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Fragility of gate-error metrics in simulation models of flux-tunable transmon quantum computers
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Constructing a quantum computer requires immensely precise control over a quantum system. A lack of
precision is often quantified by gate-error metrics, such as the average infidelity or the diamond distance.
However, usually such gate-error metrics are only considered for individual gates and not the errors that
accumulate over consecutive gates. Furthermore, it is not well known how susceptible the metrics are to the
assumptions which make up the model. Here we investigate these issues using realistic simulation models of
quantum computers with flux-tunable transmons and coupling resonators. Our main findings reveal that (i)
gate-error metrics are indeed affected by the many assumptions of the model, (ii) consecutive gate errors do
not accumulate linearly, and (iii) gate-error metrics are poor predictors for the performance of consecutive gates.
Additionally, we discuss a potential limitation in the scalability of the studied device architecture.
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I. INTRODUCTION

The realization of a gate-based quantum computer in the
real world is an engineering task which requires a tremen-
dous amount of precision in terms of control over a quantum
system. In this work we clearly differentiate between the
following three concepts: The ideal gate-based quantum com-
puter (IGQC), the prototype gate-based quantum computers
(PGQCs), and the nonideal gate-based quantum computers
(NIGQCs).

The state of an IGQC with N ∈ N qubits is described by a
time-independent state vector |ψ〉 in a 2N -dimensional Hilbert
space as described in Refs. [1,2]. In this model changes of the
state vector occur instantaneously by applying unitary opera-
tors Û to the state vector |ψ〉. Therefore, all time-dependent
aspects of gate errors which are omnipresent on PGQCs (see
Refs. [3,4]) are neglected in this model. One often uses quan-
tum operations (see Refs. [1,2]) to introduce gate errors to
the IGQC model. Many gate-error metrics like the average
gate infidelity (see Refs. [5,6]) and the diamond distance (see
Refs. [7,8]) can be expressed in terms of quantum operations.
However, also quantum operations do not describe the time-
dependent aspects of gate errors.

In this work we are interested in modeling the appearance
of gate errors as a real-time process. This type of modeling is
motivated by the fact that superconducting PGQCs are phys-
ical systems and consequently one finds that these devices
are inherently dynamic and affected by various internal and
external factors. A review of the literature suggests that we
have to take into account the variable control signals (see
Refs. [9,10]), the temperature of the device (see Ref. [11]),
temporal stability of device parameters such as the qubit

*Corresponding author: hannes.a.l@me.com

frequency (see Ref. [12]), cosmic radiation (see Ref. [13]),
and so on. Therefore, a complete mathematical description of
these devices which takes into account all the relevant factors
in one mathematical model seems prohibitive. However, we
may be able to describe certain aspects of a superconducting
PGQC by making use of simplified models. The simulations
we perform to obtain the results presented in this work are
intended to describe certain aspects of specific two-qubit,
three-qubit, and four-qubit superconducting PGQCs. The de-
vice architecture, device parameters, and control pulses we
use are similar to the ones used in experiments described in
Refs. [14–16].

We define a NIGQC model as a model where the state of
a gate-based quantum computer is described as a real-time
entity. In this work the state of a NIGQC is by assumption
completely determined by the state vector |�(t )〉 and the
dynamics of the system are generated by the time-dependent
Schrödinger equation with h̄ = 1,

i∂t |�(t )〉 = Ĥ (t )|�(t )〉, (1)

where Ĥ (t ) = Ĥ†(t ) denotes a circuit Hamiltonian which
is obtained by means of the lumped-element approximation
(see Ref. [17]) and an associated effective Hamiltonian (see
Ref. [18]). Note that the NIGQC models that we consider are
idealized versions of the PGQCs used in experiments.

Our simulation software solves the time-dependent
Schrödinger equation numerically with the product-formula
algorithm (see Refs. [19,20]) for a given Hamiltonian Ĥ (t )
and a sequence of control pulses which allows us to implement
a sequence of gates with our NIGQC. This enables us to
compute the gate errors for the individual gates in the program
sequence. In the following, we call the sequence of gate errors
which arises from this procedure a gate-error trajectory.

This paper is structured as follows. In Sec. II we specify
the Hamiltonians Ĥ (t ), the device parameters, and the control
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FIG. 1. Illustrations of flux-tunable transmon qubits with park qubit frequencies ω(Q) and resonators with resonance frequencies ω(R)

which constitute NIGQCs with (a) N = 2, (b) N = 3, and (c) N = 4 qubits. The different subsystems are indexed with the discrete variable
i ∈ {0, . . . , 7} such that the bare basis states of the system can be expressed as |z〉, where z = (z|I|−1, . . . , z0) is an n-tuple. The Hamiltonians
we use to model the dynamics of our NIGQCs are given by Eqs. (2) and (7). The device parameters we use to specify the Hamiltonians are
listed in Table I. The control pulses we use to implement the gates are displayed in Figs. 2(a)–2(c).

pulses we use to implement our NIGQC models. In Sec. III
we discuss the gate-error metrics and how we compute them.
In Sec. IV we present our findings. In Sec. IV A we discuss
the spectrum of a four-qubit NIGQC and its relevance for
the gate-error metrics we compute. In Sec. IV B we discuss
the gate-error metrics we obtain by optimizing the parameters
of the control pulses. In Sec. IV C we show how gate errors
and the corresponding gate-error trajectories which arise over
time are affected by modeling the dynamics of the system
with different numbers of basis states. The gate errors in this
section are obtained with the circuit Hamiltonian. In Sec. IV D
we show how deviations in the control pulse parameters affect
the gate-error trajectories. The gate errors in this section are
also obtained with the circuit Hamiltonian. In Sec. IV E we
show how the modeling of flux-tunable transmons as adiabatic
and nonadiabatic anharmonic oscillators affects the gate errors
over time. The gate errors in this section are obtained with
an effective Hamiltonian. A summary, discussion, and the
conclusions drawn are presented in Sec. V. Note that we use
h̄ = 1 throughout this work.

To assist the reader in navigating through the material, we
list the main findings.

(i) The authors of Ref. [3] concluded that the initial val-
ues for gate-error metrics like the diamond distance and the
average infidelity are poor predictors of the future gate-error
trajectories which emerge over time. In this work we provide
new evidence which supports and strengthens this conclusion.
Furthermore, we provide a concise theoretical explanation for
why this is the case and how we should interpret gate-error
metrics like the diamond distance and the average infidelity
(see Secs. IV C–IV E).

(ii) By analyzing the spectrum of a four-qubit NIGQC, we
discuss a problem which potentially limits the upscaling ca-
pabilities of device architectures which implement two-qubit
gates by tuning the energies of basis states into resonance with
one another. The issues we discuss implicate an exponentially
large optimization problem for future quantum computer en-
gineers (see Sec. IV A).

(iii) By simulating the time evolution of different NIGQC
models, we explicitly show that even seemingly small changes

in the assumptions which make up the underlying model can
substantially affect the gate-error metrics. The fact itself is
not surprising. However, the extent to which the changes
affect the gate-error metrics during the course of the time
evolution of the system is something worth knowing (see
Secs. IV C–IV E).

(iv) By executing simple gate repetition programs on dif-
ferent NIGQCs, we show that gate-error metrics in NIGQC
models do not behave linearly. Furthermore, we also show
that gate-error metrics respond to changes in the model in a
nonlinear manner (see Sec. IV C–IV E). Given these findings,
we conjecture that gate errors for consecutive gates are not
simply given by the sum of the gate errors for the individual
gates in the program sequence but emerge due to a complex
interplay of small deviations with respect to the target gates
which occur over time.

II. MODELS AND DEVICE PARAMETERS

Figures 1(a)–1(c) show illustrations of the two-qubit, three-
qubit, and four-qubit NIGQCs we consider in this work,
respectively. The parameters ω(Q) denote the park qubit fre-
quencies for the different flux-tunable transmon qubits. The
park qubit frequency is the frequency at which a trans-
mon qubit resides if no external flux is applied. Similarly,
the parameters ω(R) refer to LC resonator frequencies. In
the following, we will simply call these systems transmon
qubits and resonators. The interactions between the different
transmon qubits are conveyed by the resonators. We model
the interactions between the different subsystems as dipole-
dipole interactions and use the constants Gi, j , where i, j ∈
N0, to control the interaction strength. The device param-
eters listed in Table I are used for all simulations in this
work.

