first-
order constant are in a reasonable agreement with previous
calculations [29,30]. For the second-order constants, there are
no results reported in the literature.

C. Field shift

The calculations of the first- and second-order field-shift
constants F (1) and F (2) were performed with the finite-
difference approach as described in Sec. III. We include
MBPT corrections to energy up to the second order, which ac-
counts for all two-photon-exchange corrections to the matrix
element of the field-shift operator.

The numerical results for F (1) and F (2) are presented in
Table I. Our values for the first-order constant F (1) are in
a very good agreement with results by Safronova and John-
son [29]. There is, however, a significant difference with the
results of the authors of Ref. [30], especially for 4p1/2 and
3d3/2 states. The probable reason could be that the numerical
approach of Ref. [30] is not particularly suitable for computa-
tion of the field shift.

D. Additional terms

1. Higher-order field shift

In the present work, we consider three different ap-
proaches for evaluating the field-shift correction δRi F

(1)(Ra)
[see Eq. (21)]. In the order of the improvement of approxi-
mation, they are the following: (i) Dirac-Fock including core
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TABLE III. The higher-order field shift parameter fho(Ra, Ri )
[see Eq. (24), Aa = 40] for atomic states of Ca+.

fho(Ra, Ri )

Ai 4s 4p1/2 4p3/2 3d3/2 3d5/2

42 0.0410 0.0411 0.0410 0.0410 0.0410
44 0.0542 0.0543 0.0541 0.0541 0.0541
46 0.0238 0.0238 0.0238 0.0238 0.0238
48 −0.0007 −0.0007 −0.0007 −0.0007 −0.0007

relaxation, based on Eqs. (42) and (43); (ii) random phase
approximation (RPA) which relies on adding Eq. (44) to the
method (i); and, finally, (iii) MBPT2 + RPA, in which we add
a two-photon exchange correction to the method (ii). Table II
compares the results for δR46 F (1)(R40) in Ca+ obtained with
different methods. In this table, together with the δR46 F (1)(R40)
correction, we display the factor fho which was introduced in
Eq. (24). We conclude that, to the level of 10−3 relative accu-
racy, the factor fho is both method independent and the same
for all states considered. Our final results for the higher-order
field-shift correction are summarized in Table III. One can
note that the results obtained are very close to the hydrogenic
1s values. For instance, the hydrogenic result for fho(R46, R40)
calculated for the 2s state and Z = 20 is 0.02378, which
coincides with the values presented in Table III.

2. Nuclear polarization

The nuclear polarization correction is induced by the op-
erator Vnp defined in Eq. (28). The single-electron matrix
elements of Vnp are calculated in the same way as in our
previous work [35]. Specifically, we include the dominant
E2 nuclear rotational transition and the giant resonance tran-
sitions with L = 0, 1, 2, 3. For hydrogenic matrix elements
we reproduce the results of Ref. [24]. A similar calculation
was recently presented in Ref. [36]; the difference is that
approximate empirical formulas for B(E2) were used and only
the dominant L = 1 giant resonance was included. Based on
Eq. (29), the np correction is conveniently expressed in terms
of a gnp coefficient, which is defined by the ratio of nuclear-
polarization and field-shift contributions. While calculating
this ratio, it is important to use the same method for both
contributions. In such a case, the ratio will not depend on the
method of accounting for electron correlations.

The electron-structure corrections to the np effect are cal-
culated with the same approaches as the higher-order field
shift in Sec. IV D 1: (i) Dirac-Fock with core relaxation; (ii)
RPA; and (iii) MBPT2 + RPA. The numerical results for both
quantities �Enp and gnp delivered by these three methods for
the singly ionized calcium ion 40Ca+ are listed in Table II. We
find that the numerical results expressed in terms of gnp do not
depend on the method of calculation and only weakly depend
on the electronic valence state. This is not surprising since it is
known that, for light atoms, both the nuclear polarization and
the finite nuclear size corrections are roughly proportional to
the expectation value of the Dirac δ function [37].

We also find that the results for gnp in 40Ca+ from Table II
are very close to the hydrogenic 1s value gnp(1s) = 0.360.

The deviation is within 2%, which is much smaller than the
uncertainty associated with the approximate treatment of the
nuclear polarization effect. Therefore, for many practical pur-
poses, it is sufficient just to use the hydrogenic values of gnp.

