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Non-Markovian enhanced temperature sensing in a dipolar Bose-Einstein condensate
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We present a method for implementing quantum temperature sensing for extremely low temperatures in a
quasi-1D dipolar Bose-Einstein condensate reservoir with a magnetic field-driven impurity atom acting as a
quantum sensor. By analyzing the quantum signal-to-noise ratio (QSNR) as a metric for temperature sensing
performance, we demonstrate that the presence of an attractive dipolar interaction in the reservoir, which includes
the effects of non-Markovian dynamics on the sensor, significantly enhances estimation efficiency. We also
investigate the steady-state estimation efficiency for long-encoding times through an analytical expression, which
shows that the optimal QSNR depends on the driving magnetic field of the impurity atom. Our method can
achieve high-efficiency temperature sensing for any low temperature by tuning the magnetic field. These findings
suggest that our approach has potential applications in high-resolution quantum thermometry.
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I. INTRODUCTION

Temperature is a fundamental concept in both classical
and quantum thermodynamics. In particular, achieving an
ultralow temperature is crucial for quantum simulation and
computation [1]. Although cold atomic gases have been
cooled to the sub-nK regime, accurately measuring such
low temperatures in a nondestructive manner remains a
challenging task [2–5]. This is due to both the complexity
of the required experimental setup and fundamental
limitations in precision. To overcome these challenges, a good
thermometer should be so small that it does not significantly
disturb the temperature of the bath during the measurement
process. One approach is to use a quantum sensor such as a
two-level system [6–11] or harmonic oscillator [12–14] that
is coupled to the quantum reservoir to encode the temperature
information. By measuring the sensor’s observables, we
can obtain knowledge of the temperature without disturbing
the bath. Moreover, quantum temperature sensors can
potentially revolutionize temperature measurement by
utilizing coherence, quantum squeezing, entanglement,
or other quantum resources to achieve a level of precision that
surpasses the standard bound set by classical statistics [15,16].
With their high precision and sensitivity, these sensors have
the potential to improve temperature measurement.

Research on quantum thermometers can generally be
classified into two main types: fully thermalized thermometers
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[17–19] and partly thermalized thermometers [20,21]. In the
case of thermal equilibrium probes, where the probes are
in thermal equilibrium with the sample and temperature
sensing accuracy is determined by the heat capacity, it has
been demonstrated that the sensing error will exponentially
increase as the temperature approaches zero [22,23]. How-
ever, for nonthermal equilibrium probes, where the quantum
probes do not equilibrate with the sample but in a nonthermal
steady state, the sensing error will still increase, but the
divergence will be polynomial rather than exponential [24,25].
Currently, numerous attempts are made to tackle the issue
of error divergence in quantum temperature sensing, such
as the utilization of harmonic oscillator probes. Reference
[12] reported that by employing a Brownian particle as a
temperature sensor for a Bose-Einstein condensate (BEC)
reservoir, the relative error for temperatures as low as 200 pK
can be kept below 14% for as few as 100 measurements.
Nonetheless, research of high-sensitivity temperature
sensing utilizing a qubit probe in the BEC system is still
ongoing.

Recently, studies have shown that non-Markovian ef-
fects can significantly impact the effectiveness of quantum
sensing [26–29]. In particular, in a dipolar BEC system,
non-Markovian effects can be regulated due to the tunable
magnetic dipole-dipole interaction (MDDI) [30–35], allowing
for the study of non-Markovian dynamics in a controlled man-
ner [36–38]. Additionally, impurities in the system can lead
to interesting effects on the dynamics. Understanding their
impact is essential for developing high-precision quantum
temperature sensoring.
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FIG. 1. (a) The physical system of the quantum temperature
sensing under consideration. An atomic qubit is immersed in a ther-
mally equilibrated quasi-1D dipolar BEC, which acts as a quantum
sensor to estimate the temperature of the BEC reservoir. (b) Scheme
of our proposed thermometry protocol, which involves an encoding
process and a measurement process.

In this work, we investigate the non-Markovian effects
of dipolar BECs on the dynamics of an impurity atom and
demonstrate how these effects can enhance the sensitivity of
quantum temperature sensors. We use the quantum signal-
to-noise ratio (QSNR) as a metric for the performance of
temperature sensing and show that the incorporation of at-
tractive dipolar interactions in the reservoir improves the
estimation efficiency for partly thermalized thermometers. We
also analyze the fully thermalized (steady-state) estimation
efficiency using an analytical expression and discover that
the optimal QSNR depends on the driving magnetic field
of the impurity atom. Our approach takes advantage of the
adjustable magnetic field to precisely control the efficiency of
estimation at low temperatures.