The remainder of this section is devoted to the models we
use to describe the dynamics of the NIGQCs in Figs. 1(a)–
1(c). In Sec. II A we introduce a circuit Hamiltonian. In
Sec. II B we introduce an effective Hamiltonian which is re-
lated to the circuit Hamiltonian. Finally, in Sec. II C we define
the control pulses we use to implement the different gates.
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TABLE I. Device parameters for a four-qubit virtual chip. The device architecture and device parameters are motivated by experiments
described in Refs. [14–16]. The index i denotes the different circuit elements which are part of the system (in total there are eight circuit
elements). The parameter ω

(R)
i denotes the coupler frequency, i.e., the transmission line resonator frequency. Since all couplers have the same

frequency, we show only one row for all coupling resonators; see the last row where i ∈ {4, 5, 6, 7}. The constants ω
(Q)
i and α

(Q)
i denote the

qubit frequency and anharmonicity, respectively. The parameter ECi denotes the capacitive energy of the ith qubit. Similarly, EJi,r and EJi,l

denote the corresponding Josephson energies. Note that in this work we express the Hamiltonian in Eq. (4) with a factor of EC instead of 4EC .
This means we adopt the original convention used in Ref. [21] and not the one of Ref. [22]. The parameter ϕ0,i denotes the so-called flux
offset, i.e., the external flux ϕ0,i(t ) at time t = 0. The interaction strength Gi, j between the different circuit elements is set to 300 MHz for
all i, j ∈ N0. All units (except the one of the flux offset) are in gigahertz. The flux offset is given in units of the flux quantum �0. We use
these device parameters to model the two-qubit, three-qubit, and four-qubit NIGQCs illustrated in Figs. 1(a)–1(d). Note that we use h̄ = 1
throughout this work.

i ω
(R)
i /2π ω

(Q)
i /2π α

(Q)
i /2π ECi /2π EJi,l/2π EJi,r/2π ϕ0,i/2π

0 n/a 4.200 −0.320 1.068 2.355 7.064 0
1 n/a 5.200 −0.295 1.037 3.612 10.837 0
2 n/a 5.700 −0.285 1.017 4.374 13.122 0
3 n/a 4.960 −0.300 1.045 3.281 9.843 0
4–7 45.000 n/a n/a n/a n/a n/a n/a

The device architecture, device parameters, and control
pulses we use are motivated by experiments described in
Refs. [14–16].

A. Circuit Hamiltonian model

The circuit Hamiltonian we use to model our NIGQCs is
defined as

Ĥcir = Ĥres,
 + Ĥtun,
 + V̂int. (2)

The first term

Ĥres,
 =
∑
k∈K

ω
(R)
k â†

k âk (3)

describes a collection of noninteracting resonators. Here K ⊆
N0 denotes an index set for the resonators and ω

(R)
k refers to

the different resonator frequencies. The operators â and â† are
the bosonic annihilation and creation operators, respectively.

Similarly, the second term

Ĥtun,
 =
∑
j∈J

{
ECj [n̂ j − n j (t )]2 +

(
1

2
− β j

)
ϕ̇ j (t )n̂ j

− EJl, j cos[ϕ̂ j + β jϕ j (t )]

− EJr, j cos[ϕ̂ j + (β j − 1)ϕ j (t )]

}
(4)

describes a collection of noninteracting flux-tunable trans-
mons. Here J ⊆ N0 denotes an index set for the transmon
qubits. Furthermore, the parameters ECj , EJl, j , and EJr, j denote
the capacitive energies, the left Josephson energies, and the
right Josephson energies, respectively. Note that the Hamilto-
nian in Eq. (4) is often expressed with a factor 4EC instead
of EC . In this work we adopt the original convention used
in Ref. [21] and not the one of Ref. [22]. The parameters
β j are not device parameters but determine the variables we
use for the quantization of the circuit. We use β j = 1

2 for all
simulations in this work (cf. Refs. [23,24]). In Appendix A
we provide a detailed derivation of the Hamiltonian for a
single flux-tunable transmon with a charge drive term. This
derivation is motivated by the work in Ref. [23].

The device parameters in Table I were obtained as follows.
The Quantum Device Lab, which is affiliated with the ETH
Zurich, provided us with the qubit frequencies ω

(Q)
j , anhar-

monicities α
(Q)
j , and asymmetry factors d j for the various

transmon qubits in the system as well as the coupling res-
onator frequencies ω

(R)
k = 45 GHz. We then used the relations

ω
(Q)
j = (

E (1)
j − E (0)

j

)
, (5a)

α
(Q)
j = (

E (2)
j − E (0)

j

) − 2ω
(Q)
j , (5b)

d j = EJr, j − EJl, j

EJr, j + EJl, j

(5c)

and the Hamiltonian (4) to fit the energy levels E (0)
j , E (1)

j , and

E (2)
j to the provided data.
The third term

V̂int =
∑

(k, j)∈K×J

Gk, j (âk + â†
k ) ⊗ n̂ j (6)

describes dipole-dipole interactions between resonators and
transmon qubits. Here Gk, j is a real-valued constant which is
set to 300 MHz for all simulations in this work. This value
for interaction strength constants Gk, j roughly reproduces the
gate durations of around 100 ns which were found to be
appropriate in the experiment.

For our simulations of the Hamiltonian (2) we use the
product-formula algorithm (see Refs. [19,20]) and what we
call a bare basis. This bare basis is formed by the tensor
product states of the harmonic oscillator and the transmon
basis states, which are obtained for the external flux ϕ j (t )
at time t = 0. In this paper we model the dynamics of the
Hamiltonian (2) with four basis states for all resonators and
most transmon qubits are modeled with 16 basis states. Only
the transmon qubit with the index i = 0 [see Figs. 1(a)–1(c)]
is modeled with four basis states. Note that this transmon
does not experience a flux drive. Therefore, we can model this
transmon with four basis states only. There is one exception
to this rule, namely, the results in Sec. IV C are obtained with
four and 16 basis states for all transmon qubits.
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B. Effective Hamiltonian model

The approximations which are needed to obtain the ef-
fective Hamiltonian defined in this section are discussed in
detail in Ref. [18]. Furthermore, the full effective model is
defined in terms of 12 equations. In order to provide a concise
discussion of the effective model, we only discuss the most
relevant relations. A more detailed discussion of the effective
model with all 12 equations can be found in Appendix B.

The effective Hamiltonian we use to model our NIGQCs is
defined by

Ĥeff = Ĥres,
 + Ĥtun eff,
 + D̂charge,
 + D̂flux,
 + Ŵint. (7)

The second term

Ĥtun eff,
 =
∑
j∈J

ω
(q)
j (t )b̂†

j b̂ j + α
(q)
j (t )

2
[b̂†

j b̂ j (b̂
†
j b̂ j − Î )] (8)

describes a collection of noninteracting flux-tunable trans-
mons which are modeled as adiabatic, anharmonic oscillators
in a time-dependent basis. The operators b̂ and b̂† are the
bosonic annihilation and creation operators, respectively. The
functions ω

(q)
j (t ) and α

(q)
j (t ) [see Eqs. (B4) and (B7)] denote

the flux-tunable qubit frequency and anharmonicity, respec-
tively. Note that the time dependence in both these functions
is given by the external flux ϕ j (t ). In this work we use the
series expansions obtained by the authors of Ref. [25] to
approximate the three lowest energy levels of Hamiltonian (4)
for the external flux values ϕ j (t ) at any given point in time.

The third term

D̂charge,
 =
∑
j∈J

� j (t )(b̂†
j + b̂ j ) (9)

describes a charge drive. Here � j (t ) ∝ −2ECj n j (t ) and we
approximate the charge operators n̂ j by effective charge op-
erators n̂ j,eff, which can be expressed in terms of the bosonic
operators (see Ref. [22]).

The fourth term

D̂flux,
 =
∑
j∈J

(
− i

√
ξ j (t )

2
ϕ̇eff, j (t )(b̂†

j − b̂ j )

+ i

4

ξ̇ j (t )

ξ j (t )
(b̂†

j b̂
†
j − b̂ j b̂ j )

)
(10)

describes a nonadiabatic flux drive. Here ϕ̇eff, j (t ) ∝ ϕ̇ j (t ) and
ξ̇ j (t )/ξ j (t ) ∝ ϕ̇ j (t ). Note that ϕ̇eff, j (t ) and ξ j (t ) are given
by Eqs. (B10a) and (B10c). This term results from the
fact that we model the effective flux-tunable transmon in a
time-dependent basis. Consequently, for the time-dependent
Schrödinger equation to stay form invariant (see Ref. [18]), a
time-dependent basis transformation term is needed.

The fifth term

Ŵint =
∑

(k, j)∈K×J

g(a,b)
k, j (t )(â†

k + âk ) ⊗ (b̂†
j + b̂ j ) (11)

describes time-dependent dipole-dipole interactions. The time
dependence of the interaction strength is a result of the fact
that we model the effective flux-tunable transmon in a time-
dependent basis (see Ref. [18]). The function g(a,b)

k, j (t ) is given
by Eq. (B16). This time-dependent interaction strength model
is motivated by the work in Ref. [22].