In Table IV we present our results for the nuclear polariza-
tion contribution in various isotopes of Ca+. The experimental
values of the nuclear quadrupole transition strengths B(E2)
and the excitation energies ωL originate from Ref. [33], while
the nuclear charge radii are from Ref. [32].

E. Numerical results

Our numerical results for the isotope shifts of Ca+ isotopes
with A = 42, 44, 46, and 48, relative to the reference isotope
A0 = 40 are summarized in Table V. Note that the numerical
results listed in the table do not include a contribution of the
electron core that is the same for all states considered and
cancels for the transition energies.

The uncertainty of our theoretical values of the mass-shift
and field-shift constants stems predominantly from the higher-
order electron-correlation effects because all computational
errors (basis-set truncation, errors of numerical differentia-
tion) are small. There is no safe way to estimate the omitted
electron-correlation effects. To some extent, this can be done
by comparing calculations performed by different methods.
The specific mass shift is known to be particularly difficult
to calculate reliably for many-electron atoms. The agreement
of the results obtained by different methods summarized in
Table I for K (1)

SMS is on the level of 10%, which could be taken
as an estimation of the uncertainty. Calculations of the field
shift can generally be performed to a higher accuracy than for
the mass shift. We assume that the uncertainty of our results
for F (1) should be within 5%.

There are no independent calculations to compare with for
the second-order isotope shift constants. We assume here that
their uncertainties should be comparable with those of the
first-order constants K (1)

SMS and F (1). Furthermore, there are
uncertainties originating from the nuclear model employed in
the calculation of the nuclear polarization effect. We assume
these uncertainties to be on the level of 10%, which should be
considered as an order-of-magnitude estimate [38,39].

V. KING PLOTS

A. Theoretical introduction

The method of King plots [40] is a popular way to analyze
the experimentally measured isotope shifts. There are differ-
ent ways to construct King plots from spectroscopy data to
serve similar purposes, see Refs. [3,40]; we will consider the
most widely used version. The core idea of a King plot is that,
to the leading order, isotope shifts depend linearly on m/Mi

and R2
i , see Eq. (1). Hence, if one considers isotope shifts of

two different transitions, it is possible to eliminate the poorly
known R2

i from a system of linear equations. To illustrate this
approach, let �ν = �E (e) − �E (g) be a transition frequency
between an excited and ground atomic energy levels. Then, to
the first order {

�ν1,ia = Kν1μia + Fν1δR2
ia,

�ν2,ia = Kν2μia + Fν2δR2
ia,

(47)
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TABLE IV. Nuclear parameters and the nuclear polarization correction coefficient gnp [see Eqs. (29) and (30)] for various isotopes of Ca+.
The energy of the first nuclear rotational state is ω, B(E2)↑ is the corresponding nuclear transition strength, and

√
〈r2〉 is the root-mean-square

nuclear charge radius.

ω [33] B(E2)↑ [33]
√

〈r2〉 [32] gnp

A [MeV] [e2b2] [fm] 4s 4p1/2 4p3/2 3d3/2 3d5/2

40 3.904 0.010 3.4776 0.3643 0.3646 0.3628 0.3658 0.3660
42 1.525 0.042 3.5081 0.3961 0.3965 0.3945 0.3977 0.3979
44 1.157 0.047 3.5179 0.4122 0.4126 0.4106 0.4139 0.4141
46 1.346 0.018 3.4953 0.4120 0.4123 0.4102 0.4138 0.4140
48 3.832 0.010 3.4771 0.4242 0.4245 0.4224 0.4262 0.4263

with μia = (m/Mi − m/Ma). Consequently, we can write a
linear relation

n2,ia = Fν2

Fν1

n1,ia +
(

Kν2 − Fν2

Fν2

Kν1

)
, (48)

where nk,ia = �νk,ia/μia are modified frequencies (k = 1, 2).
The plot of n2,ia against n1,ia for different isotope pairs (i, a) is
called a King plot (see Fig. 1), and to the first order in isotope
shift, it is linear.

