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Orbital-angular-momentum-enhanced phase estimation using non-Gaussian states with photon loss
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This study investigates the use of orbital angular momentum (OAM) to enhance phase estimation in Mach-
Zehnder interferometers by employing non-Gaussian states as input resources in the presence of noise. Our
research demonstrates that non-Gaussian states, particularly the photon-subtraction-then-addition state, exhibit
the best sensitivity in the presence of symmetric noise. Additionally, a higher order of the Bose operator of
non-Gaussian states provides better sensitivity for symmetric noise. OAM can mitigate the deterioration of noise,
making it possible to estimate small phase shifts θ → 0. OAM enhances the resolution and sensitivity of all
input states and mitigates the deterioration caused by photon loss. Additionally, OAM enhances the resolution
and sensitivity of all input states, enabling the sensitivity to approach the 1/N limit even under significant photon
loss (e.g., 50% symmetric photon loss). These results hold promise for enhancing the sensitivity and robustness
of quantum metrology, particularly in the presence of significant photon loss.
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I. INTRODUCTION

Interferometric phase estimation is a critical research topic
in various growing fields, such as gravitational wave de-
tection [1] and quantum-enhanced dark-matter searches [2].
Among optical interferometers, the Mach-Zehnder inter-
ferometer (MZI) is a widely used and practical tool for
estimating small phase changes [3–9]. Improving the sensi-
tivity of phase estimation in the MZI has been the focus of
extensive research in recent years [10–16]. Many efforts have
been made to find better input-state candidates to improve
the resolution and sensitivity. With a classical light field as
an input resource for the MZI, sensitivity can reach only the
shot-noise limit (SNL). However, nonclassical states of light
provide numerous potential choices for quantum metrology.
The Heisenberg limit (HL) is theoretically attainable with
the use of a nonclassical light state [17]. The two-mode
squeezed vacuum state (TMSV) with a parity measurement
beats the HL while saturating the quantum Cramér-Rao
Bound (QCRB) [18].

Non-Gaussian states [19–24], which have emerged as
promising candidates, offer the potential to enhance quantum
metrology [25–28]. A variety of nonclassical states, includ-
ing photon-subtracted and photon-added states [29,30], as
well as coherent, squeezed vacuum states and NOON-like
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states [31–33], have been studied to improve phase estimation.
From a practical standpoint, the impact of noise [34–37],
particularly photon-loss-induced decoherence, poses a sig-
nificant challenge in the pursuit of enhanced sensitivity and
resolution [38,39]. Both theoretical and experimental stud-
ies have indicated that orbital angular momentum (OAM)
offers a degree of resilience to light beams in noisy envi-
ronments [40–42]. As such, the exploration of non-Gaussian
states and OAM has become an important area of study. These
techniques harbor the potential to facilitate precise phase esti-
mation and heightened sensitivity

Our investigation highlights the potential of utilizing OAM
to increase the sensitivity of phase estimation in the MZI
system by employing non-Gaussian states as input states. We
use a balanced (50:50) beam-splitter MZI and parity detection
as the optimal setup [14,15,31,43]. The results of our research
reveal that non-Gaussian states display superior sensitivity
compared to the TMSV state under symmetric and weakly
symmetric noise. To further enhance sensitivity in the pres-
ence of photon loss for a specific non-Gaussian state, we
employ the lower order of the Bose operator and implement
balanced photon loss. OAM effectively mitigates noise degra-
dation, facilitating small-phase-shift estimation. Furthermore,
OAM enhances the resolution and sensitivity of all input
states while counteracting the negative impact of photon loss
and enables sensitivity to approach the 1/N limit even under
significant photon loss, such as 50% symmetric photon loss.
We also analyze the statistical properties of quantum states
in the MZI system by von Neumann entropy and the Wigner
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function [44–47]. Therefore, this work provides prospects for
realizing higher sensitivity in quantum metrology with the
presence of significant noise.