As before, we use the product-formula algorithm (see
Refs. [19,20]) to solve the time-dependent Schrödinger equa-
tion for the Hamiltonian (7). Here we use a bare basis that is
formed by the tensor product states of the time-independent
(for the resonators) and time-dependent (for the transmon
qubits) harmonic oscillator for the simulations. The dynamics
of Hamiltonian (7) is modeled with four basis states for all
resonators and transmons.

C. Control pulses and gate implementations

Figures 2(a)–2(c) show the external charge n(t ) [Fig. 2(a)]
and the external flux ϕ(t ) [Figs. 2(b) and 2(c)] as functions
of time t . In Fig. 2(a) we show a microwave pulse (MP), in
Fig. 2(b) we show a unimodal pulse (UMP), and in Fig. 2(c)
we show a bimodal pulse (BMP). In this section we introduce
the functions which are used to obtain the data we show in
Figs. 2(a)–2(c). We use these functions as control pulses for
our NIGQC models.

For the single-qubit gates we use the external charge

n(t ) = aG(t, σ, Td ) cos(ω(D)t − φ)

+ bĠ(t, σ, Td ) sin(ω(D)t − φ) (12)

to drive transitions that can be used to implement R(x)(π/2)
rotations with a microwave control pulse. Here G(t, σ, Td )
is a Gaussian envelope function centered around half of the
pulse duration Td . The width and the shape of the Gaussian
are determined by the parameters σ and Td . Furthermore, a
denotes the pulse amplitude, ω(D) refers to the drive frequency,
b is the amplitude of the derivative removal by adiabatic gate
(DRAG) pulse component (see Ref. [26]), and φ is the phase
of the pulse. We use the phase φ in Eq. (12) to implement
virtual Z gates (see Ref. [27]) on our NIGQCs.

Two-qubit controlled-Z (CZ) gates can be implemented
with an external flux of the form

ϕ(t ) = δ

2

[
erf

(
t√
2σ

)
− erf

(
t − Tp√

2σ

)]
, (13)

where δ denotes the pulse amplitude, σ is a parameter which
allows us to control how fast the pulse flanks rise and fall, Tp is
the pulse time, and erf denotes the Gauss error function. Note
that in the computer program we add an additional free time
evolution (the buffer time) to the pulse such that the complete
pulse duration Td is longer than Tp. We refer to this pulse as
the UMP.

We can also use the external flux

ϕ(t ) = δ

2

[
erf

(
t√
2σ

)
− 2 erf

(
t − Tp/2√

2σ

)
+ erf

(
t − Tp√

2σ

)]

(14)

to implement two-qubit CZ gates. This pulse is referred to as
the BMP. Note that the BMP pulse is sometimes referred to as
net-zero flux pulse. The UMP and the BMP are also used to
implement gates in experiments (see Refs. [9,14–16]).

Every CZ gate in our NIGQC model is implemented by
means of a flux pulse ϕ(t ) followed by single-qubit z-axis
rotations R(z)

i (φi) for every qubit in the NIGQC model (see
Ref. [28]). Since the z-axis rotation parameters φi are quite
numerous, e.g., a four-qubit system with four CZ gates has 16
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(a)

(b)

(c)

FIG. 2. (a) External charge n(t ) given by Eq. (12) and external
fluxes ϕ(t ) given by (b) Eq. (13) and (c) Eq. (14) as a functions
of time t for the (a) microwave pulse, (b) unimodal pulse, and
(c) bimodal pulse. In the circuit model both functions n(t ) and ϕ(t )
enter via the Hamiltonian (4). In the effective model both functions
n(t ) and ϕ(t ) enter via the driving terms (9) and (10), respectively.
Moreover, in the effective model the external flux ϕ(t ) also enters the
time-dependent interaction strength in Eq. (11) and the tunable qubit
frequency and anharmonicity in Eq. (8) (see Appendix B for more
details).

of these parameters, we omit the φi phases from the control
pulse parameter (Tables IX–XIX in Appendix D). Finally, we
execute these z-axis rotations by means of virtual Z gates in
combination with a transformation of the frame of reference,
which affects only the phases of the state vector but not the
state vector amplitudes (see Sec. 3.3.2 in Ref. [29]).

III. COMPUTATION OF GATE-ERROR QUANTIFIERS

In this section we discuss the gate-error quantifiers we
compute as well as how we determine the numerical values.

A computation in the IGQC model can be understood as a
mapping

|ψ〉 �→ |ψ ′〉 (15)

between an initial state |ψ〉 and a final state |ψ ′〉 and the state
vector of an N-qubit IGQC can be expressed as

|ψ〉 =
∑

z∈{0,1}N

cz|z〉, (16)

where {|z〉} are the 2N computational basis states of the IGQC.
All state vectors |ψ〉 are normalized complex vectors in a
finite-dimensional Hilbert space H2N

. The computation is de-
scribed by a unitary operator Û .

One simple error measure is the statistical distance

μSD(p, p̃) = 1

2

∑
z∈{0,1}N

‖pz − p̃z‖1, (17)

where by definition pz = ‖〈z|ψ〉‖2
1 are the probability ampli-

tudes of the IGQC (which we use as a reference distribution
to compare against) and p̃z denotes the actual distribution
that is being evaluated. This distribution can be generated by
either a PGQC or a NIGQC. Furthermore, ‖ · ‖1 denotes the
absolute value. The advantage of the statistical distance is that
we can more or less easily measure the relative frequencies
pz in an experiment. While such an error measure is useful in
practice (see Refs. [3,4,29]) it neglects the phase information
of the state vector |ψ〉. Moreover, the statistical distance only
provides a measure of closeness for one particular input state.
For this reason, usually more sophisticated gate-error metrics
are considered.

Most gate metrics are defined in terms of quantum opera-
tions. From a mathematical point of view, quantum operations
are superoperators Ě (ρ̂) which act on the space of density
operators ρ̂ ∈ P . Additionally, we require Ě to be linear, Her-
miticity preserving, and completely positive (see Refs. [1,2]).
Note that if one can also show that Ě is trace preserving, Ě is
usually referred to as a quantum or error channel.

The error metrics we consider in this work can be ex-
pressed in terms of the two quantum operations

ĚU(ρ̂ ) = Û ρ̂Û † (18)

and

ĚM(ρ̂ ) = M̂ρ̂M̂†, (19)

where ρ̂ = |ψ〉〈ψ | and |ψ〉 ∈ H2N
. The operator M̂ in Eq. (19)

is defined as

M̂ = P̂Û (t, t0)P̂, (20)

where P̂ is a projection operator onto the computational space
and Û denotes the formal solution of the time-dependent
Schrödinger equation

Û (t, t0) = T exp

(
−i

∫ t

t0

Ĥ (t ′)dt ′
)

. (21)
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Ucirc (t)

|Ψ(z)(tstart) = |z Ψ(z)(tfinal) Ψ(z)
comp M(tfinal) μx

Ueff (t)

projec P

FIG. 3. Illustration of the computational process we use to obtain the gate-error quantifiers μx . Here x is a label for an arbitrary metric and
Ûcir (Ûeff) is the time-evolution operator in Eq. (21) for the circuit (effective) Hamiltonian given by Eq. (2) [Eq. (7)]. We compute the state
vectors |� (z)(tfinal )〉 with a product-formula algorithm (see Refs. [19,20]) for all computational basis states 2N of a NIGQC and then store the
data in the matrix M(tfinal ). In this matrix, every column corresponds to the evolution of one computational state |� (z)

comp〉 = P|� (z)(tfinal )〉, where
P denotes a projection matrix onto the computational subspace. We use the message passing interface to parallelize the 2N independent tasks.
The computations are performed on the supercomputer JUWELS (see Ref. [31]). Finally, we compute the metric μx with regard to a target
operation U . The metrics we compute provide a measure for how close M and U are.

Here T is the time-ordering symbol. In addition, the Hamilto-
nian Ĥ is given by either Eq. (2) or (7).

The first error metric that we consider is the average fidelity

μFavg =
∫

〈ψ |ĚMĚ−1
U (|ψ〉〈ψ |)|ψ〉d|ψ〉, (22)

where the integral is taken over all states |ψ〉 ∈ H2N
in the

Hilbert space. If we define the auxiliary operator

V̂ = Û M̂†, (23)

we can express the average fidelity as

μFavg = ‖Tr(V̂ )‖2
1 + Tr(M̂M̂†)

D(D + 1)
, (24)

where D = 2N . This is expression is derived in Sec. 7 in
Ref. [6]. We can use the average fidelity to define the average
infidelity

μIFavg = 1 − μFavg . (25)

In order to define a leakage measure for our NIGQCs, we
make use of the second term in the numerator of Eq. (24). We
define the leakage measure as

μleak = 1 −
(

Tr(M̂M̂†)

D

)
, (26)

where Tr(M̂M̂†) can be expressed as the sum of probability
amplitudes. Hence, we find 0 � Tr(M̂M̂†) � D, and therefore
it follows that μleak ∈ [0, 1].