The higher-order corrections described in Sec. II and sum-
marized in Eq. (33) distort the linear relation (48). To quantify

TABLE V. Isotope-shift contributions in MHz and kHz, according to Eq. (33), with reference isotope A0 = 40. Note that we do not include
the large contributions of core electrons to isotope shifts which would be the same for every single-electron state and cancel out when the
difference is considered. MS and FS stand for mass shift and field shift, respectively; “sec.” indicates “second order” and “h.o.” means “higher
order.” Nuclear polarization contribution is denoted by “np,” while “cross term” means the field- and mass-shift cross term.

A Isotope shift Units 4s 4p1/2 4p3/2 3d3/2 3d5/2

42 Total MHz −1519.6 −1122.9 −1136.5 1329.8 1315.6
MS MHz −1576.5 −1119.2 −1132.8 1353.4 1339.1

MS, sec. MHz 0.190 0.511 0.511 0.225 0.224
FS MHz 56.8 −4.18 −4.24 −23.9 −23.8

FS, h.o. kHz −2.33 0.172 0.174 0.981 0.975
FS, sec. kHz −4.05 0.299 0.302 1.70 1.69

Np kHz −125.1 9.24 9.31 52.8 52.5
Cross term kHz 0.111 −0.008 −0.008 −0.047 −0.047

44 Total MHz −2935.1 −2141.7 −2167.7 2553.2 2526.0
MS MHz −3010.4 −2137.1 −2163.1 2584.3 2557.0

MS, sec. MHz 0.354 0.955 0.954 0.420 0.418
FS MHz 75.2 −5.54 −5.62 −31.6 −31.5

FS, h.o. kHz −4.08 0.301 0.304 1.71 1.70
FS, sec. kHz −7.09 0.523 0.529 2.98 2.96

Np kHz −185.5 13.7 13.8 78.4 78.0
Cross term kHz 0.282 −0.021 −0.021 −0.118 −0.118

46 Total MHz −4287.2 −3068.2 −3105.5 3695.8 3656.6
MS MHz −4320.5 −3067.1 −3104.4 3709.0 3669.7

MS, sec. MHz 0.498 1.34 1.34 0.590 0.587
FS MHz 32.9 −2.42 −2.46 −13.9 −13.8

FS, h.o. kHz −0.784 0.058 0.059 0.330 0.328
FS, sec. kHz −1.36 0.100 0.101 0.571 0.568

Np kHz −167.5 12.3 12.4 70.9 70.5
Cross term kHz 0.177 −0.013 −0.013 −0.074 −0.074

48 Total MHz −5528.5 −3922.6 −3970.3 4746.9 4696.6
MS MHz −5528.0 −3924.4 −3972.1 4745.6 4695.4

MS, sec. MHz 0.624 1.68 1.68 0.741 0.737
FS MHz −0.928 0.068 0.069 0.390 0.388

FS, h.o. kHz −0.00065 0.00005 0.00005 0.00027 0.00027
FS, sec. kHz −0.0011 0.0001 0.0001 0.0005 0.0005

Np kHz −192.9 14.2 14.3 81.8 81.2
Cross term kHz −0.0064 0.0005 0.0005 0.0027 0.0027
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(a) (b)

FIG. 1. Two ways to evaluate the nonlinearity of a King plot.
Here n1,2 are modified isotope shift frequencies and (i, a) indicates
the isotope pair which corresponds to the given point i = 1, 2, 3
and we assume a to be the reference isotope 40Ca. Method (a)
characterizes the average difference �line = (�1 + �2)/2 between
the outlier point and the line defined by the two other points. Method
(b) quantifies the area of the triangle defined by the three points, see
Eq. (51) and Ref. [2].

this deviation from linearity, we will apply two different meth-
ods shown schematically in Fig. 1. The first method relies on
averaging the difference between the outlier point and the line
defined by two other points

�line = (�1 + �2)/2, �1,2 > 0. (49)

To scale �line back to frequency units, we multiply its value
by |m/Mj − m/Ma|, where ( j, a) is the isotope pair of the
outlier point. The second method considers the area of a tri-
angle defined by three points of a King plot [2]. To formalize
this approach, we need to define the “isotope shift vectors”
whose coordinates correspond to modified frequency shifts in
different isotope pairs

�nk = (nk,1a, nk,2a, nk,3a). (50)

The area of the King-plot triangle can be calculated as [2,11]

