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Multiphoton emissions constitute a fundamental source of noise in quantum repeaters and other quantum
communication protocols when probabilistic photon sources are employed. In this paper it is shown that by
alternating the Bell state measurement basis in concatenated entanglement swapping links one can automatically
identify and discard many errors from stimulated multiphoton emissions. The proposed protocol is shown to
completely eliminate the dominant quadratic growth of multiphoton errors with the length of the repeater chain.
Furthermore, it is shown that the protocol can be employed in satellite-assisted entanglement distribution links
to enable links which are more robust in the presence of imbalanced channel losses. The analysis introduces
a convenient calculus based on Clifford algebra for modeling concatenated entanglement swapping links with
multiphoton emissions. In particular, we present a compact expression for the fidelity of the Bell state produced
by a repeater chain of arbitrary length including noise from double-pair emissions.
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I. INTRODUCTION

The ability to establish shared quantum systems exhibit-
ing entanglement between remote locations has a growing
number of potential applications, including quantum clock
synchronization [1,2], distributed quantum sensing [3,4], and
experimental tests of fundamental physics in new regimes
[5]. The quantum repeater protocol enables the distribution of
entangled states over long distances by concatenating elemen-
tary links using entanglement swapping. In this work we study
repeater protocols with minimal quantum processing includ-
ing probabilistic Bell state measurements (BSMs), quantum
memories, and multiplexing with active mode switching
across spatial, spectral, or temporal modes [6–9].

It was shown in [8] that multipair emissions can severely
limit useful application of parametric down-conversion (PDC)
sources in such a repeater architecture. Photon-number-
resolving (PNR) detectors can be employed to overcome this
limitation [10]; however, effective PNR requires highly effi-
cient repeaters, since any photon losses between multiphoton
production and detection limit the ability of the detector to
identify multiphoton emissions. In this paper we introduce
an alternating Bell state measurement (ABSM) protocol for
further mitigating multiphoton noise in concatenated entan-
glement swapping links employing PDC sources which does
not rely on PNR detection. The protocol exploits correlations
in the two-mode squeezed vacuum (TMSV) state to automat-
ically identify stimulated double-pair emissions at adjacent
BSMs. The ABSM protocol thus alleviates the impact of
imperfect PNR caused by inefficiencies between the source
and linear optical BSM. In particular, it is shown in Sec. IV
that the ABSM protocol eliminates the dominant quadratic
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contribution to the growth of multiphoton errors in extended
repeater chains with PDC sources.

The ABSM protocol also mitigates the increase in mul-
tiphoton noise in elementary links with imbalanced channel
losses (Secs. IV and V). Imbalanced channels result from
practical limitations and are unavoidable for satellite-assisted
links and dynamic links where the locations of source
nodes, BSM nodes, and repeater stations are constrained. If
probabilistic photon sources are employed, the multiphoton
emissions from one source can dominate the BSM, requiring
attenuation of the source closer to the BSM to reduce the
number double pairs. This additional attenuation effectively
rebalances the channel losses at the cost of a reduction in
link efficiency. In Sec. IV it is shown that the fidelity of
the Bell state produced using the ABSM protocol is more
robust to imbalanced losses. Furthermore, the ABSM protocol
can be used in conjunction with multiplexed cascaded PDC
sources [11] to further suppress double pairs in imbalanced
entanglement swapping links (Sec. V).

The suppression of multiphoton noise is also important for
concatenation of elementary links employing a Duan-Lukin-
Cirac-Zoller (DLCZ)–type protocol using atomic ensembles
[7,12,13]. Sources based on atomic ensembles produce en-
tangled states exhibiting bosonic excitation statistics with a
Hamiltonian formally identical to that of PDC [7] and thus can
suffer the same types of multiphoton errors when employed
in a quantum repeater chain. However, various DLCZ-type
protocols based on two-photon interference include an addi-
tional detection entangling the emissions from several atomic
ensembles leading to a more complex form for the multipho-
ton term, the analysis of which is beyond the scope of this
work [12].

The ABSM protocol is presented in Sec. II, where it is
shown that by employing alternating measurement bases in
the linear optical BSMs, a stimulated double-pair emission

2469-9926/2023/108(2)/022609(13) 022609-1 Published by the American Physical Society

https://orcid.org/0000-0003-3505-0342
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.022609&domain=pdf&date_stamp=2023-08-14
https://doi.org/10.1103/PhysRevA.108.022609


CHAHINE, NEMITZ, AND LEKKI PHYSICAL REVIEW A 108, 022609 (2023)

FIG. 1. Protocol for concatenated entanglement swapping links.
Red circles denote entangled pair sources Si j and blue squares denote
Bell state analyzers Bi j . Channels are labeled by the corresponding
transmission efficiency ηi. By alternating the BSM measurement
basis, a double-pair emission from a single source S cannot trigger
two adjacent BSMs.

from a single source cannot falsely trigger two adjacent
BSMs. The resulting suppression of multiphoton errors is ana-
lyzed in Sec. IV, where it is shown that these errors constitute
the dominant source of noise in extended quantum repeater
chains using probabilistic sources, growing quadratically with
the number of elementary links � using the standard repeater
protocol. The analysis is based on a new calculus introduced
in Sec. III for key observables of the quantum state produced
by repeater chains including multiphoton terms, enabling a
closed-form expression for the Bell state fidelity produced
by a repeater chain of arbitrary length. This simplifies the
analysis compared to other approaches based on the Wigner
formalism for Gaussian states [14] or numerical density-
matrix calculations [8,15]. Other potential applications of the
ABSM protocol for satellite-assisted entanglement distribu-
tion are discussed in Sec. V.

II. ALTERNATING BSM PROTOCOL

The protocol is based on the observation that the four-
photon emission in a polarization-entangled TMSV state
exhibits certain correlations between the two-photon states
emitted into each output channel [16,17]. Specifically, the
measurement of a two-photon state with orthogonal polariza-
tions in one output channel is correlated to a two-photon state
with correlated polarizations in the opposite channel when
measured in a diagonal basis (4). Since a linear optical BSM
requires detection of two photons with opposite polarizations,
by alternating the measurement basis in a concatenated entan-
glement swap, a four-photon emission from a single source
cannot independently trigger two adjacent BSMs (Fig. 1).

To make this rigorous, we express the entangled photon
state, representing a pair of dual-rail qubits in a superposition
of modes with bosonic annihilation operators {a1, b1} and

{a2, b2}, in the form [8,18]

|ψ12〉 =
√

p(0)
12 |0〉 +

√
p(1)

12 /2(a1b2 − b1a2)†|0〉

+
√

p(2)
12 /12

(
a2

1b2
2 + b2

1a2
2 − 2a1b1a2b2

)†|0〉,
(1)

where we have truncated higher-order terms in order to focus
on the lowest-order contribution to the multiphoton error. This
form for the entangled pair state is a tensor product of two
copies of a TMSV state derived from the Hamiltonian for a
PDC process. For the full TMSV state, the probability p(n)

12 of
producing n pairs is given by

p(n)
12 = (n + 1)(1 − |λ|2)2|λ|2n, (2)

where the parameter |λ|2 � 1 determines the single-pair
emission probability p12 ≡ p(1)

12 � 2|λ|2. In order to normal-
ize the truncated state without changing the relation between
single- and double-pair emissions, we set p(0)

12 = 1 − p(1)
12 −

p(2)
12 . This normalization relies on the double-pair term to

represent the multiphoton noise and results in a small over-
estimation of the vacuum component which subsumes the
contribution from higher-order photon emissions [11].