The second error metric we consider is the diamond dis-
tance

μ
 = 1
2

∥∥ĚMĚ−1
U − Î

∥∥

, (27)

where ‖ · ‖
 denotes the diamond norm (see Refs. [7,8]). We
can express the diamond distance in terms of an infimum

μ
 = 1
2 inf

Q∈GL4(C)

{‖(V̂ , Î )Q̂−†Q̂−1(V̂ , Î )T ‖1/2
2

× ‖(V̂ ,−Î )Q̂†Q̂1(V̂ ,−Î )T ‖1/2
2

}
(28)

over all complex, invertible, 2 × 2 matrices (see Ref. [30]).
Similarly, we can express the diamond distance in terms of a

supremum

μ
 = 1
2 sup

|ψ〉∈H2N

{‖(V̂ † ⊗ Î )|ψ〉〈ψ |(V̂ † ⊗ Î )† − |ψ〉〈ψ |‖Tr},

(29)

over all state vectors of the Hilbert space of the IGQC (see
Ref. [2]). We obtain the diamond distance up to the fourth
decimal by cornering

μ(inf)

 � μ
 � μ

(sup)

 , (30)

with the value μ
 with the infimum μ
(inf)

 and supremum μ

(sup)



expressions in Eqs. (28) and (29). The algorithms we use are
discussed in Sec. 6.1.2 in Ref. [29].

Figure 3 illustrates the computational process we use to
obtain the matrix M and in turn the various gate-error quanti-
fiers μx in this work. The label x denotes an arbitrary metric
or measure. First, we simulate the time evolution |� (z)(tfinal)〉
of the system for all 2N basis states |� (z)(tstart )〉 = |z〉 of
the NIGQC. Note that we simulate the 2N time evolutions
|� (z)(t )〉 in parallel on the supercomputer JUWELS (see
Ref. [31]). Then we make use of a projection matrix P and
map the state vectors to the computational states |� (z)

comp〉 =
P|� (z)(tfinal)〉. Finally, we store the data by building the matrix

M =
∑

z∈{0,1}N

∣∣� (z)
comp

〉〈z|, (31)

where |z〉 are the Cartesian unit vectors, in the computer
program. Finally, we compute the gate-error quantifiers μx by
means of the matrix V = UM†.

IV. RESULTS

In this section we present our findings. First, in Sec. IV A
we discuss the spectrum of the four-qubit NIGQC illustrated
in Fig. 1(c) and its relevance for the gate-error metrics we
compute. Here we model the system with the circuit Hamil-
tonian (2). Next, in Sec. IV B we discuss the results of the
calibration process for the different NIGQCs illustrated in
Figs. 1(a)–1(c). Here we consider both the circuit and the
effective model. Then, in Sec. IV C we show how mod-
eling the time evolution of NIGQCs with more and less
basis states affects the gate-error quantifiers. Here we use the
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FIG. 4. Lowest 14 energy levels of the four-qubit NIGQC illustrated in Fig. 1(c) as functions of the external flux offset ϕ for (a) the second
(i = 1), (b) the third (i = 2), and (c) the fourth (i = 3) transmon qubit. We use the circuit Hamiltonian (2) and the device parameters listed in
Table I to obtain the results with a standard diagonalization algorithm (see Ref. [39]). All transmons are modeled with three basis states and
all resonators are modeled with two basis states. We also mark (vertical lines) the pulse amplitudes δ used to implement the CZ gates on the
four-qubit NIGQC. Furthermore, we mark important energy level repulsions (ELRs) by means of black circles. In (b) we can observe that the
pulse amplitude for the CZ1,2 gate is near two ELRs. The first one is in the energy band between 4 and 6 GHz. This ELR leads to unwanted
transitions between the first excited states of two qubits. The second one is in the energy band between 9 and 11 GHz. This ELR is used to
implement the CZ1,2 gate. In (a)–(c) we can observe that the other CZ gates do not suffer from the same problem. Moreover, we can observe
that driving different transmons (a) i = 1, (b) i = 2, and (c) i = 3 leads to different spectral patterns.

circuit Hamiltonian (2) to model the dynamics of the four-
qubit NIGQC illustrated in Fig. 1(c). In Sec. IV D we show
how small deviations in a single control pulse parameter can
affect gate-error metrics. Here we use the circuit Hamilto-
nian (2) to model the dynamics of the two-qubit, three-qubit,
and four-qubit NIGQCs illustrated in Figs. 1(a)–1(c), respec-
tively. Finally, in Sec. IV E we show how the commonly used
adiabatic approximation for flux-tunable transmons affects
gate-error metrics. Here we use the adiabatic and nonadia-
batic effective Hamiltonian (2) to model the dynamics of the
two-qubit, three-qubit, and four-qubit NIGQCs illustrated in
Figs. 1(a)–1(c).

A. Spectrum for a four-qubit NIGQC

In this section we discuss the spectrum of the four-qubit
NIGQC illustrated in Fig. 1(c) and its relevance for the imple-
mentation of two-qubit gates.

Broadly speaking, the general idea of implementing two-
qubit CZ gates with a UMP or BMP is to tune a target
computational state like |0, 0, 1, 1〉 into resonance with a non-
computational state like |0, 0, 0, 2〉, wait some time until the
population returns to the computational target state, and hope
that this state has gained an additional phase of eiπ with re-
spect to all the other computational states of the NIGQC. The
word “tune” in this context refers to tuning the energies of the
instantaneous eigenstates of the system, i.e., the discussion is
implicitly carried out in the instantaneous basis of the system.
Additionally, single-qubit z-axis rotations R(z)

i (φi ) are used to
improve the performance (see Ref. [28]).

The time it takes for our devices to swap the population
back and forth between a computational and a noncomputa-
tional state of the NIGQC lies between 75 and 100 ns. This

time corresponds to the plateau time in Figs. 2(b) and 2(c). We
fix these times by choosing the interaction strength constant
G such that we approximately obtain the same gate times as
in the experiment. Furthermore, the pulse amplitude δ or the
plateau height is fixed by the condition that the states involved
in this process should have close-by energies. The time it takes
to reach the plateau is crucial; we discuss this part of the gate
implementation later in this section.

In Ref. [28] the authors differentiated between gates that
are implemented adiabatically (see Ref. [32]) and gates that
are implemented nonadiabatically (see Ref. [33]). However,
in the context of quantum theory the words adiabatic and
nonadiabatic are usually associated with the adiabatic approx-
imation (see Sec. 6.6 in Ref. [34]). Note that the process
described above is clearly not an adiabatic one, i.e., the prob-
ability amplitudes of the state vector change over time. This
and the fact that in almost all studies the transmon qubit
is modeled as an adiabatic anharmonic oscillator or as an
adiabatic two-level system lead us to the conclusion that in the
context of the gate implementation protocol described above
the words adiabatic and nonadiabatic are simply used to dif-
ferentiate between gates with short and long pulse durations.
Note that in Sec. IV E we investigate a related issue. There
are two additional problems with the picture described above.
First, assigning labels to the energies Ez(ϕ) and eigenstates
|φz(ϕ)〉 of a continuous set of Hermitian matrices {H (ϕ)},
where z ∈ N0 and ϕ/2π ∈ [0, 1], is a nontrivial problem in
itself (see Refs. [35–38]). Second, once we apply a UMP or
BMP flux drive, we cannot guarantee that only the desired
transitions occur. In order to provide clarity on these issues, in
the discussion of the four-qubit NIGQC spectrum, we do not
adopt the same nomenclature used in Ref. [28].

022604-7



H. LAGEMANN et al. PHYSICAL REVIEW A 108, 022604 (2023)

Figures 4(a)–4(c) show the 14 lowest energy levels of the
four-qubit NIGQC illustrated in Fig. 1(c) as functions of the
external flux offset ϕ for the second (i = 1) transmon qubit
[Fig. 4(a)], the third (i = 2) transmon qubit [Fig. 4(b)], and
the fourth (i = 3) transmon qubit [Fig. 4(c)]. This means that
each panel is obtained by repeatedly diagonalizing the matrix
for different flux offset values ϕ/2π ∈ [0, 0.5]. The results are
obtained with the circuit Hamiltonian (2), the device parame-
ters listed in Table I, and a standard diagonalization algorithm
(see Ref. [39]). Here we use two basis states for the coupling
resonators and three basis states for the different transmon
qubits in the system. Note that the circuit Hamiltonian (4)
has two symmetry points, one at ϕ/2π = 0.5 and one at
ϕ/2π = 1.