II. PHASE-ESTIMATION PROTOCOL ENHANCED
BY NON-GAUSSIAN STATES and OAM

A. The design of the MZI system and the expression
of non-Gaussian states

Using non-Gaussian states is a feasible method to find bet-
ter input-state candidates [17,48–50]. Exploring photon sub-
traction (PS), photon addition (PA), and their superposition
state as the input resource provides a good example [51–53].
We write the expression of such states by harnessing the Bose
operator on the TMSV state, represented by â (â†)|�〉TMSV.
Here, we introduce a kind of non-Gaussian state determined
by different sequences and orders of Bose operators as

|�̂〉PA = Npâ†Gb̂†H Ŝ(ξ )|0, 0〉,
|�̂〉PS = NpâJ b̂K Ŝ(ξ )|0, 0〉,
|�̂〉PAS = Npâ†Gb̂†H âJ b̂K Ŝ(ξ )|0, 0〉,
|�̂〉PSA = Npâ†Gb̂†H âJ b̂K Ŝ(ξ )|0, 0〉, (1)

where Np denotes a normalized parameter; Ŝ(ξ ) represents
the two-mode squeezing operator; ξ = reiψ , where r is the
squeezing parameter and ψ is the squeezing angle; and â (â†)
and b̂ (b̂†) serve as annihilation (creation) operators for modes
a and b, respectively. Equation (1) provides the formulation
for the PA, PS, photon-addition-then-subtraction (PAS), and
photon-subtraction-then-addition (PSA) states. It should be
noted that G and H symbolize the order of the Bose operators,
as discussed in previous works [54,55]. Non-Gaussian states
in which G = H exhibit superior sensitivity compared to those
in which G �= H . Consequently, our discussion is focused
primarily on the precondition of G = H . For G = H = 1, we
label the non-Gaussian states as PA11, PS11, PAS11, and
PSA11. When G = H = 2, these states are referred to as
PA22, PS22, PAS22, and PSA22. The appended numbers in
each case correspond to the values of G and H .

Figure 1 explicitly shows the phase-estimation protocol.
Two 50:50 beam splitters (BSs) and two phase shifters
compose the main structure of the MZI. The two BSs are rep-
resented by the operators UBS1 = exp[−i π

4 (â†b̂ + âb̂†)] and
UBS2 = exp[i π

4 (â†b̂ + âb̂†)], respectively. Dove prisms (DPs)
embedded in modes c and d are phase shifters denoted by
exp(−iθ n̂), where n̂ is the photon number operator and θ

represents the phase-shift angle. The protocol proposes two
opposite phase shifts θ

2 in modes c and d. To investigate the
photon loss, we insert two more BSs with transmittance Ta(b)

between BS1 and BS2 to generate photon loss.
The OAM beam is characterized by a light beam that ex-

hibits a helical phase structure within its wave front, with each
photon carrying an OAM value of Lh̄, where L signifies the
azimuthal angular parameter, also known as the topological
charge of the OAM beam. As the value of L increases, both
the radius of the beam’s cross-sectional area and the angle
between the beam’s Poynting vector and the optical axis in-
crease. The topological charge L (i.e., L, 2L, 3L, . . .) serves to
enhance the parity measurement results and sensitivity [refer

FIG. 1. Schematic of the Mach-Zehnder interferometer system.
Fed by quantum states input from ports a and b, the light is trans-
mitted through paths c and d and finally detected in port e or f with
the detector (D). After a phase shift generated by a Dove prism (DP),
we use two arbitrary-rate beam splitters to simulate the photon loss
(BSL). Spiral phase plates (SPP) are used to bring OAM. The mirror
(M) can change the direction of the light field.

to Eqs. (5), (B9), and (B11) for further details]. In this study,
we modulate the beam’s phase [e.g., using spiral phase plates
(SPPs)], directly imparting a helical phase onto the beam to
generate an OAM beam. The OAM in the input state can act
as a “gear” to magnify the phase-shift term, thereby enabling
the estimation of small phase shifts [56–60].

The light-detection scheme at the output mode(s) of the
MZI determines the best sensitivity we can obtain. Among
many detection approaches, the parity measurement can
exploit the potential of nonclassical light and reach the
QCRB [14,15,61] (for details see Appendix A). This work
uses a parity operator in one of the output modes, represented
by �b = (−1)b̂†b̂. The expectation value of the measurement
signal can be represented by

〈�b〉 = Tr[ρout�b], (2)

where ρout denotes the density matrix of the output state.
As an example, we give the expression for the parity signal

derived by Eq. (2) using PSA11 as the input state,

〈�〉PSA11(θ+π/2) = ((1 − z2){−4z2(2 − 63z4 + 39z8

+ 14z12)cosL(π + 2θ ) + z4[−4

+ 315z4 − 252z8 + 8z12 + 4 ∗ (15

− 41z4 + 9z8)cos2L(π + 2θ ) + 4z2

× (−9 + z4)cos3L(π + 2θ ) + z4

× cos4L(π + 2θ )]})/{8(1 + z4 + 2z2

× cos2Lθ )
1
2 [1 + z4 + 2z2cosL(π + 2θ )]},

(3)
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FIG. 2. Normalized detection signal P as a function of phase
shift θ for all input states with squeezing parameter r = 1.096.
The black circles denote the TMSV state. As for the non-Gaussian
states, we use PA, PS, PAS, and PSA (triangles, squares, diamonds,
and stars). We use open symbols to represent G = H = 1 and solid
symbols for G = H = 2.

where z denotes tanh(r) and θ is the phase shift. The details of
the calculation and the results for other input states are shown
in Appendix B. As shown in Eq. (5), there are three parameters
that determine 〈�〉: the squeezing parameter r, phase shift θ ,
and OAM quantum number L.