Correlations in the four-photon term arise from the stim-
ulated emission process captured in the bosonic relation
a†|n〉 = √

n + 1|n + 1〉, which leads to a suppressed mixed
term

|2, 0; 0, 2〉 + |0, 2; 2, 0〉 − |1, 1; 1, 1〉 (3)

when written in the basis of Fock states |m1, n1; m2, n2〉 in
modes {a1, b1, a2, b2}. A less obvious correlation is found by
expanding the state of modes {a2, b2} in the diagonal basis
of c2 = √

1/2(a2 + b2) and d2 = √
1/2(a2 − b2) to obtain the

four-photon term in the form

(a2
1)†

(
c2

2 + d2
2 − 2c2d2

)†|0〉 + (
b2

1

)†(
c2

2 + d2
2 + 2c2d2

)†|0〉
− 2(a1b1)†

(
c2

2 − d2
2

)†|0〉. (4)

The key property is that a measurement of opposite polariza-
tions a1 and b1 in the first channel projects the state in the
second channel onto a correlated two-photon NOON state in
modes c2 and d2 (and vice versa).

One can exploit this correlation in a concatenated entangle-
ment swap by noting that a linear optical BSM between two
adjacent sources |ψ12〉|ψ34〉 only succeeds if opposite polar-
izations are detected. Furthermore, the BSM can be performed
in either basis, as follows from the easily verified relations

|�+〉ab = |�−〉cd , |�+〉ab = |�+〉cd , (5)

|�−〉ab = −|�−〉cd , |�−〉ab = |�+〉cd , (6)

where

|�±
i j 〉ab =

√
1
2 (a†

i b†
j ± b†

i a†
j )|0〉, (7)

|�±
i j〉ab =

√
1
2 (a†

i a†
j ± b†

i b†
j )|0〉 (8)
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represent the dual-rail Bell states in the {a, b} basis, with anal-
ogous expressions for the representation in the {c, d} basis.
Thus, by performing adjacent Bell state measurements in con-
catenated entanglement swapping links in alternating diagonal
bases, as illustrated in Fig. 1, the correlations observed in (4)
ensure that a multipair emission cannot independently trigger
a BSM in two adjacent Bell state analyzers.

Two important caveats are immediately apparent. First, the
protocol relies on the correlations in the multiphoton state
described by (1). Results presented in [17] give experimental
justification for this form for the four-photon term, although
source impurities allowing emission of each photon into more
than two modes may degrade the correlations in the double-
pair emissions. For example, if the secondary photon pair is
emitted into a set of orthogonal modes {a′

1, b′
1, a′

2, b′
2} (e.g.,

an adjacent temporal mode), then the required correlations
do not exist. However, this is not a problem in practice since
any implementation of the elementary entanglement swapping
link must already filter out adjacent-mode noise in order to
ensure the single-pair emissions yield indistinguishable pho-
tons at the beam-splitter where the BSM is performed. A more
fundamental limitation of the protocol is the fact that it does
not suppress multiphoton errors when one of the photons in
the double-pair state is lost. In this case, the chain can still
be corrupted if a photon from an adjacent source arrives at
the BSM where the secondary emission was lost, although
this type of error can still yield a Bell state with 75% fidelity
[cf. Eq. (21)]. In Secs. IV and V it is shown that the protocol
nevertheless provides significant multiphoton error mitigation
for extended repeater chains as well as for elementary links
with imbalanced losses.

III. CONCATENATED LINK MODEL

In order to analyze the noise suppression and gain af-
forded by the ABSM protocol we model a concatenated
entanglement swapping link as shown in Fig. 1. We as-
sume completely dephasing, pure-loss bosonic channels ai =
eiφ√

ηia′
i + √

1 − ηia′′
i with transmission efficiency ηi, where

φ is a random phase accumulated equally on modes ai and bi.
For simplicity, we assume that the external channels connect-
ing the sources S12 and S2N−1,2N to the receivers at A and B are
lossless η1 = η2N = 1. Detection in each linear optical BSM
is modeled via the detector positive-operator-valued measure
(POVM) including PNR as in [10]; however, to simplify the
analysis we neglect extrinsic noise (i.e., we assume no back-
ground or dark counts). For all interior channels η2, . . . , η2N−1

the detection efficiency can be grouped with the channel
transmission efficiency; the justification for this combined
efficiency is an equivalence of quantum operations discussed
in the Supplemental Material (SM) [19]. The detector POVMs
are combined to form a single POVM consisting of the four
possible successful outcomes from a chain of nominally suc-
cessful BSMs, corresponding to the states |�±

AB〉 or |�±
AB〉,

together with the complementary outcome representing fail-
ure of the link. Note that if all of the sources produce the
state |ψi j〉 corresponding to |�−

i j 〉ab, then the nonalternating
BSM protocol will only produce outcomes corresponding to
|�±

AB〉 at the output of the full concatenated link; however, it

follows from (5) and (6) that all four outcomes are possible
when employing the ABSM protocol.

The following analysis is based on the truncated state (1)
which neglects three-pair emissions. Without the ABSM pro-
tocol, the probability of a three-pair error is always dominated
by that of a corresponding two-pair error such that the three-
pair error represents a small additional error of order pi j � 1
relative to the two-pair error. Thus, the three-pair emissions
only become relevant in cases where the ABSM protocol
achieves suppression of a single source of two-pair errors by
a factor approaching the pair generation probability pi j . Since
the ABSM protocol does not identify errors when at least one
of the photons in a double pair is lost, this level of suppres-
sion only occurs in special situations with certain asymmetric
channel losses which are identified in the following analysis.

We now develop the expression for the link efficiency and
Bell state fidelity for a passively concatenated link; at the end
of the section we discuss how these results directly generalize
to concatenated links with simple quantum memories and
active mode switching as in a quantum repeater architecture.
The derivations are technical and are given in the SM [19];
in this section we simply present the resulting expressions for
the link efficiency and Bell state fidelity used to model the
performance of a concatenated entanglement swapping link
with and without the ABSM protocol.

The efficiency of a (2N − 2)-fold coincidence yielding a
chain of N − 1 successful BSMs in a passively concatenated
link with N independent sources can be written

η̄1,2N =
∑

�ν∈{0,1,2}N

p(�ν )β (�ν ), (9)

where the sum is taken over all ternary sequences �ν =
(ν1, ν2, . . . , νN ) in {0, 1, 2}N representing the number of pairs
emitted by each source and

p(�ν ) =
N∏

i=1

p(νi )
2i−1,2i. (10)

The expression (9) arises from a decomposition of the density
matrix via Fock space projections in the input modes indexed
by �ν. The coefficients β (�ν ) can be interpreted as the probability
of a full chain of successful BSM outcomes if the ith source
produces νi photon pairs. Note that since we model sources
coupled directly to completely dephasing channels, there are
no coherent interference effects between states with distinct
total photon number from each source (i.e., all off-diagonal
density-matrix elements between such basis states vanish),
and so we may speak unambiguously about the number of
photons emitted by each source, subject only to our lack of
knowledge of the number of photons emitted in a classical
sense (see the SM [19]).