�V2 = 1
2 det(�n1, �n2, �13), (51)

where �13 ≡ (1, 1, 1). Again, to scale �V2 to frequency units,
we multiply it by the second power of the mean value

|m/Mi − m/Ma|2, where (i, a) are all four isotope pairs.
The later approach is easily generalized to include more

isotopes and more transitions [11]. For instance, the isotope
shifts in Ca+ can be measured in four pairs of isotopes: the
reference A = 40 and each of the A = 42, 44, 46, 48 isotopes.
In this way, we would obtain four-dimensional isotope-shift
vectors

�nk = (nk,1a, nk,2a, nk,3a, nk,4a). (52)

The nonlinearity is defined by

�V3 = 1
6 det(�n1, �n2, �n3, �14), (53)

where �14 = (1, 1, 1, 1). We scale �V3 back to frequency units

by introducing the mean-value factor |m/Mi − m/Ma|3, where
(i, a) are all four isotope pairs. This case corresponds to a
three-dimensional King plot.

In the present work we analyze nonlinearities both for the
two- and three-dimensional (2D) King plots. In the first case,
we consider two sets of isotopes: (Ai, 40) with Ai = 42, 44,
46, and Ai = 42, 44, 48. Note that the charge radii of 40Ca

TABLE VI. Two-dimensional King-plot NLs. Methods (a) and
(b) are depicted in Fig. 1. The NL units are Hz for method (a) and
kHz2 for method (b). The “3rd point” column corresponds to the
isotope shifts in A = 42, 44, 46 isotopes and the “4th point” to the
isotope shifts in A = 42, 44, 48 isotopes with respect to Aa = 40.
Approximate percentages of each higher-order term contribution to
the total NLs are given in the respective columns. The abbreviations
for the individual terms are the same as in Table V.

3rd point 4th point

Transitions Contribution (a) (b) (a) (b)

3d3/2 → 4s total 44 1.1×103 180 3.3×103

3d5/2 → 4s MS, Sec. 99.2% 99.2% 24.7% 24.7%
FS, h.o. 0.1% 0.1% 0.0% 0.0%
FS, sec. 0.6% 0.6% 0.2% 0.2%

Np 0.2% 0.2% 75.1% 75.0%

Cross term 0.0% 0.0% 0.0% 0.0%

4p1/2 → 4s Total 1.4×104 2.8×105 1.4×104 2.2×105

3d3/2 → 4s MS, sec. 99.7% 99.7% 99.5% 99.5%
FS, h.o. 0.1% 0.1% 0.1% 0.1%
FS, sec. 0.0% 0.0% 0.1% 0.1%

Np 0.2% 0.2% 0.3% 0.3%
Cross term 0.0% 0.0% 0.0% 0.0%

and 48Ca are almost equal, while the radii of the A = 42, 44,
46 isotopes are larger than both, as can be seen from Table IV;
this fact may influence the pattern of King-plot nonlinearity in
a way that is specific for calcium.

B. King-plot nonlinearity in Ca+

We calculate two-dimensional King-plot nonlinearities
(NLs) with the two methods illustrated in Fig. 1, for two pairs
of transitions: (3d3/2 → 4s; 3d5/2 → 4s) and (4p1/2 → 4s;
3d3/2 → 4s). The first pair consists of two narrow transi-
tions and is suitable for the search of possible new-physics
effects [18]. However, this transition pair poses a challenge
for theoretical predictions of NLs, as it involves significant
cancellations between the isotope shifts. On the other hand,
the second pair of transitions does not have such strong can-
cellations, and consequently, is better suited for detecting
King-plot nonlinearities originating from the standard model,
as will be discussed below.

Since there are four isotope pairs available for Ca+ (four
points on a 2D King plot) we calculate NLs both for the
“third point” (A = 42, 44, 46 versusA = 40) and the “fourth
point” (A = 42, 44, 48 versus A = 40). Additionally, we de-
termine the three-dimensional (3D) King plot NL as defined
in Eq. (53) for the following set of transitions: 3d3/2 → 4s,
3d5/2 → 4s, and 4p1/2 → 4s.