The paper is structured as follows: In Sec. II, we present
the model of atoms immersed in a thermally equilibrated
quasi-1D dipolar BEC reservoir and give the dynamics of the
atoms under the influence of dissipative noise. In Sec. III,
we demonstrate the positive effects of the dipolar interaction
in the reservoir as well as the driving magnetic field on the
sensitivity of a single-qubit quantum thermometry. Finally, we
conclude in Sec. IV.

II. THE MODEL AND DYNAMICS

A. Physical model

We consider a single impurity-atomic qubit that acts as the
sensor, immersed in a thermally equilibrated quasi-1D dipolar
BEC reservoir at temperature T (shown in Fig. 1). The sensor
is confined in a spin-independent, three-dimensional, sym-
metric harmonic trap Va(r) = maω

2
ar2/2, with spatial orbital

�a = (π�2
a)−3/4e−(x2+y2+z2 )/(2�2

a ), where �a = √
h̄/(maωa), ωa

is the trap frequency, and ma is the mass. The Hamiltonian of
the sensor is then given by

Ha = h̄�a

2
σz, (1)

where σz = |e〉〈e| − |g〉〈g| and �a is the level splitting be-
tween the excited (|e〉) and ground (|g〉) states.

For the reservoir atoms, we assume that the dipolar BEC
is confined in a cylindrically symmetric trap with a transverse
trapping frequency ω⊥ and a negligible longitudinal confine-
ment along the x direction. In three dimensions, the two-body
interaction is given by

V 3D(r) = gbδ(r) + 3cd

4π

1 − 3(μ̂m · r̂)2

r3
, (2)

where the contact interaction strength is gb = 4π h̄2ab/mb,
with ab the s-wave scattering length and the dipolar
interaction strength is cd = 4π h̄2add/mb, where add =
μ0μ

2
mmb/(12π h̄2) is a length scale characterizing the dipole-

dipole interaction with μ0 the vacuum permeability, μm the
magnetic dipole moment, and mb the mass of the reservoir
atom. For sufficiently large ω⊥, the motion of the atoms along
the y-z axis is frozen to the ground state of the oscillator,
which is given by 	⊥(y, z) = (π�2

b)−1/2e−(y2+z2 )/(2�2
b ), where

�b ≡ √
h̄/(mbω⊥) is the width of the Gaussian function.

Using the Bogoliubov method, the Hamiltonian of the
reservoir takes the form [36]

Hb =
∑
k �=0

h̄ωkb†
kbk, (3)

where bk (b†
k ) is the annihilation (creation) operator of the

Bogoliubov modes with momentum k, and the corresponding
excitation energy is [38]

ωk = 1
2ω⊥

√
(k�b)4 + η(k�b)2[1 − χν̃1D(k)], (4)

where η = 8n0ab is a dimensionless parameter depending on
the condensate linear density n0 and the s-wave scattering
length ab. The relative MDDI strength is defined as χ ≡
add/ab, and

ν̃1D(k) = 1 − 3
2 k2�2

b exp[(k�b)2/2][0, (k�b)2/2] (5)

is the Fourier transform of the effective 1D MDDI with
(0, x) the incomplete Gamma function.

Assuming that the atoms in the reservoir are coupled to the
excited state |e〉 of the sensor (the impurity atom) through a
Raman transition, the strength of the coupling depends on the
s-wave scattering length aab, and the interaction Hamiltonian
takes the form [36–38]

Hab = h̄�eσz + σz

∑
k

h̄gk (bk + b†
k ). (6)

Here, �e = h̄aabn0(ma + mb)/[mamb(�2
a + �2

b)] and gk =
�e

√
Ek

n0Lh̄ωk e−(k�a)2/4, where L is the length of the BEC reser-
voir. The total interaction between the sensor and the reservoir
is described by the Hamiltonian

H = h̄δa

2
σz +

∑
k �=0

h̄ωkb†
kbk + σz

∑
k

h̄gk (bk + b†
k ), (7)

with δa ≡ �a + 2�e. The dynamics of the sensor in the
reservoir is purely dephasing under this interaction. However,
recent research has demonstrated that dissipative interactions
with counter-rotating-wave terms offer greater advantages
for quantum sensing compared to dephasing interactions
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[39,40]. By applying a two-dimensional magnetic field Hm =
(h̄Bxσx + h̄Bzσz )/2 to drive the qubit [41], we can transform
Hamiltonian (7) into a dissipative interaction between the
sensor and the reservoir. For simplicity, the resonance case,
i.e., �a + 2�e − Bz = 0, will be the main focus, and this
requirement can be met by adjusting the magnetic field Bz

in the z direction [37]. After making the unitary transform
Uy = e−i(π/4)σy , the total Hamiltonian becomes

H̃ = h̄Bx

2
σz +

∑
k

h̄ωkb†
kbk − σx

∑
k

h̄gk (bk + b†
k ). (8)

In what follows, the thermometry protocol will be imple-
mented based on Eq. (8), and Bx will be treated as a control
parameter.