The coefficients β (�ν ) can be written as a product of coef-
ficients β

(m,n)
i j describing the individual success probability of

each BSM Bi j when m photons are emitted into channel i and
n photons are emitted into channel j, respectively; however,
there is some subtlety to the calculation since neighboring
BSMs are correlated by the shared photon source. These
correlations can be accounted for by defining the Clifford
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numbers

β
(1,1)
i j = 1

2
ηiη j, (11)

β
(2,0)
i j = σ i−1,i

3
η2

i , (12)

β
(0,2)
i j = σ j, j+1

3
η2

j , (13)

β
(2,1)
i j = ηiη j (1 − ηi ) + σ i−1,i

3
η2

i (1 − η j ), (14)

β
(1,2)
i j = ηiη j (1 − η j ) + σ j, j+1

3
η2

j (1 − ηi ), (15)

β
(2,2)
i j = 2ηiη j (1 − ηi )(1 − η j )

+ σ i−1,i

3
η2

i (1 − η j )
2 + σ j, j+1

3
η2

j (1 − ηi )
2, (16)

β
(0,0)
i j = β

(0,1)
i j = β

(1,0)
i j = 0,

where we have introduced abstract vector quantities σkl as-
sociated with each source Skl and perform calculations in
the real commutative algebra A defined by the relations
σ i jσkl = σklσ i j and σ2

kl = 3 for the standard BSM protocol
or σ2

kl = 0 for the ABSM protocol. Note that real coefficients
β

(m,n)
i j = Lβ

(m,n)
i j describing the individual success probability

of the BSM Bi j are obtained via the linear map L : A → R
defined by σkl �→ 1. Formally, A may be realized as an even
subalgebra of a Clifford algebra with basis {σ1, . . . , σ2N }.
Specifically, A is the subalgebra generated by the bivectors
σ i j = σ iσ j associated with each source Si j .

The coefficients defining the efficiency of the concatenated
link are then given by

β (�ν ) = L
N−1∏
i=1

β
(νi,νi+1 )
2i,2i+1 , (17)

where the linear map L is applied to the product taken in A.
The relations for σ2

i j can be understood as enforcing the corre-
lated probability for simultaneous measurement of oppositely
polarized photons from a single source in both channels i and
j adjacent to source Si j , where the two distinct relations cor-
respond to the choice of polarization bases used in channels
i and j. It should be emphasized that this conditional holds
only if both photons of a double pair are detected, leading to
the absence of the σ i j coefficients in (14)–(16) on the terms
associated with the loss of at least one of the photons in the
double pair.

A. Efficiency and fidelity of a terminated link

In order to obtain a Bell state with high fidelity when
employing probabilistic sources, it is necessary to employ
some type of vacuum filtering at the receivers A and B to
remove the vacuum component of the state produced by the
sources adjacent to the receivers. This could be in the form of
a heralded memory or immediate detection of the distributed
Bell state. Thus, in the following analyses we assume that
the concatenated link is terminated by receivers with vacuum
filtering. In the absence of extrinsic noise, employing our
simplifying assumption that the outer channels are lossless,
the efficiency of a passively concatenated terminated link is

given by

η̄AB =
∑

�ν∈{0,1,2}N

ν1,νN >0

p(�ν )β (�ν ), (18)

where we omit sequences �ν with ν1 = 0 or νN = 0.
The Bell state fidelity for the terminated link is

F = ηAB

η̄AB
, (19)

where η̄AB appears as the normalization of the state after a
successfully terminated BSM chain and ηAB is the trace of
the projection onto the desired Bell state after the projective
measurement of the BSM chain. The latter can be written (see
the SM [19])

ηAB =
∑

�ν∈{0,1,2}N

ν1=νN =1

p(�ν )

(
1

4
β (�ν ) + 3

4

[
2

3

]n2

β̂ (�ν )

)
, (20)

where n2 is the number of double pairs νi = 2 in �ν and β̂ (�ν )

is the probability of a chain of successful BSMs triggered by
exactly one photon from each adjacent source, assuming the
corresponding photon numbers 2�ν emitted by each source.
The coefficient β̂ (�ν ) is given by a product of the form (17)
except that the Clifford product is replaced by a product of real
numbers β̂

(νi,ν j )
i j obtained from β

(νi,ν j )
i j by substituting σkl = 0

to eliminate all terms where two photons are detected from
one source.

A derivation of (20) is given in the SM [19]; however, we
note here that the first term can be understood as the minimum
contribution to the Bell state fidelity of 1

4 corresponding to
a completely mixed two-photon state shared by A and B.
The second term represents an additional contribution if the
chain of BSMs is unbroken (i.e., if one photon is detected
from each adjacent channel). This additional contribution is
reduced by a factor 2

3 for each double pair, corresponding to
the 1

3 probability of the mixed four-photon term in (3). As a
corollary of the result (20), we find that the fidelity of the Bell
state produced by a concatenated entanglement swap in the
case that all of the secondary photon emissions are lost is

F (�ν) = 1

4
+ 3

4

(
2

3

)n2

. (21)

B. Efficiency and fidelity for repeater chains

For repeater chains supporting multiplexed elementary
links, active mode switching allows certain swaps to be per-
formed contingent on the outcome of other BSMs in the chain.
In this case, the postmeasurement normalization of the state
η̄AB does not directly determine the efficiency η̃AB of the
link, defined as the number of entangled pairs produced per
source mode, which depends on the BSM ordering scheme
[7,20]. In this work we restrict our attention to a two-level
repeater scheme where all repeater node BSMs are performed
simultaneously, independently of the results at neighboring
repeater nodes. This assumption is made primarily to simplify
the analysis, but it also has the benefit of placing a minimal re-
quirement on the lifetime of the quantum memories employed
in the repeaters.
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Treating each elementary link connecting sources Si−3,i−2

and Si−1,i as a Bernoulli trial with success probability η̄i−3,i,
the average number of source modes (mode pairs for dual-rail
qubits) μ1 needed per elementary link in order to establish a
successful BSM in all � elementary links is given by

μ1 = 1

�

�∑
i=1

1

η̄4i−3,4i
. (22)

Assuming a two-level scheme, all of the first-level elemen-
tary links are discarded if at least one of the repeater node
BSMs fails. To determine the success probability of the sec-
ond level of the link (consisting of all of the repeater node
BSMs), we can consider an ensemble of attempts to fully
connect a passively concatenated link. Since the sources are
all independent, the fraction of attempts in which all of the
elementary links succeed is given by P1 = η̄14η̄58 · · · η̄4�−3,4�.
The probability that the second level of the link succeeds is
the relative fraction of this subset of attempts for which the
full passive link succeeds. The full terminated passive link is
connected with probability η̄AB; hence the probability that the
second level of the repeater link succeeds is

P2 = η̄AB

P1
= η̄AB

η̄14η̄58 · · · η̄4�−3,4�

.

Since it takes on average 1/P2 attempts for the second level
of the link to succeed, the average number of source modes
needed to obtain a fully connected chain is given by μ2 =
(1/P2)μ1. Thus, the number of entangled pairs produced per
source mode is given by

η̃AB = 1

μ2
= �

η̄AB∏�
i=1 η̄4i−3,4i

∑�
j=1 η̄−1

4 j−3,4 j

. (23)

Assuming that every source node Si j produces pairs at a mul-
tiplexed rate weighted by the inverse efficiency η̄−1

k−3,k of the
adjacent elementary link (to avoid bottlenecking the chain),
the overall rate at which entangled pairs are produced by the
chain is given by

RAB = Rη̃AB, (24)

where R is the average multiplexed pair rate employed by a
single source node in the chain. The efficiency η̃AB is the rele-
vant figure of merit for the repeater chain in that it determines
the overall entangled pair rate up to the average multiplexed
rate R of the source nodes.