B. The enhancement caused by the non-Gaussian
state and OAM

Figure 2 shows the signal of the parity detection 〈�〉 as
a function of the phase shift θ , where the label P is used to
represent 〈�〉. The full width at half maximum (FWHM) of
the signal curve is one of the universal criteria for determining
the resolution. For a narrower signal peak, a small phase shift
leads to a distinct change in the P value, indicating a higher
resolution. It is apparent from Fig. 2(a) that for the same
squeezing parameter, the TMSV has the worst resolution and
PSA11 has the best resolution. Figure 2(b) demonstrates that
the higher-order Bose operator leads to superior resolution.

There are only two outcomes for parity detection: + for
even and − for odd. According to Ref. [62], the classical
Fisher information FC determined by θ can be used to cal-
culate the detection sensitivity, represented by Eq. (4),

	θ = 1√
FC

=
√

1 − 〈�b〉
|∂〈�b〉/∂θ | . (4)

FIG. 3. Phase-estimation sensitivity 	θ as a function of the
phase shift θ with squeezing parameter r = 1.096 for all input states.
(a) shows the states with G = H = 1. In (b), we depict the PAS and
PSA states with different orders of the Bose operator. We use open
symbols to denote input states with G = H = 1 and solid symbols
for G = H = 2.

FIG. 4. Sensitivity δθ as a function of mean photon number N
with no photon loss. The phase shift has been taken as θ = 10−4.
The open (solid) symbols represent the state with G = H = 1 (G =
H = 2).

To investigate how phase sensitivity changes as a function
of θ , we plot Fig. 3 using Eq. (4). We can see that in the
case of θ → 0, the lowest bound of the phase sensitivity is
obtained [62,63]. The data in Fig. 3(a) suggest that the TMSV
state has the worst sensitivity and the PSA11 state has the
best sensitivity. Figure 3(b) implies that the higher-order Bose
operator leads to a lower 	θ bound. Overall, these results
show that with a fixed squeezing parameter r, the PSA state
has the best resolution and sensitivity for a small phase shift
of 10−3. Also, with the increase of G and H , both resolution
and sensitivity increase.

On the other hand, we study the sensitivity of the input
state as a function of the mean photon number N in Fig. 4.
As we can see from Fig. 4, with a fixed mean photon number,
the TMSV state exhibits better sensitivity than non-Gaussian
states when there is no photon loss.

In Fig. 5 we visualize the enhancement of the resolution
caused by OAM. Figure 5 depicts the normalized detection
signal P as a function of θ for various topological charges
L. We use the signal’s FWHM (denoted by the label F ) as
the criterion to compare the resolutions. From Fig. 5(a), the
results demonstrate that the higher OAM provides superior
resolution. We plot F versus OAM number L in Fig. 5(b) for
r = 0.2, 0.4, and 0.8. The enhancement caused by OAM is
prominent, which will lead to higher resolution and sensitivity.

FIG. 5. (a) Detection signal P as a function of phase shift for
the PSA11 input state with r = 1.096. Stars, triangles, and hexagons
represent the PSA11 state with no OAM added, L = 3, and L = 5,
respectively. (b) FWHM of the PSA11 state varies with L for
r = 0.2, 0.4, and 0.8.
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FIG. 6. Phase-estimation sensitivity 	θ as a function of the
mean photon number N without noise for no OAM -added, L = 3,
and L = 11. The solid blue line and red dash-dotted lines represent
the 1/N and 1/

√
N limits. Stars, squares, and hexagons represent the

sensitivity of the PSA11 state with no OAM enhancement, L = 3,
and L = 11. Circles, diamonds, and triangles indicate the TMSV
state with no OAM enhancement, L = 3, and L = 11, respectively.
The phase shift is fixed at θ = 10−4.