B. System dynamical evolution

We start by assuming that the entire sensor-reservoir sys-
tem is initially in a product state given by

ρtot = |	(0)〉〈	(0)| ⊗ ρb, (9)

where |	(0)〉 is the initial state of the sensor, and ρb is
the thermal equilibrium state of the reservoir at temper-
ature T , given by ρb = �k (1 − eβωk )e−βωkb†

kbk , where β =
h̄/kBT is the inverse temperature. We then use the Zwanzig’s
projection-operator method to trace out the reservoir in the
Liouville’s equation of motion, up to second order in the
sensor-reservoir coupling [42,43]. This yields the master
equation for the sensor’s reduced density matrix ρ,

ρ̇ = − i

h̄
[Hs, ρ] +

∫ t

0
dτ {�T (t − τ )[σ̃x(t, τ )ρ, σx] + H.c.},

(10)

with Hs = Bxσz/2. Here, the correlation function for the reser-
voir is defined as �T (t ) = 〈exp(iHbt/h̄)B exp(−iHbt/h̄)〉b,
with B ≡ ∑

k gk (bk + b†
k ) and 〈. . . 〉b = Tr(. . . ρb). The uni-

tarily transformed dipole operator in Eq. (10) is σ̃x(t, τ ) =
σ+e−iBx (t−τ ) + σ−eiBx (t−τ ).

Finally, we can write the master equation for the re-
duced density matrix in terms of the Bloch vector Ŝ ≡
(〈σ̂x〉, 〈σ̂y〉, 〈σ̂z〉), without making the rotating-wave approx-
imation (RWA), as follows:

Ṡx = −BxSy, (11)

Ṡy = [Bx + 2�(t )]Sx − 2R(t )Sy, (12)

Ṡz = −2R(t )Sz − 2ϒ (t ), (13)

where

R(t ) =
∫ ∞

0
dωJ (ω) coth

(
ω

2T

)
sin[(Bx − ω)t]

Bx − ω
, (14)

ϒ (t ) =
∫ ∞

0
dωJ (ω)

sin[(Bx − ω)t]

Bx − ω
, (15)

�(t ) =
∫ ∞

0
dωJ (ω) coth

( ω

2T

)1 − cos[(Bx − ω)t]

Bx − ω
. (16)

R(t ) and ϒ (t ) are the decoherence rates, and �(t ) is the
resonance shift in energy. In the Markovian limit t → ∞,
we have R(∞) = πJ (Bx ) coth(Bx/2T ) and ϒ (∞) = πJ (Bx ).

FIG. 2. The spectrum density function J (ω) given by Eq. (17) for
various relative MDDI χ . Here, η = 5 and � = 1.5 × 10−2.

In terms of the impurity-reservoir coupling parameters gk , the
reservoir spectral density function J (ω) ≡ ∑

k |gk|2δ(ω − ωk )
can be given as

J (ω) = �ω3
⊥�3

b

∫ ∞

0
dk

k2e−k2�2
a/2

ω(k)
δ[ω − ω(k)], (17)

where ω(k) ≡ ωk and the dimensionless parameter � is de-
fined as � = n0�

3
ba2

ab(ma + mb)2/[πm2
a(�2

a + �2
b)2]. Then, the

dynamics of the sensor can be understood by examining the
system-environment spectral density J (ω), which is deter-
mined by the parameters of the BEC reservoir and can be
adjusted.

As a concrete example, we consider a single 23Na atom
immersed in a BEC reservoir composed of 164Dy atoms. The
magnetic moment of the reservoir atoms is μm = 9.9μB and
the dipolar interaction strength is add � 131a0, where μB

represents the Bohr magneton and a0 denotes the Bohr radius
[44]. The predominantly attractive nature of the dipolar inter-
action arises from the anisotropy of the MDDI, characterized
by the dimensionless parameter χ . However, the effective
strength and sign of the dipolar interaction can be modified
using techniques such as the fast rotating orienting fields and
the Feshbach resonance [45–47]. To facilitate numerical sim-
ulations, we introduce dimensionless units. Energy is rescaled
in terms of h̄ω⊥, time is rescaled in terms of ω−1

⊥ , and length
is rescaled in terms of �b = [h̄/(mbω⊥)]1/2. Considering a trap
frequency of ω⊥ = 300 Hz and the corresponding oscillator
length of �b = �a � 1.14 × 10−6 m, we select a linear density
of n0 = 108 m−1 for the quasi-1D condensate. The s-wave
scattering length between Na and Dy atoms is approximately
aab ∼ 5.3 nm [36,38]. In our numerical simulations presented
in this paper, we set η = 5 and � = 1.5 × 10−2.