Neglecting infidelities introduced by the quantum mem-
ories and mode-switching mechanism (i.e., modeling the
memories as equivalent to low-loss optical loops which do
not affect the state aside from an overall attenuation included
in the repeater channel efficiency), the state delivered to A
or B by the repeater chain contingent on success of all in-
ternal BSMs is identical to the state supplied by passively
concatenated links and is thus also given by (9), (19), and
(20) [or (18)–(20) for a terminated link]. This follows from
the fact that each source is independent and all of the gener-
alized measurement operators associated with different BSMs
commute. Thus, the effect of active switching between multi-
plexed mode pairs available at each repeater node is to more
efficiently produce out of an ensemble of equivalent source

FIG. 2. Two types of elementary links connecting repeater nodes.
The type-I link is a typical architecture for a terrestrial quantum
network. The type-II link is motivated by the satellite-assisted en-
tanglement distribution, where an entangled pair source distributes
pairs |ψ34〉 to adjacent repeater stations from an orbiting satellite.

states a pair of modes at A and B which have been connected
(postmeasurement) by a chain of successful BSMs.

IV. MULTIPHOTON NOISE IN QUANTUM
REPEATER CHAINS

In this section we quantify the suppression of multiphoton
noise achieved by the ABSM protocol in quantum repeater
chains. We consider repeater chains connected by two dif-
ferent types of elementary links shown in Fig. 2, referred to
below as type-I and type-II links. The type-I link is a standard
entanglement distribution architecture for terrestrial quantum
networks (or a satellite uplink) and consists of a single BSM
node connecting adjacent repeater nodes. The type-II link is
motivated by entanglement distribution via a satellite down-
link, where an entangled pair source distributes entangled
photons to adjacent repeater stations from an orbiting satellite
[21]. In the absence of heralded quantum memories which
can efficiently capture relatively broadband photons from a
lossy downlink, BSMs B23 and B45 may be employed to verify
transmission of the photon without destroying the entangled
state. In general, a type-II link can stand in for any type-I
link in a chain; the BSMs fulfill the same role of providing a
signal to the repeater nodes that the lossy link has succeeded.
As illustrated in Fig. 2, we consider elementary links with
general channel efficiencies ηi connecting each source node
to the neighboring BSM, with the efficiency of the channels
connecting the sources to the repeater node BSMs denoted by
ηr .

A. Balanced repeater chains

First, we consider a quantum repeater chain consisting of
balanced type-I links with identical channel efficiency ηi ≡
η adjacent to each BSM and repeater internal efficiency ηr

(Fig. 3).
The Bell state fidelity for balanced repeater chains with

an arbitrary number of elementary links � is approximated
by considering only multipair emission sequences in (18)

FIG. 3. Repeater chain of balanced type-I elementary links.
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with �ν containing at most 2� + 1 pairs from N = 2� sources.
These can be enumerated based on the number of double-pair
emissions n2 in the sequence

(2, 1, 1, . . . , 1), (1, 2, 1, 1, . . . , 1), . . . (n2 = 1),

(2, 0, 2, 1, 1, . . . , 1), (1, 2, 0, 2, 1, 1, . . . , 1), . . . (n2 = 2),

(2, 0, 2, 0, 2, 1,. . ., 1), (1, 2, 0, 2, 0, 2, 1,. . ., 1), . . . (n2 =3),

and so forth for n2 > 3. Note that there are 2(� − n2 + 1)
terms for each n2 � �. The ABSM protocol is such that a
single source cannot trigger adjacent BSMs; hence it com-
pletely eliminates all errors with n2 > 2. Since the number of
error terms with n2 = 1 and 2 grows linearly with the length
of the chain � while the remaining errors with n2 > 2 grow
quadratically in �, the ABSM protocol completely suppresses
the dominant quadratic growth of multiphoton errors for long
repeater chains.

To quantify this we use the expressions of Sec. III to derive
the Bell state fidelity for a balanced repeater chain of arbitrary
length. Remarkably, using the Clifford product, the sums in
(18)–(20) can be evaluated in closed form, yielding a compact
expression for the fidelity

F = 1 + p
(
ε+ + 11+σ

5+σ
ε1

) + O(p2)

1 + 4p(ε1 + ε′
1 + ε+ + ε′+) + O(p2)

, (25)

where p ≡ pi j is the source emission probability, the terms ε′
1

and ε1 give the contribution from n2 = 1 errors

ε′
1 = (1 − η), (26)

ε1 = � − 1

2
(5 + σ )(1 − η)(1 − ηr ), (27)

and ε′
+ and ε+ represent the remaining sum for n2 > 1, taking

the value ε+ = ε′
+ = 0 for � = 1 and

ε′
+ = 1

4
(1 + σ )[1 + σ (� − 2)](1 − η), (28)

ε+ = � − 2

4
(1 + σ )2[2 + σ (� − 3)](1 − η)(1 − ηr ) (29)

for � > 1, where σ = σ2
i j/3 depends on the BSM protocol.

The coefficient σ completely captures the noise suppression
provided by the ABSM protocol with σ = 1 for the nonal-
ternating BSM protocol and σ = 0 for the ABSM protocol.
The terms ε′

1 and ε′
+ represent the contribution from boundary

sequences with multipair emissions ν1 = 2 or νN = 2.
The last term (29) quantifies the dominant �2 growth

of multiphoton errors in (25) when σ = 1; however, this
quadratic term vanishes when employing the ABSM protocol
(σ = 0). Note that the fidelity is essentially independent of the
channel efficiency η for η � 1 since we can use the approx-
imation (1 − η) � 1. The Bell state fidelity for the balanced
chain thus depends only on the repeater efficiency ηr , the
source emission probability p, and the number of elementary
links �. The dependence of the Bell state fidelity on the length
of the chain is shown in Fig. 4 for repeaters with ηr = 0.9.

Note the significant improvement in fidelity provided by
the ABSM protocol as the length of the chain increases.
The impact of this on repeater chains employing probabilistic
sources can be translated into a gain G in efficiency for each

FIG. 4. Bell state fidelity from the leading-order approximation
(25) for repeater chains using probabilistic sources with emission
probability p = 0.01 and repeater internal efficiency ηr = 0.9. The
axis on the right shows the gain in elementary link efficiency (30) and
(31) provided by the ABSM protocol if the emission probabilities are
adjusted to achieve a Bell state fidelity F = 0.9 with ηr = 0.9.

elementary link subject to a fixed fidelity F by inverting (25)
for the allowed emission probability

p(F ; σ ) = 1 − F

4F (ε1 + ε′
1 + ε+ + ε′+) − ε+ − 11+σ

5+σ
ε1

. (30)

The elementary link efficiency depends on the square of the
emission probability p, and so the gain is given by

G = p(F ; σ = 0)2

p(F ; σ = 1)2
. (31)

The result is shown in Fig. 4 for chains with ηr = 0.9, assum-
ing fixed fidelity F = 0.9. From (30) and (31) we see that the
gain grows quadratically with the length of the chain, reaching
a 20-fold increase for a chain with � = 10 elementary links.
This quadratic growth can again be understood in correspon-
dence to our earlier observation of the suppression of errors
with n2 > 2.

