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Quantum computers now show the promise of surpassing any possible classical machine. However, errors limit
this ability and current machines do not have the ability to implement error correcting codes due to the limited
number of qubits and limited control. Therefore, dynamical decoupling (DD) and encodings that limit noise with
fewer qubits are more promising. For these reasons, we put forth a model of universal quantum computation that
has many advantages over strategies that require a large overhead such as the standard quantum-error correcting
codes. First, we separate collective noise from individual noises on physical qubits and use a decoherence-free
subspace that uses just two qubits for its encoding to eliminate collective noise. Second, our bath model is very
general as it uses a spin-boson-type bath but without any Markovian assumption. Third, we are able to either
use a steady global magnetic field or to devise a set of DD pulses that remove much of the remaining noise and
commute with the logical operations on the encoded qubit. This allows removal of noise while implementing gate
operations. Numerical support is given for this hybrid protection strategy which provides an efficient approach
to deal with the decoherence problems in quantum computation and is experimentally viable for several current
quantum computing systems. This is emphasized by a recent experiment on superconducting qubits which shows
promise for increasing the number of gates that can be implemented reliably with some realistic parameter
assumptions.
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I. INTRODUCTION

Quantum algorithms [1] have been developed that are
much more efficient than the best known classical counter-
part. However, it is difficult to perform reliable calculations
on a quantum computer due to the well-known problem
of decoherence. A variety of schemes for combating the
deleterious environment effects have been proposed, includ-
ing quantum-error correction, dynamical decoupling (DD),
and decoherence-free subspace (DFS)/noiseless encodings.
Quantum-error correction was shown by Shor et al. [2]
and subsequent work extended this and demonstrated that
techniques exist that can be used to significantly reduce
the quantum-error rate [3–6]. However, fully implemented
quantum-error correction technology cannot be implemented
reliably in the noisy intermediate-scale quantum era [7,8] and
thus some decoherence is unavoidable [9]. As a result, DD
or DFS encodings have been sought to reduce decoherence
and extend the functionality of these machines. DD is an
active protection strategy and it requires an efficient control
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of qubits in the presence of noise [10–12]. On the other hand,
DFSs [13–15] are a type of passive protection. Both of these
two schemes have their advantages and limitations, e.g., DFS
encodings may not be easy to design and have been primarily
applicable to collective noise. DD schemes can combat both
collective and individual noises but the controls may be dif-
ficult to implement experimentally [16,17]. In this paper, we
design a hybrid scheme for reliable quantum gate operations.
Specifically, we use DD or a steady global magnetic field and
DFSs to deal with the X,Y noises and the collective Z noises
while enabling reliable computation.

Computation in subspaces remains unaffected by the inter-
action with the environment when the interaction Hamiltonian
has a certain symmetry [13]. Coherence control of two logical
qubits encoded in a DFS has been demonstrated, and the
DFS encoding has proven to have high fidelity [18]. The
exchange-only gating scheme of DiVincenzo et al. encodes
three physical qubits into a logical qubit [19,20]. The number
of physical qubits and gate operations will be ameliorated for
the XXZ-type couplings [21–24]. Numerous experimental ap-
plication of DFSs have been demonstrated, such as in trapped
ions [25], in an optical Deutsch-Jozsa algorithm [26], in a
linear-optical experiment [27], and in NMR [28].

DFSs can be quite useful for collective baths and recent
experiment shows that collective baths do exist. Charge noises
in a superconducting multiqubit circuit chip have been found

2469-9926/2023/108(2)/022607(6) 022607-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8976-9515
https://orcid.org/0000-0003-4896-6958
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.022607&domain=pdf&date_stamp=2023-08-10
https://doi.org/10.1103/PhysRevA.108.022607


WANG, REN, BYRD, AND WU PHYSICAL REVIEW A 108, 022607 (2023)

highly correlated on a length scale over 600 µm [29]. Re-
cently, quantum computation in DFS has been proved to be
possible and the computation is robust against collective de-
coherence in quantum systems [30]. However, collective baths
are special and individual baths [31,32] are more common.
More generally, individual and collective baths both coexist in
many systems. In this paper, we consider a mixed bath, which
includes both collective [33,34] and individual noises [31]. We
use a simple encoding scheme with one logical qubit encoded
by two physical qubits as in Ref. [21]. Also, the mitigation
of noises was addressed by algebraic means complemented
with numerical optimal control in the Markovian regime of
Lindblad or Bloch-Redfield type [35]. Considering the non-
Markovian environmental noises, for the gate operations, we
calculate the fidelity dynamics. On the other hand, both the
individual and the collective X,Y noises can be eliminated by
a steady global magnetic field on our entire quantum com-
putation, so that we do not require any additional physical
operations. Similarly, we can also use the DD technique and
a global leakage elimination operator (LEO), formulated as∑

i σ
z
i to eliminate both collective and individual X,Y noises.