We label the energies Ez̄ of the interacting system accord-
ing to the sorted energies Ez of the noninteracting system for
the flux offset ϕ = 0. The markers in Figs. 4(a)–4(c) are there
to guide the eye. Additionally, we employ black vertical lines
to mark the flux offset values ϕ that correspond to pulse ampli-
tudes δ for the CZ gates in Table XIII. Furthermore, we employ
black circles to mark the energy level repulsions (ELRs) that
we use to implement the CZ gates and the ELRs that are prob-
lematic for the implementation of CZ gates with low gate-error
metrics [see the line with two circles in Fig. 4(b)].

If we start at the flux offset value ϕ = 0 and then move to
a value ϕ = δ by driving a transmon qubit, we usually pass
through several unused ELRs, i.e., not used to implement the
CZ gates, with some of the computational basis states of the
NIGQC before we reach the ELR or the flux offset value
that we use to implement the CZ gate. Here we have to pass
through the unused ELRs sufficiently fast because otherwise
we can observe population exchange between the two states
involved. This can be clearly observed (data not shown) if one
studies the matrix in Eq. (31) while optimizing the control
pulse parameters or the probability amplitudes themselves
during the time evolution of the system. Also, one cannot
move the system too fast; otherwise one observes (data not
shown) all sorts of other transitions, e.g., the excited coupler
states suddenly become populated. The pulse optimization
algorithm that we employ finds a balance between these two
mechanisms and fine-tunes the pulse amplitude δ and the re-
maining pulse parameters such that nearly perfect population
exchange occurs and the phases are aligned properly. Note that
we have to take all 2N computational basis states into account
(see Fig. 3).

In Fig. 4(b) we can also identify a problem that the op-
timization cannot solve on its own (see the line with two
circles). The ELR in the energy band between 4 and 6 GHz
induces a population exchange between two computational
states of the NIGQC and is therefore unwanted. In addition,
in the energy band between 9 and 12 GHz for the same flux
offset value, we can observe a dense structure of energy levels
with many nearby ELRs.

Obviously, this leads to the question whether or not such
a gate implementation scheme can be scaled up. The largest
PGQC to date with the device architecture discussed in this
work has 17 qubits (see Ref. [40]). In order to avoid the prob-
lem just discussed, i.e., frequency collisions during the gate,
some authors suggest the application of additional flux pules
to noninteracting transmon qubits to mitigate the problem

(see Sec. 1 in the Supplemental Material of Ref. [16]). Other
authors mitigate the issue by redefining the target two-qubit
gate (see Ref. [41]) so that the time evolution of the system
fits more naturally to the target two-qubit gate.

We emphasize that driving different transmon qubits re-
sults in different energy levels being populated and different
ELRs being active [see Figs. 4(a)–4(c)]. Consequently, before
we can even start building a device, we have to solve an op-
timization problem of exponential size, i.e., we have to avoid
ELRs between all 2N computational basis states of the NIGQC
or PGQC. Note that here we have to take into account different
pulse amplitudes δ for the different CZ gates we implement
and the different spectra and ELRs which result from driving
different transmon qubits. Strictly speaking, our conclusions
only apply to the frequency-tunable transmon device architec-
ture studied in this work. However, the consequences of the
problem are much more general and are imprinted on many
other systems (cf. Refs. [42,43]).

We also emphasize that using microwave pulses to imple-
ment single-qubit gates leads to a similar problem, i.e., the
MPs are not monochromatic and contain frequency compo-
nents that can cause unwanted transitions. The more transmon
qubits we employ, the more frequency components we have
to take into account. If we consider an N-qubit transmon
computer, we have to take into account that there are 2N

relevant energy levels and the associated energy differences
between these states. Each additional energy difference, i.e.,
transition frequency, reduces the available frequencies and
thus adds to the frequency crowding problem (cf. Ref. [44]).

B. Gate metrics for the elementary gate set

In this section we discuss the results of the control pulse
optimization procedure for the three different NIGQCs illus-
trated in Figs. 1(a)–1(c).

Figures 5(a)–5(d) show the diamond distance μ

[Figs. 5(a) and 5(b)] and the average infidelity μIFavg

[Figs. 5(c) and 5(d)] for the two-qubit (in blue), the three-qubit
(in green) and the four-qubit (in red) NIGQCS modeled with
the circuit Hamiltonian (2) [Figs. 5(a) and 5(c)] and the
effective Hamiltonian (7) [Figs. 5(b) and 5(d)]. The results
are also listed in Tables XX–XXV in Appendix D. The
single-qubit R(x)(π/2) rotations are implemented with the
MP in Eq. (12). The two-qubit CZ gates are implemented with
the UMP in Eq. (13). We use the device parameters listed in
Table I and the pulse parameters listed in Tables VIII–XIX
to obtain the results (see Appendix D). We employ the
algorithms in the open-source NLOPT library (see Ref. [45]) to
perform the optimization of the control pulse parameters.

The smallest values for the distance μ
 and the aver-
age infidelity μIFavg obtained with the circuit Hamiltonian
(2) [effective Hamiltonian (7)] are μ
 = 0.0080 and μIFavg =
0.0004 (μ
 = 0.0089 and μIFavg = 0.0004) for the R(x)

1 (π/2)

[R(x)
0 (π/2)] gate and the two-qubit NIGQC. Note that the

same gate modeled with the circuit Hamiltonian (2) [effective
Hamiltonian (7)] on the four-qubit NIGQC yields μ
 = 0.058
and μIFavg = 0.004 (μ
 = 0.060 and μIFavg = 0.004). Conse-
quently, we lose about one order of magnitude in accuracy by
adding additional circuit elements to the system.

The largest values for the distance μ
 and the average
infidelity μIFavg obtained with the circuit Hamiltonian (2)
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(a) Circuit Hamiltonian

(b) Effective Hamiltonian

(c) Circuit Hamiltonian

(d) Effective Hamiltonian

FIG. 5. (a) and (b) Diamond distances μ
 given by Eqs. (28) and (29) and (c) and (d) average infidelity μIFavg given by Eq. (24) for
R(x)(π/2) rotations and CZ gates for the NIGQCs illustrated in Figs. 1(a)–1(c), where N = 2 in Fig. 1(a), N = 3 in Fig. 1(b), and N = 4 in
Fig. 1(c). The error metrics are obtained with (a) and (c) the circuit Hamiltonian (2) and (b) and (d) the effective Hamiltonian (7). We use
the device parameters listed in Table I and the pulse parameters listed in Tables VIII–XIX to obtain the results. The single-qubit R(x)(π/2)
rotations are obtained with a microwave pulse [see Fig. 2(a)]. The two-qubit CZ gates are obtained with the unimodal pulse [see Fig. 2(b)].

[effective Hamiltonian (7)] are μ
 = 0.144 and μIFavg = 0.029
(μ
 = 0.146 and μIFavg = 0.015) for the CZ1,2 gate and the
four-qubit NIGQC. We can potentially explain the large val-
ues for the CZ1,2 gate-error metrics in both models by means
of the energy level repulsions in Fig. 4(b). The ELR used to
implement the CZ1,2 gate is too close to other ELRs which lead
to additional transitions between the states of the system. The
optimization algorithm cannot solve this problem. Note that
we employ the quite accurate (see Ref. [25] and Appendix B
in Ref. [18]) series expansions in Eqs. (B4) and (B7) to model
the tunable qubit frequency and anharmonicity, respectively. If

we employ the less precise first-order expansions, we cannot
reproduce the results for the CZ1,2 gate with the effective
model.

Furthermore, in Figs. 5(a)–5(d) we can clearly observe a
trend to larger gate-error metrics for larger systems; this is the
case for both models. Note that the smallest system contains
three circuit elements and the largest system consists of eight
circuit elements.

While optimizing the control pulse parameters for the two-
qubit gates, we notice that with increasing system size, i.e.,
the number of transmon qubits and couplers, it becomes more
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difficult to pass though the various ELRs in the spectrum
sufficiently fast (slow) [see Figs. 4(a)–4(c)]. If we let the
pulse flanks [see Fig. 2(b)] rise (fall) too slowly, we pass
though various ELRs so slowly that unwanted population
exchanges occur. If we let the pulse flanks rise (fall) too
fast, we observe what are probably nonadiabatic transitions
which can even excite the resonators. Obviously, there exists
an analogous problem for drive frequencies ω(D) of the single-
qubit R(x)(π/2) rotations since the MP pulses are not strictly
monochromatic. Both these problems can potentially explain
the tendency to larger gate-error metrics in larger NIGQCs.