Employing the two-level repeater model presented in
Sec. III, the overall link efficiency for a chain with total
combined channel loss ηc divided into � elementary links is

η̃AB = η̄AB

η̄�−1
EL

= p2η2 η2(�−1)
r

22�−1
+ O(p3), (32)

where η = η1/2�
c ηd , ηd is the efficiency of the detectors used

for the linear optical BSMs at the center of the elementary
links, and

η̄EL ≡ η̄14 = η̄58 = · · · = η̄4�−3,4� = p2η2 + O(p3) (33)

is the elementary link efficiency for the balanced chain
(including double-pair errors). To lowest order in the pair
probability p, the result is the elementary link efficiency η̄EL

reduced by the factor η2(�−1)
r /22�−1 arising from the repeater

efficiency and 50% success probability of the 2� − 1 linear
optical BSMs (here ηr should be understood to include the
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FIG. 5. Link efficiency as a function of total link loss for a
repeater chain using PDC sources with pair probability configured
to yield a Bell state fidelity F = 0.9 with ηr = ηd = 0.9 based on
(32) and (30). The dotted curves show the efficiency without the
ABSM protocol for � = 1, 2, 4, and 8. The dashed curves show
the maximum efficiency optimizing the number of links � with and
without the ABSM protocol. The markers show where the optimal
number of links increases. The shaded region shows the repeaterless
bound η̃AB � ηc for perfect deterministic sources.

detection efficiency of the repeater node BSM). Figure 5
shows the link efficiency as a function of the total combined
loss ηc, translated into a terrestrial link distance by assuming
a fiber attenuation of 0.15 dB/km.

Note that even without the ABSM protocol, the repeater
chain with PNR BSMs can outperform the repeaterless bound
η̃AB � ηc for distribution of entangled photon pairs using a
perfect deterministic pair source. More precisely, assuming
repeaters with internal efficiency ηr = 0.9, the repeater ar-
chitecture analyzed here first surpasses this ideal repeaterless
link at fidelity F = 0.9 with an optimal number � = 3 ele-
mentary links dividing a combined loss of 83 dB. However, in
order to achieve a rate of 105 pairs/s at this range requires a
multiplexed repetition rate approximately 1013 Hz from each
source. This result is very similar the multiplexed rate of
3 × 1013 Hz found to surpass an ideal repeaterless quantum
key distribution bound at a rate of approximately 105 secret
key bits/s in a similar PDC repeater architecture studied in
[10]. In that work an ideal repeaterless bound was also found
to be first surpassed using three elementary links to divide a
combined loss of approximately 90 dB assuming sources with
104 frequency modes and 100 spatial modes operated at a
repetition rate of 30 MHz.

The upper envelope for the link efficiency, optimizing the
number of links � for a given total link loss, is shown in Fig. 5
for both the standard protocol and the ABSM protocol. As
the link efficiency η̃AB is proportional to the elementary link
efficiency η̄EL and determines the entangled pair rate up to the
multiplexed rate R of each source, the gain in the entangled
pair distribution rate provided by the ABSM protocol is in
direct correspondence to the elementary link gain shown in

FIG. 6. (a) and (b) Bell state fidelity for a single elementary link
(cf. Fig. 2) with imbalanced channels dividing 40 dB combined loss
with pair probability p = 0.01. (c) and (d) Fidelity for the type-I
repeater chains shown in Fig. 7 with � = 1, 2, 3, and 4 elementary
links (from top to bottom). The type-II link assumes a symmetric
imbalance η2 = η5 and η3 = η4; the dotted curve denotes the domain
where three-pair emissions (neglected in this analysis) become a
dominant source of noise. Results are based on direct evaluation of
(18)–(20).

Fig. 4 and reaches a factor of 10 for chains with � = 6 ele-
mentary links.

B. Noise suppression for elementary links
with imbalanced losses

The results of the preceding section show that using
PDC-based repeaters, very high multiplexed source rates
are required to achieve appreciable entangled pair rates at
100 + dB combined link loss. Thus, even with repeaters,
long-distance links based on PDC sources demand a more
efficient conversion from combined link loss to link distance
than is provided by the approximately 0.15 dB/km from
fiber transmission loss. Satellite-assisted links governed by
free-space diffraction loss can make more effective use of
the allowable total link loss to achieve longer range links;
however, the architecture of satellite-assisted links restricts
the location of BSM nodes leading to dynamic imbalanced
channels which can be detrimental to PDC-based links with
multiphoton noise.

Motivated by this problem, we analyze the additional
suppression of multiphoton noise provided by the ABSM
protocol in chains with imbalanced channel losses. To quan-
tify this, we first consider the reduction in fidelity caused
by imbalanced losses which are not compensated by a cor-
responding suppression of single-pair emissions; an analysis
of the gain provided by the protocol if the imbalanced losses
are compensated is given in Sec. V. Figure 6 shows the
dependence of the fidelity on channel losses for elementary
links with 40 dB combined loss, assuming the source emis-
sion probabilities are all fixed at pi j = 0.01 and the multipair
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FIG. 7. Repeater chains of imbalanced type-I elementary links
with special symmetries which demonstrate the nonlocality of mul-
tiphoton noise in extended repeater chains.

emissions are governed by (2). An efficiency ηr = 0.9 is as-
sumed for all channels internal to the quantum repeaters.

Figure 6(a) shows that the type-I link fidelity is symmetric
in the link imbalance and the ABSM protocol supports an
additional 3 dB difference in channel losses at 90% state
fidelity. Figure 6(b) shows the type-II link fidelity for symmet-
ric imbalances η2 = η5 and η3 = η4 (cf. Fig. 2). The ABSM
protocol significantly suppresses multiphoton noise for type-II
links such that both BSMs are located closer to the central
source. In this case, the ABSM fidelity remains above 74%,
supporting an additional 5 dB imbalance at 90% state fidelity.
On the other hand, if both BSMs are located closer to the
repeater nodes, as in the satellite downlink architecture de-
scribed above, the ABSM protocol only supports an additional
1–2 dB difference in channel losses at 90% state fidelity.

As the length of the repeater chain grows, the reduction in
fidelity is compounded as shown in the preceding section for
balanced links (25)–(29). This reduction is even more severe
in the presence of imbalanced channels; however, Figs. 6(c)
and 6(d) show that the ABSM protocol is more resilient to
this reduction in fidelity for longer chains of type-I links.

Figure 6 also shows that the severity of multiphoton noise
from chains of imbalanced links can depend significantly on
the direction in which each elementary link is imbalanced.
The dependence of the fidelity on the link imbalance is shown
for chains of imbalanced type-I links with two special symme-
try types, labeled type-IA and type-IB (Fig. 7). The type-IA
chain is defined with the links imbalanced in alternating di-
rections, so η2 ↔ η3 are exchanged for adjacent elementary
links. The type-IB chain is defined such that all of the links are
imbalanced in the same direction (and by the same amount).
Note that the Bell state fidelity degrades much more quickly
in the type-IB chain using the standard BSM protocol. This
behavior shows that multiphoton noise in a quantum repeater
chain cannot be considered purely locally, i.e., noise can prop-
agate down the chain.