Since this global LEO commutes with all logical operations
in the entire quantum computation process, it can be im-
plemented independent of the gating operations. As for the
leftover individual Z noise, we study the effects of the en-
vironment parameters on the obtainable rotation angle for
given fidelity and find the region where gates remain accurate
even if the individual Z noise is relatively strong. We show
some threshold within which the universal set of gates works
perfectly.

II. MODEL

The total Hamiltonian has the form

Htot = Hs + Hb + Hint, (1)

where Hs is the system Hamiltonian, Hb = ∑N
j=0 H j

b is the
bath Hamiltonian, and Hint is the interaction Hamiltonian.
Suppose j = 0 corresponds to a collective bath and j =
1, 2, . . . N correspond to N-independent individual bath op-
erators, then H j

b = ∑
k ω

j
kbj†

k bj
k . ω

j
k is the boson’s frequency

of the kth mode and bj†
k , bj

k are the bosonic creation and
annihilation operators. The interaction reads

Hint =
∑

j,k

(
gj∗

k L†
j b

j
k + gj

kL jb
j†
k

)
, (2)

where Lj are system operators, the subscript indicates the cou-
pling to the jth bath, and gj

k is the coupling constant between
the system and kth mode of the jth bath. Clearly, L0 and g0

k
describe the coupling between the system and the collective
bath.

Assume initially that the bath is in a thermal equilibrium
state at temperature Tj with the density operator ρ j (0) =
e−βH j

b /Zj, where Zj = Tr[e−βH j
b ] is the partition function, and

β = 1/(KBTj ). The initial density matrix operator is assumed
to be in a product state with the bath, ρ(0) = ρs(0) ⊗ ρb(0) =
|ψ0〉〈ψ0|

⊗N
j=1 ρ j (0). Here, ρs(t ) and ρb(t ) are the system and

bath density matrix, respectively. Here, we assume an uncor-
related initial state between the system and baths. However,
for a correlated one, the construction of the density matrix

does not maintain the positivity of the density matrix [36]. For
non-Markovian baths, its asymptotic state strongly depends
on the initial conditions [37]. A measure to quantify the influ-
ence of the initial state of an open system on its dynamics is
proposed recently, and conditions under which the asymptotic
state exists are derived [38]. In this paper, we use a newly
developed theoretical tool, which is referred to as the non-
Markovian quantum state diffusion (QSD) approach [39–43].
The non-Markovian master equation is given by [42]

∂

∂t
ρs = −i[Hs, ρs] +

∑
j

{[
Lj, ρsO

j†
z (t )

] − [
L†

j , O
j
z (t )ρs

]

+ [
L†

j , ρsO
j†
w (t )

] − [
Lj, O

j
w(t )ρs

]}
, (3)

where O
j
z,(w)(t ) = ∫ t

0 dsα j
z,(w)(t − s)O j

z,(w)(t, s) and α
j
z,(w)(t −

s) is the correlation function. The operator O is an ansatz
and is assumed to be noise independent here. Generally the
O operators contain noises except for some special cases,
such as the case that the system Hamiltonian commutes with
the Lindblad operators [41]. Also, when the bath couples
weakly to the system, the noise-dependent O

j
z,(w)(t, z∗,w∗)

operator is approximated well by a time-independent operator
O

j
z,(w)(t ) [39,41,44]. Now we use the Lorentz-Drude spectrum

as an example to obtain the correlation function, where the
spectral density is Jj (ω) = 	 j

π

ω j

1+(ω j/γ j )2 [45,46]. Here, 	 j rep-
resents the strength of the jth pair system-bath coupling. γ j

is the characteristic frequency of the jth bath. In the high-
temperature or low-frequency limit, Refs. [42,43] therefore
derive closed equations for O

j
z,(w) to numerically solve the

non-Markovian master equation (3)