Our numerical results are presented in Tables VI and VII
for the NL of the 2D and 3D King plots, respectively. In-
dividual contributions to the 2D NL are roughly additive;
in Table VI we present the total NL results as well as the
individual contributions expressed in a percentage of the total
values. On the other hand, individual contributions to the 3D
NL turn out to be nonadditive. So we successively exclude
each of the terms and list the resulting change of NL values in
Table VII.
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TABLE VII. The three-dimensional King plot NLs, see Eq. (53).
Contributions to the three-dimensional NL are nonadditive; we con-
secutively exclude each term from the total sum and record how
the NL value is impacted. The second column names the one term
excluded from the sum, whereas the third column shows the change
of the NL in percentage of the “total” value with all terms included.
The abbreviations for the individual terms are the same as in Table V.

Transitions Contribution NL[kHz3]

4p1/2 → 4s; Total 8.2×103

3d3/2 → 4s; No MS, sec. 99.9%
3d5/2 → 4s. No FS, h.o. 0.0%

No FS, sec. 0.0%
No np 99.9%

No cross term 0.0%

Examining individual contributions to NL, we observe that
the second-order and higher-order FS corrections and the
cross term are essentially negligible for Ca+ and can be omit-
ted in future studies. This was expected since the nuclear-size
effects tend to be small for light atoms. The main source of
NL in Ca+ is the second-order mass shift, which is consistent
with our previous findings for argon [25]. Quite surprisingly,
however, we find a large contribution from the nuclear polar-
ization for the fourth-point (3d3/2, 3d5/2 → 4s) 2D King-plot
and for the 3D King plot. A possible reason is the irregular
behavior of the nuclear charge radii: the charge radii of 40Ca
and 48Ca are almost equal, whereas the radii of 42,44,46Ca are
larger than both of them (see Table IV).

One might notice that the methods (a) and (b) produce NLs
that are, first, of different units and, second, very different
numerically. This is not surprising since method (a) measures
a linear distance whereas method (b) measures the area of
a triangle. Naturally, both methods describe the same phe-
nomenon and thus the resulting NLs correspond to the same
experimental uncertainty, which would allow to detect them.
We checked this numerically by a Monte Carlo simulation
and confirmed that the experimental errors at which the NLs
become visible is the same for the (a) and (b) methods of the
NL determination.

We now address the question of how accurately the present
theory can predict the NLs of King plots within the standard
model. Theoretical accuracy of isotope-shift (particularly,
the specific mass shift) constants of many-electron systems
achievable in modern calculations is not very high (on the
level of few percent). Initially, it was assumed that, because
the NLs are very small, even an approximate theoretical result
would provide valuable information for searching for new
physics with Kings plots. However, as has been shown in our
previous work [26], the numerical values of NLs in hydrogen-
like ions turn out to be very sensitive to the experimental
uncertainties of the nuclear charge radii, which places limits
on theoretical predictions of NLs. In the present work, we
studied the sensitivity of the numerical values of NLs in Ca+

to the theoretical uncertainties of isotope-shift parameters
and to the experimental errors of nuclear charge radii. Since
the standard methods of error propagation do not work in
this case, we used a Monte Carlo simulation. Each of the
computed isotope-shift constants was represented by a set of

TABLE VIII. NLs and their uncertainties for the two-
dimensional King plots. For each entry, the upper line shows a NL
calculated with method (a) and its uncertainties, while the lower
line gives the maximal experimental uncertainties of (both) transition
frequencies that allow to detect the NL values listed in the upper
line. εconst. is the theoretical error of the NL value stemming from the
numerical uncertainty of isotope-shift constants, whereas εradii is the
NL uncertainty originating from the experimental values of nuclear
charge radii. The units are kHz.

Transitions Value εconst. εradii

3d3/2 → 4s; 3rd point 0.044 1.5 0.013
3d5/2 → 4s. (0.005) (0.20) (0.002)

4th point 0.181 1.5 0.023
(0.012) (0.12) (0.002)

4p1/2 → 4s; 3rd point 14 2.4 4.0
3d3/2 → 4s. (1.3) (0.3) (0.45)

4th point 14 2.5 7.0
(0.8) (0.17) (0.4)

quasirandom normally distributed numbers, with parameters
of the normal distribution defined by the central value and the
uncertainty of the corresponding isotope-shift constant. The
NL errors were obtained by analyzing the resulting distribu-
tions of the NL values. The uncertainty estimates described in
Sec. IV E were employed for the isotope-shift constants. For
the nuclear charge radii, we used the errors from Ref. [32],
specifically the systematic uncertainty of 0.0020 fm for all
isotopes and the relative uncertainty of 0.0009 fm of nuclear
charge radii of isotopes A = 42, 44, 46, and 48 relative to
A = 40.