To understand this phenomenon, we must consider the
dominant source of multiphoton noise in each chain. In the
type-IB chain, the dominant noise in (18) is given by double
pairs separated by a single intermediate source. These can be
connected through successful BSMs by subsequences �ν of
the form (2, 0, 2, 0, . . . , 2) consisting of only N + 1 photon
pair emissions from N sources. Conversely, the dominant
source of multiphoton noise in the type-IA chain comes from
double pairs separated by an even number of intermediate
sources, e.g., (2,2) or (2,1,1,2), which require at least N + 2
pair emissions from N sources and are thus not as prominent.
In this way, we see that the repeater nodes do not insulate
multiphoton errors from neighboring links, i.e., the final Bell

state fidelity cannot generally be determined by combining an
independent reduction in fidelity from each elementary link.

Indeed, this lack of independence of the multipair noise is
precisely the property that the ABSM protocol takes advan-
tage of, since multipair events are suppressed based on their
correlation to multipair events in neighboring links. In doing
so, the ABSM protocol can be seen to block the propagation
of these errors. Specifically, the ABSM protocol yields essen-
tially the same fidelity for both type-IA and type-IB chains.
This can be understood by the observation that the ABSM
protocol does not allow a BSM chain to be connected by
emission sequences of the form (0,2,0), which produce the
dominant error in the type-IB chain.

V. MULTIPHOTON NOISE IN TYPE-II
ELEMENTARY LINKS

In this section we consider an application of the ABSM
protocol to elementary links consisting of two simultaneous
entanglement swaps (type-II links). This type of architec-
ture is motivated by a satellite downlink and avoids many
engineering challenges associated with establishing a syn-
chronized low-loss optical uplink through earth’s atmosphere.
The idea of the type-II link is to use an entanglement swap
with a high-rate probabilistic photon source as a quantum non-
demolition (QND) measurement of the presence of another
photonic entangled state before or after a lossy entanglement
distribution link. For example, in the absence of heralded
quantum memories which can efficiently capture relatively
broadband photons from a lossy downlink, one can instead
position a PDC source in a ground station receiving a satellite
downlink to verify transmission of a photon using a local
BSM.

One of the drawbacks of using a PDC source in this man-
ner is that if a BSM is not centrally located between two
PDC sources, one source can dominate the BSM with double
pairs relative to the two-photon coincidences with one photon
from each side. This is detrimental to the efficiency of the
link, since it requires that the link be artificially balanced
by reducing the emission probability of the source close to
the BSM to suppress double pairs. In a double entanglement
swap the ABSM protocol can identify some of the double-pair
errors potentially allowing for a higher emission probabil-
ity. Double pairs can be further suppressed by combining
the ABSM protocol with a cascaded entangled pair source
as described in [11], which employs a high-efficiency BSM
with PNR to herald the production of a single entangled pair.
Before proceeding to an analysis of entanglement distribution
with cascaded PDC sources, we first demonstrate the princi-
ple by quantifying the gain afforded by the ABSM protocol
for a terminated elementary link consisting of two passively
concatenated entanglement swapping links with three inde-
pendent sources (Fig. 8).

A. Maximum efficiency for double entanglement swap
with probabilistic sources and imbalanced links

In the following analysis, we assume that the double
entanglement swapping link is passively concatenated (i.e.,
both BSMs must succeed simultaneously for a successful
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FIG. 8. Terminated type-II link motivated by the satellite-
assisted entanglement distribution. The efficiency of the link with
PDC sources and imbalanced losses ηi depends on the maximum
allowed pair probabilities p12, p34, and p56 subject to a constraint
on the minimum Bell state fidelity.

entanglement distribution). Following the model of a termi-
nated link presented in Sec. III, the probability of a fourfold
coincidence with opposite polarizations in each BSM and at
least one photon sent to A and B during a single use of the link
takes the form

η̄AB =
2∑

i, j,k=0
i, j>0

p(i)
12 p( j)

34 p(k)
56 β (i, j,k), (34)

where the coefficient β (l,m,n) describes the probability of a
fourfold coincidence associated with an l-pair emission from
source S12, m-pair emission from source S34, and n-pair emis-
sion from S56. We neglect events with more than four total
photon pairs produced by the three sources.

The primary coefficient is the (1,1,1) coefficient describing
the probability of two simultaneously successful BSMs given
a single-pair emission from each source

β (1,1,1) = 1
4η2η3η4η5. (35)

The leading-order error coefficients are then calculated explic-
itly from Clifford products of (13)–(15) as

β̂ (1,2,1) = η2η3η4η5(1 − η3)(1 − η4), (36)

β (1,2,1) = β̂ (1,2,1) + σ

3
η2

3η
2
4(1 − η2)(1 − η5)

+ 1

3
η2η3η

2
4(1 − η3)(1 − η5) + 1

3
η2

3η4η5

× (1 − η2)(1 − η4), (37)

β (2,1,1) = 1

2
η2η3η4η5(1 − η2) + 1

6
η2

2η4η5(1 − η3), (38)

β (2,0,2) = 1

9
η2

2η
2
5, (39)

with the (1,1,2) coefficient related to the (2,1,1) coefficient via
the index substitution 2 ↔ 5 and 3 ↔ 4. The parameter σ =
σ2

34/3 again captures the suppression of double-pair emission
noise achieved using an alternating basis in the BSMs, with
σ = 0 for the ABSM protocol and σ = 1 using nonalternating
BSMs. Note that this suppression is most significant when link
imbalances are such that η2

3η
2
4 is the dominant term. The last

two coefficients above are unaffected by the protocol since
they do not include events where the source adjacent to both
BSMs produces a double pair; however, as discussed at the
end of the section, these noise events can be suppressed by
QND measurements with PNR at the receivers A and B since
double-pair states are produced at an outer node.

For the double-swap link, the Bell state fidelity is

F = p12 p56
p34β

(1,1,1) + p(2)
34

[
1
4β (1,2,1) + 1

2 β̂ (1,2,1)
]

η̄AB
. (40)

To obtain analytical results, we will approximate the fidelity
F by calculating η̄AB using only the leading-order error coef-
ficients given above.

Assuming the multipair emissions are governed by (2), we
approximate the relation of single-pair to double-pair emis-
sions as

p(2)
i j � 3

4 p2
i j . (41)

The impact of multipair emission noise for fixed link losses ηi

is determined by considering the maximum efficiency subject
to a fixed infidelity  f ,

η̂AB( f ) = max
p12,p34,p56

{
ηAB : F � 1 −  f , pi j � 8

27

}
, (42)

where the maximum is taken over all emission probabilities
satisfying pi j � 8

27 � 0.3 in accord with the maximum allow-
able single-pair probability in (2).

In order to analyze the maximum efficiency we use the
method of Lagrange to solve the constrained optimization
under the assumption that the optimum η̂AB( f ) is obtained
on the boundary F = 1 −  f with pi j < 8

27 , conditions that
generally hold provided all channels have losses ηi < 1 and
 f is sufficiently small. The Lagrangian constraint leads to
a relation defining the relative pair probabilities which maxi-
mize the efficiency ηAB for fixed fidelity (see the SM [19])

p12b12 = p34b34w(b) = p56b56 ≡ p, (43)

where the weights are given by

b12 = β (2,1,1), b56 = β (1,1,2), (44)

b34 = 3
4β (1,2,1) − 1

2 β̂ (1,2,1) (45)

and the central source emission probability has an additional
weight w(b) = 2/(1 + √

1 + 6b) associated with balancing
the β (2,0,2) noise determined by the parameter

b = b34β
(2,0,2)

b12b56
. (46)

The latter satisfies σ/36 � b � 1 and increases as the BSMs
move farther from the central source towards the outer
sources.