∂O
j
z/∂t = (

	 jTjγ j − i	 jγ
2
j

)
Lj/2 − γ jO

j
z

−
⎡
⎣iHs +

∑
j

(
L†

j O
j
z + LjO

j
w

)
, O

j
z

⎤
⎦, (4)

∂O
j
w/∂t = 	 jTjγ jL

†
j /2 − γ jO

j
w

−
⎡
⎣iHs +

∑
j

(
L†

j O
j
z + LjO

j
w

)
, O

j
w

⎤
⎦. (5)

Simple encodings of one logical qubit into two physical
qubits have been suggested to avoid difficult-to-implement
single-qubit control terms [21]. In this case, the DFS, encoded
in one pair of spins, is |0〉L, |1〉L. The subscript L denotes the
logical qubit. |0〉L = |01〉, |1〉L = |10〉. The single-qubit gates
in this subspace can be written in terms of the generators of
SU(2) as follows [21]: Tx = (σ x

1 σ x
2 + σ

y
1 σ

y
2 )/2, Ty = (σ y

1 σ x
2 −

σ x
1 σ

y
2 )/2, Tz = (σ z

1 − σ z
2 )/2.

Now we consider the quantum gate operations of one log-
ical qubit in the presence of noise which is separated into
individual and collective parts. The quantum gate fidelity
is defined as F (t ) = ∫

dψ (0)〈ψ (0)|U †ρs(t )U |ψ (0)〉, where
U = e−iHst |ψ (0)〉 and |ψ (0)〉 is the arbitrary initial state of the
system. ρs(t ) is the system’s reduced density matrix in Eq. (3).
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FIG. 1. (a) The fidelity F vs θ/π for different parameters h for logical qubits. The X,Y, Z noises are all individual. (b) The fidelity F vs
θ/π under DD control. θ = Jt can be viewed as a rotation angle of the gates. The pulses are present at τ and absent at the next τ . Hs = −JTx ,
	 = 0.005, γ = 1, T = 50.

III. RESULTS AND DISCUSSIONS

First, consider a single-qubit gate with the system Hamilto-
nian Hs = −JTx,(z). Here, J is the coupling constant. Suppose
both physical spins encounter a collective bath H0

b , and each
of them couples to an individual bath with Hamiltonian H j

b
( j = 1, 2). We use a parameter α to represent the degree of
mixing of the two types of baths. The interaction can then be
rewritten as

Hint = cos2 α �σ0 · �B0 + sin2 α
(
�σ1 · �B1 + �σ2 · �B2

)
, (6)

where the subscript 0 denotes the collective bath, and 1,2
denote the individual baths of spin 1 and 2, respectively. The
Pauli vector �σi = (σ x

i , σ
y
i , σ z

i ) and the bath operators �Bi =
(Bx

i , By
i , Bz

i ) with Bx(y,z)
i (i = 0, 1, 2) representing the X (Y, Z )

noises. Comparing with the interaction in Eq. (2), Li = σi

and Bi = ∑
k (gi∗

k bi
k + gi

kbi†
k ). Note that the Lindblad operator

L = L† = σx or σz for spin boson or dephasing. Then the
rotating-wave approximation [47,48] is not used here. For
generality, we can also use αx,(y,z) to denote the mixture degree
of the X (Y, Z ) noises. For example, αz = 0 (π/2) corresponds
to a collective (two individual) Z noise. The bath can be
written as Hb = cos2 αH0

b + sin2 α(H1
b + H2

b ).
At first, assume there are only X,Y noises present, so

Hint = cos2 αxσ
x
0 Bx

0 + sin2 αx

∑2

i=1
σ x

i Bx
i

+ cos2 αyσ
y
0 By

0 + sin2 αy

∑2

i=1
σ

y
i By

i . (7)

We observe that if [σ z
1 + σ z

2 , Tx,(y,z)] = 0, these interactions
can be eliminated by adding an LEO Hamiltonian [49,50]

HLEO = c(t )
(
σ z

1 + σ z
2

)
, (8)

where c(t ) is the control function. We emphasize that the
significant advantage of the LEO Hamiltonian is that, due
to [σ z