The numerical results are summarized in Table VIII. The
two methods of the NL determination yield very similar re-
sults, therefore, it is sufficient to present the values only for
method (a). We find that for the (3d3/2, 3d5/2 → 4s) pair the
theoretical uncertainty εconst is an order of magnitude larger
than the central value. This is not surprising given the strong
cancellations between the isotope shifts of the two transitions.
As is evident from Table V, we cannot reliably predict the
isotope shift of the 3d5/2–3d3/2 fine-structure difference, and
this fact leads to a large uncertainty in the corresponding NLs.
Hence, for the (3d3/2, 3d5/2 → 4s) pair only an upper limit
of NL can be obtained: we conclude that the standard-model
NLs for this transition pair in Ca+ might be observed when the
experimental accuracy is below 200 Hz. As a matter of fact,
such accuracy is already achievable in modern experiments
with Ca+ [16,18], although no confirmed NLs have been
reported so far.

The second pair of transitions considered in this work
(4p1/2 → 4s; 3d3/2 → 4s) involves transitions with different
principal quantum numbers n, hence the cancellation between
the isotope shifts is much weaker. Accordingly, the NLs pre-
dicted for this KP transition pair are significantly larger and
can be seen already at the experimental accuracy of about
1.5 kHz. The purely theoretical uncertainty (which stems from
the uncertainty of isotope-shift constants) amounts to ∼20%
of the NL value, which means that, in this case, our theory
can quantitatively predict a NL. Additionally, the nuclear-radii
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uncertainty turns out to be about twice as large as the purely
theoretical one. This means that, if observed, the (4p1/2 → 4s;
3d3/2 → 4s) King plot can be used to improve our knowledge
of nuclear charge radii.

VI. CONCLUSION

We performed a detailed study of isotope shifts in Ca+

transition energies. The calculations of the first-order mass-
shift and field-shift isotope-shift constants were carried out
within the relativistic many-body perturbation theory for the
4s, 4p1/2, 3/2, and 4d3/2, 5/2 states of Ca+. The results are in
good agreement with the previous calculations which were
performed using many-body perturbation theory [29] and the
coupled-cluster method [30].

The higher-order isotope-shift effects responsible for the
standard-model (SM) nonlinearities in King plots were calcu-
lated: second-order mass shift, second- and higher-order field
shifts, and nuclear polarization. We analyzed the resulting
Kings-plot nonlinearities in Ca+ with three different methods
and demonstrated that the dominant contributions originate
from the second-order mass shift and nuclear polarization.

Two pairs of transitions were examined in this work. The
first pair, (3d3/2 → 4s; 3d5/2 → 4s), consists of two narrow
transitions that can be measured very accurately, which makes
it suitable for new-physics searches with King plots. However,
for this pair the present theory can only predict an upper limit
of the nonlinearities caused by the SM effects, owing to large
cancellations between the isotope shits. Based on our results,

we conclude that the SM nonlinearities in this transition pair
can become visible when the experimental accuracy is below
200 Hz, an accuracy already achieved in modern experiments
with Ca+ [16–18]. So, as long as experiments do not detect
any King-plot nonlinearity, this fact can be used for placing
bounds on possible new-physics effects, see Ref. [2]. How-
ever, as soon as the King plot is measured to be nonlinear, it
would be hard to discern whether this nonlinearity is due to a
SM effect or a new-physics interaction.

The second transition pair investigated in this work,
(4p1/2 → 4s; 3d3/2 → 4s), involves two very different tran-
sitions. The line profile of the 4p–4s transition is rather wide
and cannot be measured as accurately as the 3d–4s one. How-
ever, the cancellation between the isotope shifts is relatively
small in this case and the theory can provide a quantitative
prediction of the SM nonlinearity. As follows from Table VIII,
the King-plot nonlinearity for this transition pair can be ob-
served already at the 1-kHz level of experimental uncertainty,
which is feasible in modern experiments. We conclude that
the (4p1/2 → 4s; 3d3/2 → 4s) transition pair is a promising
candidate for the experimental identification of the SM King-
plot nonlinearity and for obtaining information about nuclear
charge radii.
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Draganić, R. S. Orts, and J. Ullrich, Phys. Rev. A 68, 022511
(2003).