We plot the OAM-enhanced sensitivity 	θ against the
mean photon number N in Fig. 6, where the phase shift is
fixed at θ = 10−3. Figure 6 uses the TMSV and PSA11 states
as examples to demonstrate 	θ versus N for no OAM added,
L = 3, and L = 11. Without photon loss, the TMSV state
has better sensitivity than non-Gaussian states. Sensitivity
improves with increasing L.

III. THE EFFECT OF VARIOUS NOISES
AND THEIR MITIGATION

A. The influence of symmetric and asymmetric noises

Unavoidable photon loss leads to a worse 	θ . In the pro-
tocol, a BS is used to cause photon loss in both arms of
MZI. We define Ta = Tb = T as symmetric noise and Ta �= Tb

as asymmetric noise. Weakly symmetric noise is defined as
Tb − Ta � 0.4, and strongly symmetric noise is defined as
Tb − Ta � 0.4. We investigate how the noise influences the
phase estimation. We plot 	θ as a function of θ with var-
ious noises for all input states in Fig. 7, where we set the
squeezing parameter as r = 1.096. Figure 7 reveals that the
lowest bound of 	θ for non-Gaussian states gets worse with
the increase of Tb − Ta, as is evident from Figs. 7(e) to 7(a).
The results demonstrate that in order to further improve the
sensitivity, balancing the photon loss for non-Gaussian states
is an effective way. The PSA state exhibits the best sensitivity
for small phase shifts in the presence of symmetric noise,
while higher-order Bose operators provide even greater sen-
sitivity [64]. Figure 8 provides significant insight into 	θ as
a function of θ with different transmittances T to investigate
the influence of photon loss. We can see from Fig. 8 that
increasing photon loss leads to a higher bound of 	θ , which
means worse sensitivity. Compared to Fig. 3, the photon loss
deteriorates 	θ and generates a “gap” for θ → 0. The broader
gap makes estimating a small phase shift challenging. We
show 	θ versus N with the influence of the photon loss in
Fig. 9. Both Gaussian and non-Gaussian states experience
sensitivity far from the 1/N and 1/

√
N limits. Another result

of Fig. 9 is that the TMSV state is fragile to the influence
of photon loss, and the PSA state shows its robustness. For
T = 0.5, the TMSV state shows the worst 	θ , although it
is the best input state without noise, according to Figs. 2, 3,
and 5.

FIG. 7. Phase-estimation sensitivity as a function of phase shift with various photon losses. (a)–(e) represent Ta(b) = 0.1(0.9), Ta(b) =
0.2(0.8), Ta(b) = 0.3(0.7), Ta(b) = 0.4(0.6), and Ta(b) = 0.5(0.5), respectively. The squeezing parameter is taken as r = 1.096.
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FIG. 8. The sensitivity as a function of θ for the PSA11 state;
the squeezing parameter has been taken as r = 1.096. Stars denote
	θ without the photon loss. The solid line and dots represent 	θ for
T = 0.75 and 0.5, respectively.

B. OAM mitigation of the influence of the photon loss

From the discussion above, our results demonstrate that the
increase in noise causes deterioration of the phase estimation
for small phase shifts. To mitigate the deterioration caused
by photon loss, we employ a non-Gaussian state enhanced by
OAM.

A possible explanation for the gap that occurs in the pres-
ence of photon loss might be that the noise could be magnified
at the near-decorrelation point (θ → 0) [65–67]. As shown in
Fig. 10, with the increase of topological charge L, the sensi-
tivity 	θ reaches lower bounds for transmittance T = 0.5. At
the same time, the gap of the curve for θ → 0 gets narrower

FIG. 9. The phase-estimation sensitivity 	θ versus mean photon
number N for all input states. The transmittance parameter has been
set to T = 0.5 for all cases. The phase-shift value has been taken as
θ = 10−4.

FIG. 10. The phase-estimation sensitivity 	θ as a function of the
phase θ of the PSA11 state. The squeezing parameter has been taken
as r = 1.096. The solid line with stars represents the measurement
with T = 0.5 without enhancement from OAM. The solid lines with
squares and circles denote 	θ with transmittance parameter T = 0.5
for OAM quantum numbers L = 3 and 13, respectively.

with the enhancement of L, which makes it easy to measure
small phase shifts even with 50% photon loss in both arms of
the MZI. Figure 10 reveals that we can further mitigate the
deterioration with OAM.