1 + σ z
2 , Tx,(y,z)] = 0, adding of such an LEO does not

interfere with the gate operation.
Suppose the control function is a constant c(t ) = h, here

h, for example, could be the magnetic field. In Fig. 1(a), we
plot the fidelity F as a function of the normalized time θ/π

for different h. Here, θ = Jt can be viewed as a rotation angle

and is taken to be θ = 2π in the total evolution. We assume
the collective bath has the same magnitude as the individual
baths, i.e., 	0 = 	1 = 	2 = 	, γ0 = γ1 = γ2 = γ , and T0 =
T1 = T2 = T . The environmental parameters are taken to be
	 = 0.005, γ = 1, T = 50. If there is no control, the fidelity
will decrease quickly with increasing θ for Hs = −JTx. As
expected, the X,Y or X,Y, Z noises will significantly reduce
the gate fidelity.

We next compare this with control added. For simplic-
ity, we only add a constant pulse. Note h � J and that this
control does not affect the gate operation. (They commute.)
Figure 1(a) shows that with increasing h, F has a drastic
increase. When h = 20, F = 1 for X,Y noises, indicating the
interaction has been removed. When it also has Z noise, the
control is not as effective. We also check the case Hs = −JTz

and find similar behavior to that in Fig. 1(a). The constant
pulse in the above discussion is often difficult to approximate
well in experiments. Bang-bang pulses are idealistic since
they assume relatively strong, fast pulse sequences c(t ) =
π

∑
i δ(t − τi )/2 [17]. (They must be strong relative to the

natural, or drift, Hamiltonian.) Thus these are also often dif-
ficult to be implement experimentally [16]. Nonperturbative
DD which uses a finite pulse intensity and finite pulse intervals
is much more practical for effective control [16,51]. Next, we
show how nonperturbative DD can be used to eliminate X,Y
noises.

In the numerical simulation, we use rectangular pulses and
the above LEO Hamiltonian to simulate a δ-function pulse.
We use c(t ) = 50 (even n) and c(t ) = 0 for nτ < t < (n +
1)τ (odd n), τ = 0.01π . For this choice, the integral satisfies∫ τ

0 c(s)ds = π/2 which is required by theory in one control
period τ [50]. However, there is no need to stick to π/2, non-
perturbative DD only requires a large constant [16,51], and
the control function can even be noisy [52,53]. In Fig. 1(b),
we plot the fidelity F versus the parameter θ/π under DD
control. The results again show that the simulated DD pulses
are effective to remove the X,Y noises [αx = αy = π/2 or
αx = αy = π/4 in Fig. 1(b)], both for individual and collec-
tive types. As expected, it fails for the case that the X,Y, Z
noises (αx = αy = αz = π/2) in Fig. 1(b). We also plot the
case where we have both the individual X,Y, Z noises plus
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FIG. 2. The number of gates N (F = 0.95) vs α with different (a) γ or (b) temperature T . T = 10 in (a) and γ = 2 in (b). 	 = 0.005.
Hs = −JTx . (c) Comparison of the rotation angle θ (F = 0.95) vs α between physical qubit and logical qubit with different Tx,(z). 	 = 0.005
(0.01) for the logical (physical) qubit. γ = 10, T = 50, L = σ z.

collective Z noise (αx = αy = π/2, αz = π/4). We find that
in this case the protection of the DFS encodings is still
effective and the fidelity evolution for these two cases is the
same. To summarize, the advantage of our hybrid strategy is
that if there are X,Y noises and only collective Z noise, a
reliable quantum gate operation can be realized by adding a
control that effectively removes the interaction and the effects
of the noises can be completely eliminated.

From the above analysis, the individual Z noise is not easily
eliminated. It is therefore important to check how the mixture
of the individual and collective Z noises affects the number
of the gates N that can be implemented for certain threshold
fidelity, e.g., F (θ ) = 0.95. Recently, a quantum-error correc-
tion threshold of 4.7% using a clustering decoder has been
found for a depolarizing noise model [54]. In the following
part we will only discuss Z noise. Now, for a collective bath
σ0 = σ z

1 + σ z
2 , and for individual baths σ1 = σ z

1 , σ2 = σ z
2 . In

Figs. 2(a) and 2(b), we plot the number of the gates N vs
α for different γ and T , respectively. We take Hs = −JTx

as an example, and for Hs = −JTz we obtain similar results.
N decreases with increasing parameter α, which shows that
N can be dramatically enhanced by increasing the collective
bath ratio α. We emphasize that an increase in this ratio has
been realized in recent work [29]. Our results support that
thousands of gates can be implemented for a small α. From
Fig. 2(a), non-Markovinity of the baths play an important role
in boosting the achievable number of gates N . Figure 2(b)
shows that N decreases with increasing temperature T as
expected.