To this end, we analyze the spectral density function J (ω)
as a function of the relative strength of MDDI χ , as shown
in Fig. 2. At χ = 0, J (ω) exhibits an approximate Ohmic
spectrum with a peak at ω = 0.75ω⊥. However, as χ in-
creases, the peak of J (ω) gradually shifts towards 0, indicating
the presence of an attractive interaction. Remarkably, as χ

approaches 1, J (ω) displays a distinct peak near ω = 0. It
corresponds to the non-Markovian dissipation rates captured
by the frequency ω → 0 in Eqs. (11)–(13). These observations
sharply contrast with previous studies on 2D dipolar BEC-
reservoir systems [36,37], where the dipolar interactions were
predominantly repulsive, resulting in the emergence of two
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(a) (b) (c)

FIG. 3. Dynamic behavior of R(t ), �(t ), and ϒ (t ) as a function of time ω⊥t for different relative MDDI χ . The driving magnetic field
strength is chosen as Bx = 0.45ω⊥ and kBT/h̄ω⊥ = 0.2.

sharp peaks within the intermediate range. Consequently, our
current study unveils distinct dynamics compared with the
aforementioned Refs. [36,37].

In Fig. 3, we further plot the time-dependent behavior of
R(t ), �(t ), and ϒ (t ) as a function of ω⊥t for various χ . The
plot illustrates that for χ � 0, R(t ), �(t ), and ϒ (t ) increase
rapidly from zero to a steady state, indicating a Markovian
behavior. Conversely, for χ > 0.9, these quantities exhibit
damped oscillations that persist for an extended period, sig-
nifying a strongly non-Markovian behavior. An important
feature of the strongly non-Markovian behavior is the pres-
ence of a negative decay rate in R(t ), which is evident in the
figure. Additionally, the degree of non-Markovianity becomes
more pronounced with increasing MDDI strength χ .

C. Non-Markovianity for sensor in a quasi-1D
dipolar BEC reservoir

In order to further characterize the non-Markovian nature
of the system under consideration, we employ the scheme
of measuring the degree of non-Markovianity proposed by
Breuer et al. [48]. The non-Markovianity, denoted as N , is
defined by

N ≡ max
ρ̂1,2(0)

∫
σ>0

dtσ [t ; ρ̂1,2(0)]. (18)

It quantifies the occurrence of recoherence or information
backflow by assessing the rate of change of the trace dis-
tance between the physical initial states. Here, σ [t ; ρ̂1,2(0)] =
Ḋ[ρ1(t ), ρ2(t )] represents the rate of change of the trace
distance, D = 1

2 Tr|ρ1(t ) − ρ2(t )|, between the states ρ1(t )
and ρ2(t ), considering their respective initial states ρ1(0) and
ρ2(0). The trace distance between two qubits can be expressed
as D = 1

2 |Ŝ(1) − Ŝ(2)|. It is important to note that computing
Eq. (18) involves determining the maximum value by iterating
over the initial states ρ̂1,2(0). Selecting appropriate ρ̂1,2(0) is
not a trivial task. However, extensive research has convinc-
ingly demonstrated that for a two-level system, the optimal
initial states can be chosen as a set of orthogonal pure states,
such as |±〉 = (|e〉 ± |g〉)/

√
2 [48,49]. These states maximize

the non-Markovianity measure as

N = 1

2

∫
dt{|σ [t,±]| + σ [t,±]}, (19)

and the rate of change of the trace distance is σ [t,±] =
2δS(±)

y [δS(±)
x �(t ) − δS(±)

y R(t )]/
√

(δS(±)
x )2 − (δS(±)

y )2, with

δS(±)
i=x,y ≡ S(+)

i − S(−)
i , which depends on the Bloch vectors

Ŝ(±), as well as �(t ) and R(t ).
By substituting the solution of σ [t,±] into Eq. (19), we

present a plot of the non-Markovianity N as a function of χ

in Fig. 4. As expected, N increases rapidly when χ > 0.9 and
becomes divergent as it approaches χ∗ = 1. Consequently,
we will focus our subsequent discussion exclusively on cases
where χ > 1 in our temperature sensing scheme.