Noting that F is a differentiable function of the parameter
p with nonvanishing derivative at p = 0, the linear approxi-
mation to p determining the optimal probabilities pi j can be
evaluated near  f = 0,

p = 16β (1,1,1)

36 + 27bw(b)
 f + O(( f )2), (47)

yielding the maximum efficiency with infidelity  f ,

η̂AB = 163[β (1,1,1)]4

b12b34b56w(b)[36 + 27bw(b)]3
( f )3 + O(( f )4).

(48)
This expression has been derived based on the assumption
that the multiphoton error is dominated by the leading-order
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coefficients (36)–(39). This generally holds true for the non-
ABSM protocol (σ = 1); however, for severely imbalanced
links with η2 � η3 and η5 � η4 the ABSM protocol (σ = 0)
yields nearly complete suppression of the dominant β (1,2,1)

error coefficient. Once this suppression approaches the pair
generation probability p34, the error can become dominated by
three-pair emissions associated with the (1,3,1) error and the
O(( f )4) term must be calculated including error coefficients
β (i, j,k) for higher-order terms. To estimate the domain where
three-pair emissions become relevant, we rewrite the error
coefficient β (1,2,1) in the form

β (1,2,1) = 1
3η2

3η
2
4(1 − η2)(1 − η5)(σ + 3λ23λ54 + λ23 + λ54),

(49)

where the parameters

λi j = ηi(1 − η j )

η j (1 − ηi)
(50)

characterize the difference in channel losses adjacent to each
BSM. The error suppression approaches the pair generation
probability for

3λ23λ54 + λ23 + λ54 � 0.1, (51)

giving a general criterion whereupon three-pair emissions be-
come a relevant source of error.

B. Efficiency penalty and ABSM gain for imbalanced links
with probabilistic sources

In order to gain insight into the main result (48) from the
preceding section, we factor the expression in the form

η̂AB = π0β
(1,1,1)π̂ (η2, η3, η4, η5) + O(( f )4), (52)

where β (1,1,1) represents the efficiency of the link with de-
terministic entangled pair sources and π0 represents the
combined source efficiency p12 p34 p56 using probabilistic
sources in the limit of balanced low-efficiency links η2 =
η3 = η4 = η5 � 1. The remaining factor π̂ captures both the
balancing loss associated with a reduction in source efficiency
required to compensate for imbalanced channels and the gain
from PNR in the BSM detectors which discards multiphoton
events when at least three photons are detected.

Using the results from the preceding section, the combined
source efficiency in the limit of balanced lossy channels is
given by

π0 =
{

0.0027( f )3, σ = 1

0.0037( f )3, σ = 0
(53)

for type II. For comparison, the combined source efficiency π0

for a balanced type-I link can be obtained from (30) by setting
� = 1 and is given to leading order in  f as

π0 = 0.0625( f )2. (54)

Thus, even with balanced losses the type-II link suffers an
additional factor of 0.04 f efficiency reduction relative to the
single-swap type-I link.

The efficiency is further reduced in the presence of imbal-
anced losses between the sources and BSMs. The additional
loss factor π̂ is shown in Fig. 9 for a link with 40 dB combined

FIG. 9. Gain in link efficiency from the ABSM protocol for a
type-II link, shown in comparison to the balancing loss −10 log10(π̂ )
for the standard BSM protocol (σ = 1) based on the leading-order
approximation (48)–(52). A maximum value of π̂ = 1.86 is attained
with the BSMs slightly biased towards the outer sources due to
the higher Bell state fidelity of the (1,2,1) error. The shaded region
estimates the domain where three-pair emissions (neglected in this
analysis) must be taken into account due to the strong suppression of
double-pair errors described by (51).

losses η2η3 = η4η5 = 0.01. The result is an additional 20–
30 dB loss for the fully imbalanced link, i.e., the compensation
required to balance the link reduces the combined source
efficiency by a factor on the order of the channel efficiency
ratios η2/η3 and η4/η5.

To understand the gain in source efficiency provided by the
ABSM protocol, we return to the expression (48) and find that
the gain can be written

G = bw(b)[36 + 27w(b)]3|σ=1

bw(b)[36 + 27w(b)]3|σ=0

(
1 + 1

λ23 + λ54 + λ23λ54

)
,

(55)

which depends only on the channel efficiency ratios λi j . This
dependence is made more explicit by expressing the parameter
b in the form

b = σ + λ23 + λ54 + λ23λ54

9 + 3λ23 + 3λ54 + λ23λ54
. (56)

The result is shown in Fig. 9 for the same link with 40 dB
combined channel loss. As expected, the ABSM protocol
significantly mitigates the balancing loss when both BSMs are
biased towards the central source λ23, λ54 < 1.

If both links are balanced, the ABSM protocol yields a
1.4 dB gain, with an increase to 3 dB if only one BSM is closer
to the central source. The general gain predicted by (48) can
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be summarized by the limiting cases

G �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.1
(
1 + 1

2λ23

)
, λ23 = λ54 � 1

1, λ23 = λ54  1
2.1, λ23 � λ54 = 1
1.4, λ23 = λ54 = 1
1, λ23  λ54 = 1.

(57)

Unfortunately, the ABSM protocol does not yield any gain
for the type of imbalance inherent in the satellite-assisted
downlink (λ23, λ54  1). This is to be expected, since the
primary double-pair errors in this case arise from double
pairs produced by the outer sources which go unchecked by
the ABSM protocol. However, by employing cascaded PDC
sources in place of S12 and S56, which themselves perform
an internal BSM, the ABSM protocol can be used to re-
duce the double-pair errors associated with the imbalance
λ23, λ54  1.

The type-II link with cascaded PDC sources is analyzed in
the next section. Before proceeding to that analysis, we note
that another technique for achieving a type-II link commen-
surate with a type-I link is to equip the receivers at A and B
with QND measurements with PNR to discard multiphoton
events from sources S12 and S56, respectively. The maxi-
mum efficiency η̂AB then increases with the higher emission
probabilities p12 and p56 afforded by the ability to identify
and discard double-pair emission events from the end nodes.
The effect of receiver PNR is to reduce β (2,1,1), β (1,1,2), and
β (2,0,2) (describing the probability of a nominally successful
double swap given the corresponding photon numbers from
each source) by a corresponding constant factor. Specifically,
β (2,1,1) and β (1,1,2) are reduced by the factor 1 − α, where α

represents the proportion of two-photon emission events from
the adjacent source which are identified by the receiver, while
β (2,0,2) is reduced by (1 − α)2. The parameter b defined by
(46) is left invariant and hence the maximum efficiency (48)
is simply increased by (1 − α)−2 independently of channel
losses ηi and BSM protocol σ .