Significant enhancement of OAM contributed by SPPs [68]
makes it impossible to estimate small phase shifts with noise.
Figure 11 demonstrates the sensitivity 	θ versus mean pho-
ton number N with 50% photon loss for L = 21. With the
enhancement of OAM, 	θ surpasses the HL when N < 15

FIG. 11. Phase-estimation sensitivity of entanglement states 	θ

as a function of the mean photon number N for all input states. The
phase shift θ and OAM quantum number L have been taken as θ =
0.007 and L = 21, respectively. The solid blue and red dash-dotted
lines represent HL and SNL, respectively.
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FIG. 12. Phase-estimation sensitivity 	θ as a function of the
phase shift θ of the PAS11 state; the squeezing parameter has been
taken as r = 1.096. The diamonds and solid line denote the mea-
surement without the enhancement of OAM and L = 5, respectively,
and the transmittance parameter is set to T = 0.5. Triangles and dots
represent the phase shifts with no enhancement from OAM and the
OAM quantum number L = 5, where the asymmetric photon loss
Ta(b) = 0.1 (0.9).

for all input-state candidates. Remarkably, the enhancement
of OAM can mitigate the deterioration caused by photon loss.

Figure 12 contrasts the impacts of OAM enhancement on
symmetric and asymmetric photon losses. The findings reveal
that, for a constant topological charge L, the phase-estimation
sensitivity performs more optimally with symmetric noise
than with asymmetric noise.

To display the effectiveness of OAM enhancement, we plot
the sensitivity 	θ as a function of the mean photon number N
with various photon losses. The result from Fig. 13 is clearly
that for θ = 0.007, the symmetric photon loss has the best
sensitivity, which is a conclusion similar to that from Fig. 7.
With topological charge L = 21, the phase-estimation sensi-
tivity can readily surpass the 1/N limit without a significantly
higher mean photon number.

IV. STATISTICAL PROPERTIES OF GAUSSIAN
AND NON-GAUSSIAN STATES

In the protocol, the TMSV states can be described
as [22,24]

|�〉TMSV = Ŝ(ξ )|n1, n2〉
= exp(ξ ∗âb̂ − ξ â†b̂†)|n1, n2〉 (5)

where Ŝ(ξ ) is the two-mode squeezing parameter and ξ =
reiψ , where r is the squeezing parameter and ψ is the squeez-
ing angle. We illustrate the mean photon number of the
proposed states as a function of the squeezing parameter in
Fig. 14. As shown in Fig. 14, when r → 0, the initial N of the
non-Gaussian state is determined by the Bose operator acting
on the TMSV state. The plot further elucidates that for a given

FIG. 13. Phase-estimation sensitivity 	θ versus mean photon
number N with various photon losses for the PAS11 state. The
phase-shift value and OAM quantum number are set as θ = 0.007
and L = 21.

r, the TMSV state has the lowest N , while PSA22 has the
highest N .

The properties of input states determine the result of
measurement. We use von Neumann entropy as a wit-
ness of non-classical properties and entanglement [69,70].
Equations (6) gives the equation for entropy, where ρa =
Trb[|�ab〉〈�ab|] and ρb = Tra[|�ab〉〈�ab|]. We use the label E
to represent entropy hereafter,

E (|�ab〉) = −Tr[ρaln(ρa )] = −Tr[ρbln(ρb)]. (6)

FIG. 14. Mean photon number as a function of the squeezing pa-
rameter for Gaussian and non-Gaussian states. Black circles denote
the TMSV state; squares, triangles, diamonds, and stars indicate PS,
PA, PAS and PSA, respectively. The open symbols represent low
order G = H = 1, and solid symbols are for G = H = 2.
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FIG. 15. von Neumann entropy as a function of the mean photon
number. The black circles denote the TMSV state. PA, PS, PAS,
and PSA are represented by triangles, squares, diamonds, and stars,
respectively. The open symbols represent low order G = H = 1, and
the solid symbols are for G = H = 2.

We use Eq. (6) to obtain the entropy as a function of r
and show the result in Fig. 15. We can see from this plot that
TMSV has the lowest entropy [71], while PAS22 and PSA22
have the largest.

In this study, we employ the parity measurement to enable
high-sensitivity measurement. A parity measurement in one
output mode is relevant to the detection of

∑∞
N=0

∑N
M=0 |N −

M, M〉〈M, N − M| [18,26]. Consequently, the properties of
the input state can be analyzed via joint photon number dis-
tribution. In Fig. 16, our primary focus lies on the PAS and
PSA states due to their superior robustness in the presence
of photon loss. Unlike the TMSV state, which exhibits a
“thermal-like down the diagonal” distribution [72–74], the
PAS and PSA states present a markedly different perspective.
The maximum value of probability is located at |8, 8〉 (PAS)
and |9, 9〉 (PSA). This distribution thus serves as a useful tool
for distinguishing the non-Gaussian states we are working
with.