III. NON-MARKOVIAN TEMPERATURE SENSING

The interaction between the sensor and the reservoir, de-
picted in Fig. 1(b) and described by Eq. (8), effectively
encodes the information regarding the temperature of the
reservoir into the state of the sensor. Due to the weak coupling
between the sensor and the reservoir, the sensor’s dynamic
behavior can be accurately described by Eqs. (11)–(13). By

FIG. 4. Non-Markovianity N as a function of the relative MDDI
strength χ . Here, kBT/h̄ω⊥ = 0.2.
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(a) (b) (c)

FIG. 5. Dynamic behavior of the QSNR QT (t ) as a function of time ω⊥t and different relative MDDI χ for varying external driving
magnetic field strength Bx . The driving magnetic field strengths are chosen as (a) Bx = 0.25ω⊥, (b)Bx = 0.45ω⊥, and (c) Bx = 0.6ω⊥. Here
the initial state of the sensor is chosen as |	(0)〉 = (|e〉 + |g〉)/

√
2 and the temperature of the BEC reservoir is kBT/h̄ω⊥ = 0.2.

measuring specific observables Ŝ of the sensor, we can acquire
valuable insights into the temperature. However, these dis-
tinguishing characteristics are not captured by less advanced
methodologies.

To assess the precision of our temperature sensing method,
we first introduce the quantum parameter estimation theory.
As is well known, the ultimate temperature sensing preci-
sion is limited by the quantum Cramér-Rao bound, given by
δTmin = 1/

√
nFT , where δT is the mean square error, n is the

number of repeated measurements, and FT denotes the quan-
tum Fisher information (QFI) with respect to the temperature
T . For any two-dimensional density matrix ρ = 1

2 (I + Ŝ · σ̂ ),
the QFI FT can be easily calculated via [50,51]

FT = |∂T Ŝ|2 + (Ŝ · ∂T Ŝ)2

1 − |Ŝ|2 . (20)

When ρ is a pure state, the above equation further reduces
to FT = |∂T Ŝ|2. The temperature sensing performance can be
characterized by the optimal relative error,

δTmin

T
= 1√

mQT
, QT = T 2FT . (21)

Here, QT is the QSNR, and a larger QSNR indicates a better
temperature sensing performance. It is worth emphasizing
that we utilize the QSNR to capture and evaluate the unique
characteristics of our temperature sensing method. The accu-
racy of a temperature measurement relies on various factors,
such as the coupling between the sensor and the environment,
the strength of the coupling, and the type of environmental
noise. Therefore, even with sensing using a single qubit, the
conclusions are not obvious. This complexity is particularly
prominent when non-Markovian effects are present, making
the temperature measurement more intricate.

In what follows, we will investigate a non-Markovian tem-
perature sensing scheme implemented in our proposed model
by manipulating Bx and χ .

A. Non-Markovianity enhanced temperature sensing

In terms of Eq. (21), Fig. 5 illustrates the dynamic behavior
of the QSNR QT (t ) as a function of time ω⊥t and the strength

of the external driving magnetic field Bx for different MDDI
values χ . The results provide compelling evidence that attrac-
tive interactions (χ > 0) in dipolar BECs lead to an more
effective enhancement of QT compared to repulsive inter-
actions (χ < 0). Moreover, the observed oscillatory patterns
of QT , similar to Fig. 4, become more pronounced as χ in-
creases, resulting in higher maximum attainable values of QT .
Notably, for ω⊥t > 100, the oscillations of QT display a reg-
ular pattern with an increasing frequency as Bx is increased,
as captured by the term sin[(Bx − ω)t] in Eqs. (14)–(16). This
behavior is particularly significant for χ > 0.9, highlighting
the strong non-Markovian effects observed in Fig. 4. These
findings suggest that non-Markovian effects have the potential
to improve temperature sensing accuracy. However, regardless
of the magnitude of χ , the QT values converge to a common
steady state that is solely dependent on the external driving
magnetic field in the long-time regime. Figures 5(a)–5(c) also
demonstrate that the QT values are highly sensitive to the
strength of the external driving magnetic field Bx, indicating
that selecting an appropriate driving magnetic field can im-
prove QT .

In Fig. 6, we display the maximum achievable QSNR Qmax
T

by optimizing the encoding time, as a function of χ , with
Bx = 0.45ω⊥ and 0.6ω⊥. The results demonstrate a mono-
tonically increasing trend of Qmax

T with values of χ . As χ

FIG. 6. The maximum QSNR Qmax
T as a function of χ . Here,

kBT/h̄ω⊥ = 0.2.
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FIG. 7. The maximum QSNR Qmax
T as a function of Bx for dif-

ferent χ . Here, kBT/h̄ω⊥ = 0.2.

approaches 1, the quantity Qmax
T can reach 1.33, meaning

that (δTmin/T ) can be less than 10% with as few as n = 100
measurements. By comparing with Fig. 4, it is clear that this
improvement in measurement accuracy follows the same trend
as non-Markovianity. This clearly indicates that the enhanced
temperature sensing precision is associated with the increase
of non-Markovianity.