C. ABSM gain for a type-II elementary link
with cascaded PDC sources

In the preceding section it was shown that the ABSM
protocol provides the most significant gain for double-swap
links where the BSMs are close to the central source. As noted
above, this is contrary to the type of imbalance inherent in
the type-II elementary link motivated by a satellite downlink.
Nevertheless, we now show that by introducing an additional
BSM at each end of the link one can take advantage of the
ABSM protocol to enable a type-II downlink. The basic idea
is to employ a multiplexed cascaded PDC source at both ends
of the link to suppress double-pair emissions from the end
nodes (Fig. 10). The principle of a cascaded source is to use
an active optical switch to route entangled pairs produced by a
bank of PDC sources into a single output based on a success-
ful BSM performed internally within the multiplexed source
[11]. This can be modeled as an inverted repeater architecture
which is equivalent to the type-II elementary link shown in
Fig. 2 except that the repeater nodes now represent cascaded
sources, with the repeater node swaps performed before the
BSMs interfering with the downlink.

FIG. 10. Terminated type-II link with cascaded sources moti-
vated by the satellite-assisted entanglement distribution. To maxi-
mize the utilization of photons from a satellite downlink, multiplexed
cascaded PDC sources first use an internal BSM to herald production
of an entangled pair before interfering with a photon from a satellite
downlink.

To model the efficiency of this architecture, we assume that
the cascaded sources S12 and S56 are configured such that all
internal sources have the same emission probability p12 and
p56, respectively. Following the procedure of the previous sec-
tion, we find the optimization follows an essentially equivalent
mathematical form, with the optimal probabilities satisfying
the same relation (43) with a redefinition of the weights given
by (see the SM [19])

b12 = 1

2

(
β (21111) + 3

4
β (12111) − 1

2
β̂ (12111)

)
, (58)

b56 = 1

2

(
β (11112) + 3

4
β (11121) − 1

2
β̂ (11121)

)
, (59)

b34 = 3

4

(
β (11211) − 2

3
β̂ (11211) + β (20211) (60)

+β (11202) + 3

4
β (20202)

)
(61)

and

b = 9

16

b34β
(12021)

b12b56
(62)

determining the balancing of the multiphoton noise. The pa-
rameter p defined by (43) takes the modified form

p = 8β (11111)

30 + 15bw(b)
 f + O(( f )2). (63)

The resulting maximum efficiency can be factored in the form
of (52) as

η̂AB( f ) = π0
1
4η2η3η4η5π̂ (η2, η3, η4, η5) + O(( f )6).

(64)

The domain requiring consideration of three-pair errors is
again given by (51), arising from similar limits on the suppres-
sion of the β (11211), β (20211), and β (11202) error coefficients.

The source efficiency π0 in the low-efficiency limit is

π0 = M2η4
r

(1 − ηr )4
( f )5 ×

{
3 × 10−8, σ = 1
2 × 10−7, σ = 0,

(65)

where M is the number of pairs of PDC sources multiplexed
in each cascaded source and ηr is the internal efficiency. To
simplify the analysis we assume M is not too large relative
to the efficiency of the cascaded source internal swap M �
32/(ηr f )2. The benefit of introducing the cascaded sources
is to give some engineering control over the type-II link ef-
ficiency, obtained via the multiplexing factor M and internal

022609-11



CHAHINE, NEMITZ, AND LEKKI PHYSICAL REVIEW A 108, 022609 (2023)

FIG. 11. Gain in link efficiency η̂AB from the ABSM protocol
for a type-II link with cascaded PDC sources based on (58)–(64).
The result is shown against the balancing loss −10 log10(π̂ ) for the
non-ABSM protocol (σ = 1). The center of the plot corresponds to
balanced losses between the sources and the BSMs where a maxi-
mum value of π̂ = 6.3 is attained. The shaded region estimates the
domain where three-pair emissions should be taken into account as
in Fig. 9.

efficiency ηr of the cascaded source. It should be observed
that a high degree of multiplexing is required to overcome the
10−5( f )2 efficiency reduction relative to the passive double-
swap link (53) or the 4 × 10−6( f )3 reduction relative to the
type-I single-swap link. As the multiplexing factor approaches
the internal swap efficiency M ∼ 32/(ηr f )2, the cascaded
source becomes a nearly deterministic source and a more
detailed analysis is required [11].

For a type-II link with the BSMs located close to the
cascaded sources, the balancing loss must also be taken into
account and is shown in Fig. 11 for the same 40 dB combined
loss as in Fig. 9. Figure 11 also shows the gain provided by
the ABSM protocol, in direct correspondence to the type-II
link shown in Fig. 9. The presence of the repeater nodes
(i.e., cascaded sources) at the ends of the type-II link allows
the ABSM protocol to be employed to discard multiphoton
events in the two central BSMs. This compensates for the
balancing loss with up to 12 dB gain for BSMs close to the
cascaded sources.

As an example, for a fully imbalanced type-II link with
40 dB combined loss targeting a 95% Bell state fidelity, the
passive double-swap using PDC sources analyzed in the pre-
vious section yields a 48 dB efficiency reduction relative to a
balanced type-I link with the same combined loss. With a mul-
tiplexing factor M = 1000 and internal efficiency ηr = 0.95
the same type-II link with cascaded sources reduces this to
31 dB if the standard BSM protocol is used. This is further
reduced to 19 dB if the ABSM protocol is employed, enabling
a type-II link which is potentially comparable to a standard
type-I elementary link when the latter has implementation

constraints as in a satellite-assisted entanglement distribution
application.

VI. CONCLUSION

In the absence of high-rate, environmentally robust,
deterministic sources of entangled photon pairs, sources
based on PDC remain one of the most promising candi-
dates for high-rate entanglement distribution, particularly for
satellite-assisted links. However, multiphoton noise presents
a significant limitation to the performance of entanglement
swapping links based on PDC. Previous attempts to address
this issue were based on the use of PNR detection to identify
and discard multiphoton emissions [8,11]. By taking advan-
tage of quantum correlations present in the four-photon term
of the entangled TMSV state, the ABSM protocol introduced
in this paper is a technique which suppresses double-pair noise
from PDC-based entangled pair sources which does not rely
on PNR detection. Furthermore, the protocol can be employed
in conjunction with other techniques such as cascaded PDC
sources to improve the double-pair suppression afforded by
PNR (Sec. V). The multiphoton noise suppression provided
by the protocol analyzed in this work applies to any links
using entangled pair sources with stimulated multiphoton
emissions represented by a TMSV state.

Specifically, the ABSM protocol was shown to eliminate
the dominant quadratic growth of multiphoton errors with
the number of elementary links � in repeater chains with
PDC sources, yielding a gain in elementary link efficiency
which grows quadratically with the number of elementary
links in the chain (25)–(31). The analysis also introduced a
new calculus for evaluating key observables of the quantum
state produced by repeater chains of arbitrary length (Sec. III).
In particular, a compact closed-form expression for the Bell
state fidelity was presented including multiphoton terms (25).
This calculus was also employed to obtain analytical calcu-
lations of the optimal emission probabilities and maximum
efficiency for concatenated entanglement swapping links with
imbalanced channel losses.

Finally, it was shown that the ABSM protocol yields a
12 dB gain for type-II elementary entanglement distribution
links with cascaded PDC sources. Combined with the multi-
pair suppression provided by PNR in the cascaded sources, it
was shown that with sufficient multiplexing, such sources can
enable a type-II elementary link with performance comparable
to a standard type-I link. Although at present the largest mul-
tiplexed PDC sources that have been demonstrated consist of
no more than approximately ten spatially multiplexed sources
[22], such highly multiplexed sources constitute an engineer-
ing task for ground-based technology which can reduce flight
system complexity for satellite-assisted entanglement distri-
bution.
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