To visualize the properties and distinguish different states
and evolutions of the input states, we use the Wigner function
[11,75–80]. We compare the initial input states in Figs. 17(a)–
17(e). As we can see, non-Gaussian states have a negative
value for the Wigner function in the center of the axis, which
shows their nonclassical properties. Among all input states,
the PSA state has the largest area of negativity, which indi-
cates it has more nonclassical properties than the other states.
This plot offers a useful way to identify which state has the
best sensitivity in the presence of photon loss. In Figs. 17(f)–
17(h), we compare the Wigner function of the PSA state with
different OAM numbers after the first BS. As we can see,
Fig. 17(f) shows the state with no enhancement from OAM,
and Figs. 17(g) and 17(h) present the state with OAM of L = 7
and L = 51. With higher OAM, the plot of the state rotates
with a larger angle.

FIG. 16. The joint photon number distributions for the PAS (or-
ange) and PSA (purple) states; the squeezing parameter is taken as
r = 1.096.

V. CONCLUSION

In summary, we utilized OAM and non-Gaussian states
to achieve higher sensitivity in phase estimation under
significant noise. The non-Gaussian state, particularly the
PSA state, exhibits higher sensitivity than the TMSV state.
In order to further improve the sensitivity, we can balance the
photon loss in the two arms of the MZI. With the presence of
symmetric noise, non-Gaussian states with higher-order Bose
operators achieve a lower sensitivity bound for small phase
shift in the symmetric photon loss.

As noise levels escalate, the task of estimating small phase
shifts becomes progressively more challenging. Nevertheless,
an increase in topological charge results in the photon carrying
a higher degree of OAM. This enhancement improves the
resilience of the estimation scheme by mitigating the detri-
mental effects of noise, thereby facilitating the estimation of
small phase shifts (θ → 0). This makes it feasible to achieve
the 1/N limit, even in the face of substantial photon loss, such
as 50% photon loss. Our research offers practical method-
ologies for realizing superior sensitivity in phase estimation
under significant noise conditions. We anticipate that our find-
ings will serve as a valuable and effective instrument in the
field of quantum metrology.
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FIG. 17. Wigner-function plot of input states with mean photon number N = 5 and their evolution with different OAMs. (a)–(e) The
Wigner-function plots of the TMSV, PA, PS, PAS, and PSA states, respectively. Data in (f)–(h) indicate the PSA state after the phase shift with
no OAM enhancement, L = 7, and L = 51, respectively. In the top and left views of the plan diagram, we have provided the orthogonal and
side views of the Wigner function, respectively.

APPENDIX A: SENSITIVITY BY PARITY DETECTION
AND THE QCRB

As high-sensitivity quantum metrology, the well-known
quantum Cramér-Rao bound (QCRB) determined by quan-
tum Fisher information (QFI) has been studied by phase
estimation. The QCRB can be obtained according to the in-
put resource, and it is independent of detection, 	θQCRB =
1/

√
FQ, where FQ denotes QFI. According to this theory,

greater FQ can achieve higher 	θ . For an input state, FQ can
be calculated as

FQ = 4[〈�̂ ′ | �̂ ′〉 − 〈�̂ ′ | �̂〉2], (A1)

where |�〉 = UθUBS1|�in〉 represent the state vector after BS1

and the DP and prior to the second beam splitter, BS2, and
|�̂ ′〉 = ∂|�〉/∂θ . Equation (A1) becomes

FQ = 4
[〈�in | Ĵ2

2 | �in〉 − |〈�in | Ĵ2 | �in〉|2
]
, (A2)

where J1,2,3 represent the angular momentum operators:

Ĵ1 = 1

2
(â†b̂ + âb̂†), Ĵ2 = 1

2i
(â†b̂ − âb̂†),

Ĵ3 = 1

2
(â†â − b̂†b̂). (A3)

To thoroughly investigate the potential of the input re-
source, we plot the QCRB and sensitivity versus the mean
photon number N in Fig. 18. We use diamonds and stars
to represent the sensitivity of different input states and a
dash-dotted line to represent the QCRB of the corresponding
state. The open symbols denote the state with G = H = 1, and
solid symbols represent states with G = H = 2. These results
suggest that parity offers a good detection that can saturate the
QCRB.