To better demonstrate the influence of Bx on temperature
sensing, Fig. 7 illustrates the impact of Bx on temperature
sensing. It presents the maximum achievable QSNR Qmax

T
as a function of Bx, considering different values of χ . The
graph clearly highlights the presence of an optimal exter-
nal magnetic field, Bx, for a specific measured temperature
T . Moreover, this improvement becomes more pronounced
for higher non-Markovianity, i.e., larger values of χ . These
findings indicate that adjusting the external magnetic field
not only enhances the steady state QT , but also significantly
improves its dynamic optimal value. For example, under
appropriate magnetic fields, such as Bx = 150 Hz for T =
0.458 nK, the value of QT can reach a maximum of 0.85 when
χ = 0.98, meaning that the relative error (δTmin/T ) can be
less than 11% in only n = 100 measurements.

B. Steady-state results of the temperature sensing

We shall discuss the feature of steady-state QSNR QT (∞)
in the long-encoding-time regime. In the long-time limit,
based on Eqs. (11)–(13), the Bloch vector can be easily ob-
tained as

Sx(∞) = Sy(∞) = 0,

Sz(∞) = −ϒ (∞)/R(∞) ≈ − tanh(Bx/2T ), (22)

which means the long-time steady state of the fully thermal-
ized thermometer can be described by the canonical Gibbs
state, ρs(∞) = exp(−Hs/T )/Tr[exp(−Hs/T )].

Then, we have

QT (∞) =
(

Bx

2T

)2[
1 − tanh2

(
Bx

2T

)]
, (23)

and the optimal steady-state QSNR QT (∞) ≈ 0.44 can be
obtained when ( Bx

2T ) tanh( Bx
2T ) = 1, which indicates that the

optimal relative error can reach 15% with only n = 100
measurements.

(a)

(b)

FIG. 8. (a) The steady-state QSNR QT (∞) as a function of
Bx/T . The optimal value of QSNR is marked by a red asterisk.
(b) The relationship between Bx and T at the optimal point.

It is important to determine the optimal measurement for
achieving the highest precision of the estimated parameter
in practical experiments. In this study, we have chosen the
observable Sz ≡ 〈σz〉 as the measurement signal. According to
the error propagation formula, the minimum standard devia-
tion for temperature can be expressed as δT = �Sz/|∂Sz/∂T |,
where the variance is �Sz = √

1 − S2
z . The QSNR QT asso-

ciated with the measurement of population Sz can be obtained
from Eq. (22) and yields the relative error for a single mea-
surement (n = 1),

δT

T
= 2T

Bx

√[
1 − tanh2

( Bx
2T

)] = 1√
QT (∞)

, (24)

which is equivalent to the QSNR presented in Eq. (21).
According to the expression in Eq. (23), Fig. 8(a) shows

the variation of the steady-state QSNR QT (∞) with respect to
the ratio of the magnetic field along the x direction Bx and the
temperature T , in the steady state. As shown in the figure, the
steady-state value of QT (∞) is solely determined by the ratio
of Bx/T , regardless of the strength of the dipolar interactions.
Therefore, by adjusting the magnetic field strength to approx-
imately Bx/T ≈ 2.42, the temperature sensing sensitivity can
be enhanced at any low temperature, as shown in Fig. 8(b).

IV. CONCLUSION

In conclusion, we have presented a method for quantum
temperature sensing at extremely low temperatures in a quasi-
1D dipolar BEC reservoir, utilizing a magnetic field-driven
impurity atom as the quantum sensor. Our proposed model
offers highly controllable parameters and the capability to
manipulate non-Markovian effects in the environment. These
advantageous features make our model an ideal platform
for investigating non-Markovian temperature sensing in
ultracold atomic gases. Our results highlight the significance
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of non-Markovian effects arising from attractive dipolar
interactions in the reservoir, which can enhance the efficiency
of temperature estimation, indicated by the QSNR. Our
proposed scheme can achieve an optimal relative error of less
than 10% with just 100 measurements, surpassing the existing
methods in the literature [12]. Moreover, we have investigated
the steady-state estimation efficiency and observed that it
solely relies on the driving magnetic field. Our findings
suggest that the optimal relative error can reach 15% with 100
measurements for the case of the steady state at the optimal
magnetic field. Furthermore, by adjusting the magnetic field,
our approach can achieve high-efficiency temperature sensing
for any low temperature. Overall, our proposed method holds
great potential for high-resolution quantum thermometry

and can offer a more efficient and accurate approach for
temperature sensing at low temperatures.