Furthermore, we also need to consider the difficult task
given to the optimization algorithm. Optimizing the control
pulse parameters for an N-qubit NIGQC amounts to aligning
the time evolution of the system such that the matrix M given
by Eq. (31) with 22N+1 double precision numbers is quasiper-
fectly aligned with the target matrix U . We do not know of
an optimization algorithm that can solve such a task with a
guarantee of success.

We also find (data not shown) that we cannot simply use the
same optimized control pulse parameters for both the circuit
model and the effective model. If we use the parameters of the
circuit model for the effective model, we can observe diamond
distances and average infidelities close to one. The reason for
this is that parameters like the drive frequency ω(D) (h̄ω(D)) of
the MP pulse and the pulse amplitude δ [h̄ω(q)(δ)] of the UMP
must be at least fine-tuned up to the sixth decimal (a couple
of kilohertz). Also, the values that the optimization algorithm
obtains are very sensitive to changes in the model and the
model parameters. For example, if the interaction strength G
is changed from 300 MHz to 301 MHz, we would already
need to restart the whole optimization of the control pulse pa-
rameters to obtain gate-error metrics that are not significantly
worse than the ones shown in Figs. 5(a)–5(d). Obviously,
this lack of robustness can be expected to become even more
severe when an actual experiment, instead of a simulation, is
conducted.

C. Influence of higher states on gate-error trajectories obtained
with the circuit Hamiltonian

In this section we discuss simulation results for the im-
plementation of R(x)

0 (π/2) gates on the four-qubit NIGQC
illustrated in Fig. 1(c), modeled with the circuit Hamiltonian
(2) using four and 16 basis states for the transmon qubits. All
resonators are modeled with four basis states. Also, we use a
fixed set of control pulse parameters for all simulations (see
Table XII, row 1, in Appendix D).

In Table II we show the results for two different simula-
tions. In the first (second) case, we simulate the R(x)

0 (π/2)
gate with four (16) basis states for all transmon qubits in the
system.

On the one hand, we can observe that the diamond distance
μ
 exhibits an increase in the third decimal. Similarly, the
average infidelity μIFavg increases in the fourth decimal. On
the other hand, we can see that the leakage measure μleak and
the statistical distance μSD (obtained for the NIGQC com-
putational basis state |0, 0, 0, 0〉) are the same, up the fourth
decimal. Note that the leakage measure μleak and statistical
distance μSD are computed from the squares of the state vector

TABLE II. Error metrics for a four-qubit NIGQC as illustrated in
Fig. 1(c). The error metrics are obtained with the circuit Hamiltonian
(7), the device parameters listed in Table I, and the pulse parameters
listed in Table XII. The first column lists the target gate, the second
column the number of basis states used to model the dynamics of
the transmons, the third column the diamond distance μ
 given by
Eqs. (28) and (29), the fourth column the average infidelity μIFavg

given by Eq. (24), the fifth column the leakage measure μleak given
by Eq. (26), and the sixth column the statistical distance given by
Eq. (17). The statistical distance is obtained for the ground state of
the NIGQC.

Gate States μ
 μIFavg μleak μSD

R(x)
0 (π/2) 4 0.0505 0.0037 0.0024 0.0014

R(x)
0 (π/2) 16 0.0584 0.0040 0.0024 0.0014

amplitudes only. Consequently, the phase of the system is
neglected completely. This makes both these quantifiers less
susceptible to changes in the number of basis states.

Figures 6(a)–6(d) show the diamond distance μ

[Fig. 6(a)], the average infidelity μIFavg [Fig. 6(b)], the
leakage measure μleak [Fig. 6(c)], and the statistical distance
μSD [Fig. 6(d)] as functions of the number of consecutively
executed R(x)

0 (π/2) gates. Furthermore, we obtain the blue
solid line when all transmon qubits are modeled with four
basis states only. The green dash-dotted line is obtained
when all transmon qubits are modeled with 16 basis states.

(a) R
(x)
0 (π/2) (b) R

(x)
0 (π/2)

(c) R /2) (d) R
(x)
0 (π (x)

0 (π/2)

FIG. 6. Gate errors as functions of the number of gates for a
program which executes 20 R(x)(π/2) in a row for (a) diamond dis-
tance, (b) average infidelity, (c) leakage measure, and (d) statistical
distance for the initial state |0, 0, 0, 0〉. We ran the gate sequence
on the four-qubit NIGQC illustrated in Fig. 1(c). The results are
obtained with the circuit Hamiltonian (2) and the device parameters
listed in Table I. We ran the program twice. The first time was with
four basis states for every flux-tunable transmon in the system. These
results are displayed with blue solid lines. The second time was with
16 basis states for every flux-tunable transmon in the system. These
results are displayed with green dash-dotted lines. We observe that
the gate-error metrics in (a) and (b) deviate by about 10% after 20
repetitions. The deviations for the gate-error metrics in (c) and (d) are
smaller by more than a factor of 100.
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The statistical distance μSD is obtained for the initial state
|0, 0, 0, 0〉 of the NIGQC.

The diamond distance μ
 [Fig. 6(a)] and the average in-
fidelity μIFavg [Fig. 6(b)] modeled with four (blue solid line)
and 16 (green dash-dotted line) basis states start to deviate
after the execution of a couple of R(x)

0 (π/2) gates. Finally,
after 20 R(x)

0 (π/2) gates we find that the diamond distance μ

[Fig. 6(a)] and the average infidelity μIFavg [Fig. 6(b)] deviate
by about 10% for both cases. We also observe that the leakage
measure μleak and the statistical distance μSD are less affected
by changing the number of basis states, i.e., both gate-error
quantifiers are roughly the same up to the fourth decimal. Note
that usually gates are modeled with two or three basis states
only (see, for example, Refs. [9,46–50]).

Finally, we conclude that gate-error metrics obtained with
a fixed number of basis states are valid only if the correspond-
ing numerical values have actually converged. Changing the
number of basis states can result in a new NIGQC model and
there is no guarantee that the gate-error metrics obtained with
the new model are the same as for the old model. Thereby we
exclude the unlikely case that one can explicitly show that the
truncated time-evolution operators [see Eqs. (21) and (31)] for
both models are the same. In practice, one has to increase the
number of basis states until the results converge to a stable
value that is independent of further increase. We followed this
procedure for all the results presented in the rest of the paper.
However, since in this section the intention is to highlight the
relevance of this procedure, we intentionally show results for
both four and 16 basis states in Table II and Fig. 6. These
results additionally show that some gate-error metrics are less
susceptible to changes in the number of basis states and that
a growing number of gates might require us to use more basis
states to model the dynamics of the system. Interestingly, this
type of resilience might also be relevant for experiments in
which the higher states may also be substantially different
than expected from theory [51].

D. Influence of parameter changes on gate-error trajectories
obtained with the circuit Hamiltonian

In this section we discuss simulation results for the
implementation of CNOT0,1 = H0CZ0,1H0 gate repetition
programs executed with the two-qubit, three-qubit, and four-
qubit NIGQCs illustrated in Figs. 1(a)–1(c), respectively,
modeled with the circuit Hamiltonian (2) and slightly different
δ + �δ control pulse parameters for the CZ0,1 gates imple-
mented with the UMP given by Eq. (13). In the following, �δ

denotes the offset value. The original control pulse parameters
for the UMPs we use to implement the CZ0,1 gates are listed
in Tables IX, XI, and XIII, row 1, for the two-, three-, and
four-qubit NIGQCs, respectively. All Hadamard H0 gates are
implemented with R(x)(π/2) rotations and virtual Z gates. We
use the MP given by Eq. (12) and the control pulse parameters
listed in Tables VIII, X, and XII, row 1, for the two-, three-,
and four-qubit NIGQCs, respectively. Note that for these sim-
ulations we do not optimize the circuit by eliminating the H0

gates. We are interested in how the errors caused by different
�δ interact with the single-qubit rotations. In this section we
model the dynamics of the Hamiltonian (2) with 16 basis
states for all transmon qubits, except the one with the index

TABLE III. Error metrics for a two-qubit NIGQC as illustrated
in Figs. 1(a). The error metrics are obtained with the circuit Hamil-
tonian (7), the device parameters listed in Table I, and the pulse
parameters listed in Tables VIII and IX. The first column lists the
target gate, the second column the offset value �δ we use to imple-
ment the CZ gates, the third column the diamond distance μ
 given
by Eqs. (28) and (29), the fourth column the average infidelity μIFavg

given by Eq. (24), the fifth column the leakage measure μleak given
by Eq. (26), and the sixth column the statistical distance given by
Eq. (17). The statistical distance is obtained for the ground states of
the NIGQCs. We employ the UMP given by Eq. (13) to obtain the
results.