APPENDIX B: DERIVATION OF THE PARITY-DETECTION
SIGNAL AND ITS SENSITIVITY

The non-Gaussian state is obtained by harnessing the Bose
operator on the TMSV state represented by

|�̂〉PAS = â†Gb̂H Ŝ|0, 0〉,
|�̂〉PSA = âGb̂†H Ŝ|0, 0〉. (B1)

In the protocol, we use the parity-detection method. The parity
operator can be represented in the coherence state, as shown
in Eq. (B2), where |γ 〉 is the coherent state:

�̂b = (−1)n̂ = eiπ b̂†b̂ =
∫

d2x

π
|γ 〉〈−γ |. (B2)

FIG. 18. Phase-estimation sensitivity of the PAS and PSA states
and their QCRB in the absence of noise. Diamonds and stars repre-
sent the PAS state and the PSA state. The hollow icons represent low
order G = H = 1 and solid icons for G = H = 2.
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After harnessing the parity operator on the output state, the
expectation value of the detection signal can be represented as

〈�b〉 = out〈�|
∫

d2x

π
|γ 〉〈−γ ||�〉out. (B3)

We can also represent Gaussian and non-Gaussian states in
the coherence state; here, we take the TMSV as an example,
where z = tanh(r):

|�〉TMSV = (1 − z2)
1
2

∫
d2α d2β

π2
exp

[
− |α|2|β|2

2
+ α∗β∗z

]

× |α, β〉. (B4)

The evolution can be represented by a unitary operator,
and the evolution of the input state can be simplified as the
evolution of the Bose operator. After representing input states
in the basis of the coherent state, the state’s evolution can be
calculated as follows:

eξ ÂB̂e−ξ Â = B̂ + ξ [Â, B̂] + ξ 2

2!
[Â, [Â, B̂]] + · · · . (B5)

In the absence of photon loss, the evolution can be repre-
sented as

U †
MZIâ

†UMZI = â†cos
θ

2
+ b̂†sin

θ

2
,

U †
MZIb̂

†UMZI = b̂†cos
θ

2
− â†sin

θ

2
. (B6)

In order to calculate photon loss, we introduce two ficti-
tious beam splitters (BSL1 and BSL2) into the path of the MZI
system. After the evolution, including photon loss, we obtain
the reduced density matrix by tracing over the environmental
modes that have passed through the beam splitter. In the
presence of the photon loss, the evolution of the lossy MZI
protocol can be represented as [38]

U †
MZIâ

†UMZI = 1

2

[
â†cos

θ

2
(cosQa + cosQb)

+ ib̂†cos
θ

2
(cosQa − cosQb)

+ iâ†sin
θ

2
(cosQb − cosQa )

+ b̂†sin
θ

2
(cosQb + cosQa )

]
,

U †
MZIb̂

†UMZI = 1

2

[
iâ†cos

θ

2
(cosQb − cosQa )

+ b̂†cos
θ

2
(cosQa + cosQb)

+ â†sin
θ

2
(−cosQa − cosQb)

+ ib̂†sin
θ

2
(cosQb − cosQa )

]
, (B7)

where cos2Qa = Ta and cos2Qb = Tb. By using Eq. (B7) and
the integral below, we can derive the parity-detection signal:

∫
d2z

π
exp[ζ |z|2 + ξz + ηz∗ + f z2 + gz∗2]

= 1√
ζ 2 − 4 f g

exp

[−ζ ξη + ξ 2g + η2 f

ζ 2 − 4 f g

]
. (B8)

According to Eqs. (B3), (B7), and (B8), we obtain the
parity signal of the output state enhanced by OAM in a lossy
MZI system. In the presence of noise, the equation is too long
to demonstrate. We assume T = 1 (no noise) and give the
equation of PSA11 sensitivity as

	θPSA11(θ+π/2) = (1 − [z4(−1 + z2)2{−4 ∗ (2

− 63z4 + 39z8 + 14z12)cosL(π

+ 2θ ) + z2[−4 + 315z4 − 252z8

+ 8z12 + 4 ∗ (15 − 41z4 + 9z8)

× cos2L(π + 2θ ) + 4z2(−9 + z4)

× cos3L(π + 2θ ) + z4cos4L(π

+ 2θ )]}2]/{64(1 + z4 + 2z2

× cos2Lθ )[1 + z4 + 2z2cosL(π

+ 2θ )]}8)
1
2 /(2|{Lz2(−1 + z2)

× [1 − 51z4 + 396z8 − 245z12

+ 15z16 − 6z2(6 − 49z4 + 10z8

+ 10z12)cosL(π + 2θ ) + 3z4(19

− 20z4 + 5z8)cos2L(π + 2θ )

− 10z6cos3L(π + 2θ )]sinL(π

+ 2θ )}/{(1 + z4 + 2z2

× cos2Lθ )
1
2 [1 + z4+2z2cosL(π + 2θ )]5}|).