ACKNOWLEDGMENTS

Q.-S.T. acknowledges support from the National Natural
Science Foundation of China (NSFC) (Grant No. 12275077)
and the Natural Science Foundation of Hunan Province (Grant
No. 2022JJ30277). L.-M.K. is supported by the NSFC (Grants
No. 1217050862, No. 12247105, and No. 11935006). J.-B.Y.
was supported by NSFC (Grant No. 11905053), Scientific
Research Fund of Hunan Provincial Education Department of
China (Grant No. 21B0647), and Hunan Provincial Natural
Science Foundation of China (Grant No. 2018JJ3006).

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] A. Leanhardt, T. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D.
Kielpinski, D. Pritchard, and W. Ketterle, Science 301, 1513
(2003).

[3] R. Gati, B. Hemmerling, J. Fölling, M. Albiez, and M. K.
Oberthaler, Phys. Rev. Lett. 96, 130404 (2006).

[4] E. Martín-Martínez, A. Dragan, R. B. Mann, and I. Fuentes,
New J. Phys. 15, 053036 (2013).

[5] C. Sabín, A. White, L. Hackermuller, and I. Fuentes, Sci. Rep.
4, 6436 (2014).

[6] M. Brunelli, S. Olivares, and M. G. A. Paris, Phys. Rev. A 84,
032105 (2011).

[7] M. Brunelli, S. Olivares, M. Paternostro, and M. G. A. Paris,
Phys. Rev. A 86, 012125 (2012).

[8] J.-B. Yuan, B. Zhang, Y.-J. Song, S.-Q. Tang, X.-W. Wang, and
L.-M. Kuang, Phys. Rev. A, 107, 063317 (2023).

[9] S. Jevtic, D. Newman, T. Rudolph, and T. M. Stace, Phys. Rev.
A 91, 012331 (2015).

[10] L. Seveso and M. G. A. Paris, Phys. Rev. A 97, 032129 (2018).
[11] M. T. Mitchison, T. Fogarty, G. Guarnieri, S. Campbell, T.

Busch, and J. Goold, Phys. Rev. Lett. 125, 080402 (2020).
[12] M. Mehboudi, A. Lampo, C. Charalambous, L. A. Correa,

M. A. García-March, and M. Lewenstein, Phys. Rev. Lett. 122,
030403 (2019).

[13] M. M. Khan, M. Mehboudi, H. Terças, M. Lewenstein, and
M. A. Garcia-March, Phys. Rev. Res. 4, 023191 (2022).

[14] M. M. Khan, H. Terças, J. T. Mendonça, J. Wehr, C.
Charalambous, M. Lewenstein, and M. A. Garcia-March, Phys.
Rev. A 103, 023303 (2021).

[15] A. Puglisi, A. Sarracino, and A. Vulpiani, Phys. Rep. 709-710,
1 (2017).

[16] M. Mehboudi, A. Sanpera, and L. A. Correa, J. Phys. A: Math.
Theor. 52, 303001 (2019).

[17] K. V. Hovhannisyan, M. R. Jørgensen, G. T. Landi, Á. M.
Alhambra, J. B. Brask, and M. Perarnau-Llobet, PRX Quantum
2, 020322 (2021).

[18] L. A. Correa, M. Perarnau-Llobet, K. V. Hovhannisyan,
S. Hernandez-Santana, M. Mehboudi, and A. Sanpera, Phys.
Rev. A 96, 062103 (2017).

[19] K. V. Hovhannisyan and L. A. Correa, Phys. Rev. B 98, 045101
(2018).

[20] W.-K. Mok, K. Bharti, L.-C. Kwek, and A. Bayat, Commun.
Phys. 4, 62 (2021).

[21] A. V. Kirkova, W. Li, and P. A. Ivanov, Phys. Rev. Res. 3,
013244 (2021).

[22] L. A. Correa, M. Mehboudi, G. Adesso, and A. Sanpera, Phys.
Rev. Lett. 114, 220405 (2015).

[23] M. G. A. Paris, J. Phys. A: Math. Theor. 49, 03LT02 (2016).
[24] P. P. Potts, J. B. Brask, and N. Brunner, Quantum 3, 161 (2019).
[25] M. R. Jørgensen, P. P. Potts, M. G. A. Paris, and J. B. Brask,

Phys. Rev. Res. 2, 033394 (2020).
[26] K. Berrada, Phys. Rev. A 88, 035806 (2013).
[27] W. Wu and C. Shi, Phys. Rev. A 102, 032607 (2020).
[28] W. Wu, S.-Y. Bai, and J.-H. An, Phys. Rev. A 103, L010601

(2021); W. Wu, Z. Peng, S.-Y. Bai, and J.-H. An, Phys. Rev.
Appl. 15, 054042 (2021).