[22] W. R. Johnson, Atomic Structure Theory (Springer, Berlin,
2007).

022802-11

https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/PhysRevLett.120.091801
https://doi.org/10.1103/PhysRevLett.125.123002
https://doi.org/10.1126/science.1114375
https://doi.org/10.1038/s41586-022-05245-4
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1038/s41566-018-0347-5
https://doi.org/10.1103/RevModPhys.90.045005
https://doi.org/10.1103/PhysRevD.96.093001
https://doi.org/10.1103/PhysRevResearch.2.043444
https://doi.org/10.1103/PhysRevA.104.L060801
https://doi.org/10.1103/PhysRevLett.128.163201
https://doi.org/10.1103/PhysRevLett.128.073001
https://doi.org/10.1103/PhysRevA.103.L030801
https://doi.org/10.1103/PhysRevA.100.022514
https://doi.org/10.1103/PhysRevA.107.069902
https://doi.org/10.1103/PhysRevLett.125.123003
https://doi.org/10.1103/PhysRevLett.115.053003
https://doi.org/10.1103/PhysRevResearch.2.043351
https://doi.org/10.1103/PhysRevA.68.022511


VIATKINA, YEROKHIN, AND SURZHYKOV PHYSICAL REVIEW A 108, 022802 (2023)

[23] G. Plunien, B. Müller, W. Greiner, and G. Soff, Phys. Rev. A
43, 5853 (1991).

[24] A. V. Nefiodov, L. N. Labzowsky, G. Plunien, and G. Soff,
Phys. Lett. A 222, 227 (1996).

[25] V. A. Yerokhin, K. Pachucki, and V. Patkóš, Ann. Phys.
(Leipzig) 531, 1800324 (2019).

[26] V. A. Yerokhin, R. A. Müller, A. Surzhykov, P. Micke, and P. O.
Schmidt, Phys. Rev. A 101, 012502 (2020).

[27] S. A. Blundell, D. S. Guo, W. R. Johnson, and J. Sapirstein,
At. Data Nucl. Data Tables 37, 103 (1987).

[28] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys. Rev. A
37, 2764 (1988).

[29] M. S. Safronova and W. R. Johnson, Phys. Rev. A 64, 052501
(2001).

[30] A. Dorne, B. K. Sahoo, and A. Kastberg, Atoms 9, 26 (2021).
[31] J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A

68, 022502 (2003).

[32] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69
(2013).

[33] S. Raman, C. W. Nestor, and P. Tikkanen, At. Data Nucl. Data
Tables 78, 1 (2001).

[34] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and
G. Soff, Phys. Rev. Lett. 93, 130405 (2004).

[35] R. A. Müller, V. A. Yerokhin, A. N. Artemyev, and A.
Surzhykov, Phys. Rev. A 104, L020802 (2021).

[36] V. V. Flambaum, I. B. Samsonov, H. B. Tran Tan, and A. V.
Viatkina, Phys. Rev. A 103, 032811 (2021).

[37] M. Puchalski, A. M. Moro, and K. Pachucki, Phys. Rev. Lett.
97, 133001 (2006).

[38] I. A. Valuev, Ph.D. thesis, Ruprecht-Karls-Universität Heidel-
berg, 2022.

[39] I. A. Valuev (private communication).
[40] W. H. King, Isotope Shifts in Atomic Spectra (Springer Science

& Business Media, New York, 2013).

022802-12

https://doi.org/10.1103/PhysRevA.43.5853
https://doi.org/10.1016/0375-9601(96)00650-0
https://doi.org/10.1002/andp.201800324
https://doi.org/10.1103/PhysRevA.101.012502
https://doi.org/10.1016/0092-640X(87)90006-4
https://doi.org/10.1103/PhysRevA.37.2764
https://doi.org/10.1103/PhysRevA.64.052501
https://doi.org/10.3390/atoms9020026
https://doi.org/10.1103/PhysRevA.68.022502
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevA.104.L020802
https://doi.org/10.1103/PhysRevA.103.032811
https://doi.org/10.1103/PhysRevLett.97.133001