DFS encodings provide passive protection for collective
noises. Then to what degree does the noise differ from that
for the physical qubit? For a single physical qubit gate, the
corresponding Hamiltonian is H = Jσ x,(z) + σ zB + HB. In
Fig. 2(c), we compare the achievable θ for the physical qubit
and the logical qubit. θ vs α for Tx or Tz is plotted. γ = 10,
T = 50, and J = 1 are used for both cases, while we take
	 = 0.005 (1.0) for the logical (physical) qubit. For Tx,(z),
there is only an individual bath for one single physical qubit.
Then θ is a constant. However, for the logical qubit, it has both
collective and individual baths. For Tx, α = π/8, and θ/π = 4
and for Tz, θ/π = 2.6. Increasing α, θ begins to decrease.
When α = π/2, i.e., there are only individual baths for the
logical qubit, we find that the dynamics are the same for the
two cases: the interaction strength parameter 2	 (physical bit)
as 	 (logical qubit).

Now let us consider two pairs of spins, each pair encoding
one logical qubit. Assume spins 1 and 2 (3 and 4) belong to the
first (second) logical qubit (see Fig. 3). Controlled operations
between two logical qubits can be made by Tz1Tz2 = −Z2Z3,
which implements a two-qubit entangling gate. The operator
eiθTz1Tz2 gives a controlled-phase gate when θ = π/2. Together
with a Hadamard gate, we can get a controlled-NOT (CNOT)
gate [30]. We point out that the couplings between the spins
can be tuned by adding an external field [55]. For the two
logical qubits, the system Hamiltonian is Hs = −JTz1Tz2. In
Figs. 4(a) and 4(b) we plot the angle θ/π vs γ and T for
the two-qubit gate. Figure 4 shows that the obtainable angle
θ decreases with increasing γ and T . For certain parameters,
θ also decreases with increasing α. The parameter dependence
shows a behavior similar to the single-qubit gate.

IV. EXPERIMENTAL PARAMETERS

The dimensionless parameters used in this paper can be
converted into a dimensional form for a comparison with
a recent experiment using superconducting qubits [56]. For
the Hamiltonian of a single-qubit gate, each qubit can be
regarded as a spin-1/2 system, in this case, the coupling J
is the nearest-neighbor hopping strength. The typical cou-
pling is around 12.5 MHz [56] and h̄/J � 0.08 µs. The
tunable z-axis coupling between qubits can be performed
with an additional intermediate-qubit mode and the coupling
strength is governed by the flux bias applied to the cou-
pler [57,58]. The strength Jz can be tuned to 10 MHz in a
high-coherence superconducting circuit [59], which is near
the coupling strength J . The z-axis rotations on individual

FIG. 3. Two logical qubits which consist of two pairs of spins.
The solid line in the spin pair represents the XX + YY coupling and
the dashed line between the two pairs represents the ZZ coupling.
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FIG. 4. The rotation angle θ (F = 0.95) vs (a) γ and (b) temperature T with different α values. T = 10, 	 = 0.005 in (a) and γ = 2,
	 = 0.005 in (b). Hs = −JTz1Tz2.

qubits can be performed by modulating the microwave and
local magnetic fields [9]. Increasing the collective bath ratio
in the experiment [29] can greatly enhance the number of
gates that can be applied, enhancing the ability to perform
computations.

V. CONCLUSIONS

We have designed a hybrid error reduction method us-
ing very low overhead. Motivated by recent experiments, the
method uses passive protection (a DFS) to reduce collective
errors while employing active correction (LEOs) for indi-
vidual noise. The calculation shows that high fidelity can
be obtained for low temperature, and high non-Markovianity

of the baths. This strategy shows promise theoretically, and
numerically. We have also provided evidence that suggests
significant improvement for experiments involving supercon-
ducting qubits.
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