Gate �δ/2π μ
 μIFavg μleak μSD

CNOT0,1 0 0.0386 0.0018 0.0012 0.0013
CNOT0,1 10−6 0.0390 0.0018 0.0012 0.0013
CNOT0,1 10−5 0.0456 0.0022 0.0012 0.0013
CNOT0,1 10−4 0.1594 0.0156 0.0018 0.0038

i = 0 [cf. Figs. 1(a)–1(c)], where we use four basis states.
Additionally all resonators are modeled with four basis states
only. Table III shows the gate-error quantifiers for the execu-
tion of a single CNOT0,1 on the two-qubit NIGQC illustrated in
Fig. 1(a). The results are obtained with four slightly different
pulse amplitudes δ + �δ for the UMP which implements the
CZ0,1 gate. We use �δ/2π = 0 in row 1, �δ/2π = 10−6 in
row 2, �δ/2π = 10−5 in row 3, and �δ/2π = 10−4 in row 4.

We observe that the diamond distance μ
 is affected by the
third decimal if we change the pulse amplitude by �δ/2π =
10−6. However, for this case the average infidelity μIFavg is the
same up to the fourth decimal. If we consider the offset value
�δ/2π = 10−5 (�δ/2π = 10−4), we find that the diamond
distance μ
 is affected by the second (first) decimal and the
average infidelity μIFavg is affected by the third (second) deci-
mal.

If we consider the flux-tunable qubit frequency of the trans-
mon qubit we drive [see ω

(Q)
1 in Fig. 1(a)], we find that keeping

the pulse amplitude stable up to the sixth (fourth) decimal, for
the offset �δ/2π = 10−6, means controlling the flux-tunable
qubit frequency up to a couple of kilohertz (megahertz). For
this estimate of the energy scale we consider the spectrum of
the corresponding circuit Hamiltonian with the device param-
eters listed in Table I, row i = 1.

Figures 7(a)–7(f) show the diamond distance μ

[Figs. 7(a), 7(c), and 7(e)] and the infidelity μIFavg [Figs. 7(b),
7(d), and 7(f)] as functions of the number of gates for the
two-qubit [Figs. 7(a) and 7(b)], three-qubit [Figs. 7(c) and
7(d)], and four-qubit [Figs. 7(e) and 7(f)] NIGQCs illustrated
in Figs. 1(a)–1(c). Here we executed a gate sequence which
contains 20 controlled-NOT (CNOT) gates in a row on the
different NIGQCs. In each panel we show the results for four
different offsets: �δ/2π = 0 (blue solid line), �δ/2π = 10−6

(green dash-dotted line), �δ/2π = 10−5 (red dotted line),
and �δ/2π = 10−4 (violet solid line). Note that each CNOT

gate is implemented with two MPs and one UMP and we do
not remove the H0 gates from the circuit.

We observe that the qualitative and quantitative behav-
iors of the gate-error trajectories barely change for the offset
�δ/2π = 10−6; small deviations only become noticeable at
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(a) CNOT0,1/ N=2 (b) CNOT0,1/ N=2(a) CNOT0,1/ N=2 (b) CNOT0,1/ N=2

(c) CNOT0,1/ N=3 (d) CNOT0,1/ N=3(c) CNOT0,1/ N=3 (d) CNOT0,1/ N=3

(e) CNOT0,1/ N=4 (f) CNOT0,1/ N=4(e) CNOT0,1/ N=4 (f) CNOT0,1/ N=4

FIG. 7. Gate errors as functions of the number of gates for a
program which executes 20 CNOT gates in a row for (a), (c), and (e)
diamond distance and (b), (d), and (f) average infidelity. Note that
every CNOT gate is implemented with one UMP pulse and two MP
pulses. The program is run on (a) and (b) the two-qubit NIGQC with
CNOT0,1 and N = 2, (c) and (d) the three-qubit NIGQC with CNOT0,1

and N = 3, and (e) and (f) the four-qubit NIGQC with CNOT0,1 and
N = 4. The two-, three-, and four-qubit systems are illustrated in
Figs. 1(a)–1(c), respectively. The results are obtained with the circuit
Hamiltonian (2) and the device parameters listed in Table I. We run
the program four times on each NIGQC. Each time we added an
offset �δ to the pulse amplitude δ of the UMP which implements the
CZ gates. The results for the offset �δ/2π = 0, 10−6, 10−5, and 10−4

are shown with blue solid, green dashed, red dotted, and violet solid
lines, respectively. For the offset �δ/2π = 10−4 we can observe
some type of tipping behavior, i.e., the gate-error trajectory changes
its form completely [see (a), (b), (d), and (f)]. Also, we observe
interesting nonlinear behavior for the gate-error trajectories which
are generated by the CNOT sequence.

the end of the repetition program. Once we increase the offset
to �δ/2π = 10−5, we find that the qualitative and quantitative
behaviors of the gate-error trajectories can be affected after a
couple of gates. If we consider the offset to �δ/2π = 10−4,
we can see some type of tipping behavior in all panels, in
the sense that the qualitative and quantitative behaviors of
the gate-error trajectories can change in a nonlinear manner.
Note that one can obtain similar results by adding a frequency
offset �ω(D) to the drive frequency ω(D) of the single-qubit
gate control pulse in Eq. (12).

Finally, we conclude that the stability of the gate-error
metrics in our circuit Hamiltonian NIGQC model depends
on our ability to control the flux-tunable qubit frequencies
(the pulse amplitudes) up to a couple of kilohertz (�δ/2π =
10−6). Note that if we execute circuits which contain CZ gates,
e.g., CZ0,1, CZ1,2, CZ2,3, and CZ0,3, on different qubits and the
corresponding UMPs are affected by the same offset �δ, then
the system can become much more sensitive with regard to the

offset value �δ, in comparison with the data [see Figs. 7(a)–
7(f)] we discussed before.

We can convert the offset factor �δ/2π = 10−6 for the
flux �� = (�0�ϕ)/2π from webers to teslas for an area
of 10 × 10 µm2, which is characteristic of a flux-tunable
transmon (see Ref. [52]). Using the circuit Hamiltonian (2)
to simulate NIGQCs, we find that the gate-error metrics are
sensitive to field strengths of about 10−11 T. Here we assume
that the external flux is given by � = |B|A, where |B| is the
magnetic-field strength and A is the area of the surface, where
the flux is threading through. For comparison, the earth’s
magnetic-field strength is about 10−5 T.

Furthermore, the data presented in this section suggest that
in our NIGQC model the gate-error metrics obtained for a sin-
gle gate cannot be used to predict how the gate-error metrics
behave in the future. Consequently, the future behavior of a
gate-error trajectory is not determined only by its initial value.
We can explain this finding in very simple terms. The future
state of the system |�(t )〉 is governed by the time-dependent
Schrödinger equation given by Eq. (1) and not by the value of
the gate-error metric μx itself (x is a label for an arbitrary gate-
error metric). Therefore, there is no reason why gate-error
metrics suffice to allow a prediction of the time evolution.
They are at most a measure of closeness at one particular point
in time, i.e., a snapshot of the state of the system.

E. Influence of the adiabatic approximation on gate-error
trajectories obtained with the effective Hamiltonian

In this section we discuss simulation results for the imple-
mentation of CZ0,1 and CNOT0,1 = H0CZ0,1H0 gate repetition
programs executed with the two-qubit, three-qubit, and four-
qubit NIGQCs illustrated in Figs. 1(a)–1(c), modeled with the
effective Hamiltonian (7) in the adiabatic and the nonadiabatic
regime. In the adiabatic regime we set the time derivative ϕ̇(t )
of the external flux to zero such that the drive term in Eq. (10)
is set to zero too. In the nonadiabatic regime, we do not make
this assumption, i.e., we model the flux-tunable transmons
as nonadiabatic anharmonic oscillators in the harmonic basis.
For our simulations, we use four basis states for all transmons
and resonators in the model.

For our simulations we employ the UMP [see Fig. 2(b)]
given by Eq. (13) and the BMP [see Fig. 2(c)] given by
Eq. (14) to test whether or not it is appropriate to model flux-
tunable transmons in the adiabatic regime, as it is commonly
done in the literature (see, e.g., Refs. [9,28,42,46,48–50,53]).
The results for the UMP (BMP) are presented in Table IV (Ta-
ble V) and Figs. 8(a)–8(l) [Figs. 9(a)–9(l)]. Note that the BMP
in Fig. 2(c) shows a fast falling flank at around half of the
pulse duration. Consequently, we expect that the deviations
between the adiabatic and nonadiabatic cases are larger for
the BMP. Furthermore, the UMP and BMP are characterized
by long time intervals of about 80 ns where the derivative
ϕ̇(t ) of the external flux is zero in both models. Consequently,
the deviations between the adiabatic and nonadiabatic models
should originate from the pulse flanks we can see in Figs. 2(b)
and 2(c).