(B9)

The parity signal of the PAS11 state is

〈�〉PAS(θ+π/2) = {(1 − z2)[8 − 252z4 + 315z8

− 4z12 − 4z2(14 + 39z463z8

+ 2z12)cosL(π + 2θ ) + 4z4(9

− 41z4 + 15z8)cos2L(π + 2θ )

+ 4z6cos3L(π + 2θ ) − 36z10

× cos3L(π + 2θ ) + z8cos4L(π

+ 2θ )]}/{8(1 + z4 + 2z2

× cos2Lθ )
1
2 [1 + z4 + 2z2cosL(π + 2θ )]}.

(B10)

The sensitivity of the PAS11 state is represented as

	θPAS11(θ+π/2) = (1 − {(−1 + z2)2[8 − 252z4

+ 315z8 − 4z12 − 4z2(14 + 39z4
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− 63z8 + 2z12) cos L(π + 2θ )

+ 4z4(9 − 41z4 + 15z8)cos2L(π

+ 2θ ) + 4z6 cos 3L(π + 2θ )

− 36z10 cos 3L(π + 2θ ) + z8

× cos 4L(π + 2θ )]}/{64(1 + z4

+ 2z2cos2Lθ )[1 + z4 + 2z2

× cos L(π + 2θ )]}8)
1
2 /(2|{Lz2

× (−1 + z2)[15 − 245z4 + 396z8

− 51z12 + z16 − 6z2(10 + 10z4

− 49z8 + 6z12)cosL(π + 2θ )

+ 3z4(5 − 20z4 + 19z8)

× cos2L(π + 2θ ) − 10z10cos3L(π

+ 2θ )]sinL(π + 2θ )}/{(1 + z4

+ 2z2cos2Lθ )
1
2 [1 + z4

+ 2z2cosL(π2θ )]5}|). (B11)

In the presence of photon loss, e.g., Ta, Tb �= 1, the equa-
tions for the PAS and PSA states are too long to present. We
here present the sensitivity of the PS11 state as an example:

〈�〉PS11(θ+π/2) = [
8z2(−1 + z2)

{ − 128 + 32z2 − 32T 2
a z2

+ 16T 2
a z2 − 32T 2

b + 16T 2
b z2 − 12z4

+ 16Taz4 + 8T 3
a z4 − 2T 4

a z4 − 16
√

TaTbz4

+ 64T 3/2
a

√
Tbz4 + 16Tbz4 + 56TaTbz4

+ 8T 2
a Tbz4 + 64

√
TaT 3/2

b z4 − 16T 3/2
a T 3/2

b z4

+ 8TaT 2
b z4 − 8T 2

a T 2
b z4 + 8T 3

b z4

− 2T 4
b z4 − 2T 2

a z6 + 2T 3
a z6 − T 4

a z6

− 8T 3/2
a

√
Tbz6 + 8T 5/2

a

√
Tbz6

− 4T 7/2
a

√
Tbz6 − 12TaTbz6

+ 14T 2
a Tbz6 − 6T 3

a Tbz6 − 8
√

Ta

× T 3/2
b z6 + 16T 3/2

a T 3/2
b z6 − 4T 5/2

a

× T 3/2
b z6z6 − 2T 2

b z6 + 14TaT 2
b z6

− 2T 2
a T 2

b z6 + 8
√

TaT 5/2
b z6 − 4T 3/2

a

× T 5/2
b z6 + 2T 3

b z6 − 6TaT 3
b z6

− 4
√

TaT 7/2
b z66 − T 4

b z6 + 2(z

+√
TaTbz)2

[ − 16 + 4 ∗ (
2 − 2Ta

+ T 2
a − 2Tb + T 2

b

)
z2 + (

√
Ta

+√
Tb)4z4

]
cos L(π + 2θ ) − 4(z

+√
TaTbz)4cos2L(π

+ 2θ )
}]/{[

16 − 4
(
2 − 2Ta

+ T 2
a − 2Tb + T 2

b

)
z2 + (

√
Ta

+√
Tb)4z4 + 8(z + √

TaTbz)2

× cos2Lθ
]1/2[

16 − 4
(
2 − 2Ta + T 2

a

− 2Tb + T 2
b

)
z2 + (

√
Ta + √

Tb)4z4

+ 8(z + √
TaTbz)2cosL(π + 2θ )

]2}
.

(B12)
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