[29] Z.-Z. Zhang and W. Wu, Phys. Rev. Res. 3, 043039 (2021).
[30] S. Yi and L. You, Phys. Rev. A 61, 041604(R) (2000); 63,

053607 (2001).
[31] K. Goral, L. Santos, and M. Lewenstein, Phys. Rev. Lett. 88,

170406 (2002).
[32] S. Yi, L. You, and H. Pu, Phys. Rev. Lett. 93, 040403 (2004).
[33] S. Yi, T. Li, and C. P. Sun, Phys. Rev. Lett. 98, 260405

(2007).
[34] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev.

Lett. 107, 190401 (2011).
[35] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R.

Grimm, and F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012).
[36] J.-B. Yuan, H.-J. Xing, L.-M. Kuang, and S. Yi, Phys. Rev. A

95, 033610 (2017).
[37] H. Z. Shen, S. Xu, S. Yi, and X. X. Yi, Phys. Rev. A 98, 062106

(2018).
[38] Q. S. Tan, J. B. Yuan, G. R. Jin, and L. M. Kuang, Phys. Rev. A

96, 063614 (2017).
[39] D. Tamascelli, C. Benedetti, H.-P. Breuer, and M. G. A. Paris,

New J. Phys. 22, 083027 (2020).
[40] Z.-Z. Zhang and W. Wu, Phys. Rev. A 105, 043706 (2022).
[41] H. J. Xing, A. B. Wang, Q. S. Tan, W. X. Zhang, and S. Yi,

Phys. Rev. A 93, 043615 (2016).
[42] H. P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2007).
[43] A. G. Kofman and G. Kurizki, Phys. Rev. Lett. 93, 130406

(2004).

022608-7

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1126/science.1088827
https://doi.org/10.1103/PhysRevLett.96.130404
https://doi.org/10.1088/1367-2630/15/5/053036
https://doi.org/10.1038/srep06436
https://doi.org/10.1103/PhysRevA.84.032105
https://doi.org/10.1103/PhysRevA.86.012125
https://doi.org/10.1103/PhysRevA.107.063317
https://doi.org/10.1103/PhysRevA.91.012331
https://doi.org/10.1103/PhysRevA.97.032129
https://doi.org/10.1103/PhysRevLett.125.080402
https://doi.org/10.1103/PhysRevLett.122.030403
https://doi.org/10.1103/PhysRevResearch.4.023191
https://doi.org/10.1103/PhysRevA.103.023303
https://doi.org/10.1016/j.physrep.2017.09.001
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1103/PRXQuantum.2.020322
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.1103/PhysRevB.98.045101
https://doi.org/10.1038/s42005-021-00572-w
https://doi.org/10.1103/PhysRevResearch.3.013244
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1088/1751-8113/49/3/03LT02
https://doi.org/10.22331/q-2019-07-09-161
https://doi.org/10.1103/PhysRevResearch.2.033394
https://doi.org/10.1103/PhysRevA.88.035806
https://doi.org/10.1103/PhysRevA.102.032607
https://doi.org/10.1103/PhysRevA.103.L010601
https://doi.org/10.1103/PhysRevApplied.15.054042
https://doi.org/10.1103/PhysRevResearch.3.043039
https://doi.org/10.1103/PhysRevA.61.041604
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevLett.88.170406
https://doi.org/10.1103/PhysRevLett.93.040403
https://doi.org/10.1103/PhysRevLett.98.260405
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevA.95.033610
https://doi.org/10.1103/PhysRevA.98.062106
https://doi.org/10.1103/PhysRevA.96.063614
https://doi.org/10.1088/1367-2630/aba0e5
https://doi.org/10.1103/PhysRevA.105.043706
https://doi.org/10.1103/PhysRevA.93.043615
https://doi.org/10.1103/PhysRevLett.93.130406


XU, YUAN, TANG, WU, TAN, AND KUANG PHYSICAL REVIEW A 108, 022608 (2023)

[44] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and
Superfluidity (Oxford University Press, Oxford, 2016).

[45] S. Giovanazzi, A. Görlitz, and T. Pfau, Phys. Rev. Lett. 89,
130401 (2002).

[46] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,
Rep. Prog. Phys. 72, 126401 (2009).

[47] A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S.
Giovanazzi, Phys. Rev. Lett. 97, 250402 (2006).

[48] H. P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103,
210401 (2009).

[49] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001
(2017).

[50] W. Zhong, Z. Sun, J. Ma, X. Wang, and F. Nori, Phys. Rev. A
87, 022337 (2013).

[51] J. Liu, H. D. Yuan, X. M. Lu, and X. G. Wang, J. Phys. A: Math.
Theor. 53, 023001 (2020).

022608-8

https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1103/PhysRevLett.97.250402
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/PhysRevA.87.022337
https://doi.org/10.1088/1751-8121/ab5d4d