The control pulse parameters for the UMPs and BMPs we
use to implement the CZ0,1 gates are listed in Tables XV, XVII,
and XIX, rows 1 and 2, for the two-, three-, and four-qubit
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TABLE IV. Error metrics for a two-qubit, a three-qubit, and a
four-qubit NIGQC as illustrated in Figs. 1(a)–1(c), respectively. The
error metrics are obtained with the effective Hamiltonian (7), the
device parameters listed in Table I, and the pulse parameters listed
in Tables XV, XVII, and XIX. The first column lists the target gate;
the second column the model we use to describe the flux-tunable
transmons, i.e., the adiabatic or the nonadiabatic model; the third
column the diamond distance μ
 given by Eqs. (28) and (29); the
fourth column the average infidelity μIFavg given by Eq. (24); the
fifth column the leakage measure μleak given by Eq. (26); and the
sixth column the statistical distance given by Eq. (17). The statistical
distance is obtained for the ground states of the NIGQCs. Here we
use the unimodal pulse given by Eq. (13) to obtain the results.

Gate Adiabatic System μ
 μIFavg μleak μSD

CZ0,1 yes Fig. 1(a) 0.0424 0.0012 0.0005 0.0012
CZ0,1 no Fig. 1(a) 0.0425 0.0012 0.0005 0.0012
CZ0,1 yes Fig. 1(b) 0.0569 0.0033 0.0017 0.0026
CZ0,1 no Fig. 1(b) 0.0574 0.0033 0.0017 0.0026
CZ0,1 yes Fig. 1(c) 0.0514 0.0040 0.0028 0.0025
CZ0,1 no Fig. 1(c) 0.0509 0.0040 0.0028 0.0025

NIGQCs, respectively. All H0 gates are implemented with
R(x)(π/2) rotations and virtual Z gates. We employ the MP

TABLE V. Error metrics for a two-qubit, a three-qubit, and a
four-qubit NIGQC as illustrated in Figs. 1(a)–1(c), respectively. The
error metrics are obtain with the effective Hamiltonian (7), the de-
vice parameters listed in Table I, and the pulse parameters listed in
Tables XV, XVII, and XIX. The rows and columns show the same
unitless quantities as in Table IV. Here we use the bimodal pulse
given by Eq. (14) to obtain the results.

Gate Adiabatic System μ
 μIFavg μleak μSD

CZ0,1 yes Fig. 1(a) 0.0167 0.0006 0.0005 0.0004
CZ0,1 no Fig. 1(a) 0.0195 0.0007 0.0005 0.0004
CZ0,1 yes Fig. 1(b) 0.0306 0.0042 0.0036 0.0020
CZ0,1 no Fig. 1(b) 0.0336 0.0042 0.0035 0.0019
CZ0,1 yes Fig. 1(c) 0.0415 0.0043 0.0035 0.0024
CZ0,1 no Fig. 1(c) 0.0435 0.0044 0.0035 0.0024

given by Eq. (12) and the control pulse parameters listed in
Tables XIV, XVI, and XVIII, row 1, for the two-, three-, and
four-qubit NIGQCs, respectively.

Table IV shows the gate-error quantifiers for the execution
of a single CZ0,1 on the two-qubit (rows 1 and 2), three-
qubit (rows 3 and 4), and four-qubit NIGQCs (rows 5 and
6) illustrated in Figs. 1(a)–1(c). We implement the CZ gates
with UMPs. The odd (even) row numbers show the results

(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2

(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3

(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4

FIG. 8. Gate errors as functions of the number of gates for a program which executes (a), (b), (e), (f), (i), and (j) 40 CZ gates in a row
(CZ0,1) and (c), (d), (g), (h), (k), and (l) 40 CNOT gates in a row (CNOT0,1) for (a), (c), (e), (g), (i), and (k) diamond distance and (b), (d), (f),
(h), (j), and (l) average infidelity. Note that every CNOT gate is implemented with one UMP pulse and two MP pulses. We run the program on
(a)–(d) the two-qubit NIGQC (N = 2), (e)–(h) the three-qubit NIGQC (N = 3), and (i)–(l) the four-qubit NIGQC (N = 4). The two-, three-,
and four-qubit systems are illustrated in Figs. 1(a)–1(c), respectively. The results are obtained with the effective Hamiltonian (2) and the device
parameters listed in Table I. We run the program two times on each NIGQC. On the first run, we model the flux-tunable transmons as adiabatic
qubits. These results are displayed with blue solid lines. On the second run, we model the flux-tunable transmons as nonadiabatic qubits. These
results are displayed with green dash-dotted lines. We can observe that the gate-error trajectories for the two cases can deviate up to 20% for
the diamond distance and 10% for the average infidelity. Moreover, we can observe a variety of interesting nonlinear behavior for the gate-error
trajectories which are generated by the CNOT program.
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for the model in the adiabatic (nonadiabatic) regime. If we
compare both cases for the different systems, we observe that
the numerical values for the gate-error metrics and measure
are nearly all the same except the ones for the diamond dis-
tance μ
, where we observe changes in the fourth and third
decimals.

Figures 8(a)–8(l) show the diamond distance μ

[Figs. 8(a), 8(e), 8(i), 8(c), 8(g), and 8(k)] and the average
infidelity μIFavg [Figs. 8(b), 8(f), 8(j), 8(d), 8(h), and 8(l)]
as functions of the number of gates for the two-qubit
[Figs. 8(a)–8(d)], three-qubit [Figs. 8(e)–8(h)], and four-qubit
[Figs. 8(i)–8(l)] NIGQCs illustrated in Figs. 1(a)–1(c). Here
we executed programs which contain 40 CZ [Figs. 8(a), 8(b),
8(e), 8(f), 8(i), and 8(j)] and 40 CNOT [Figs. 8(c), 8(d), 8(g),
8(h), 8(k), and 8(l)] gates in a row on the different NIGQCs.
As in Sec. IV D, we do not remove the H0 gates from the
circuit sequence to study how the errors of the CZ gates
interact with the errors of the H gates. In each panel we
show the results for the two different cases: The adiabatic
regime (blue solid line) and the nonadiabatic regime (green
dash-dotted line). Note that each CNOT gate is implemented
with two MPs and one UMP, which results in 120 gates in
total.

If we consider Figs. 8(a)–8(d) for the two-qubit NIGQC
described by the effective Hamiltonian (7), we find that the
small deviations between rows 1 and 2 in Table IV can still
affect the time evolution of the system such that the gate-error
trajectories for the adiabatic and nonadiabatic models begin to
diverge over time. Additionally, if we consider the results in
Figs. 8(e)–8(l), we also observe that the qualitative and quan-
titative behaviors of the gate-error trajectories can simply be
affected by the presence of additional circuit elements. Note
that we execute the same programs on NIGQCs of increasing
size and that the device parameters in Table I for the first two
transmon qubits and the coupling resonator do not change.
However, each time we increase the size of the system we
have to optimize the pulse parameters again. Therefore, if
we consider the results presented in Sec. IV D, we expect
qualitative and quantitative changes in the behavior of the gate
errors once we add additional circuit elements to the system
and repeat the pulse optimization. Moreover, we observe that
the gate-error trajectories for the CZ and CNOT programs show
substantially different qualitative and quantitative behaviors
even though the deviations between the adiabatic and nonadi-
abatic cases seem to be of the same order.

Overall, we find fair qualitative agreement for the adiabatic
and nonadiabatic cases. The UMPs we model in this work
are quite long compared to instances which can be found
in the literature (see, for example, Ref. [53]). Therefore, we
emphasize that one cannot generalize the results presented in
this section and argue that neglecting the nonadiabatic drive
term in Eq. (10) is valid for all UMPs.

Table V shows the gate-error quantifiers for the execution
of a single CZ0,1 on the two-qubit (rows 1 and 2), three-qubit
(rows 3 and 4), and four-qubit NIGQCs (rows 5 and 6) il-
lustrated in Figs. 1(a)–1(c). We implement the CZ gates with
BMPs. As before, the odd row numbers show the results for
the model in the adiabatic regime and the even row number
show the results for nonadiabatic regime. If we compare both
cases for the different systems, we notice that the numerical

values for the diamond distance μ
 show deviations in the
third decimal. Furthermore, the numerical values for some
of the average infidelities μIFavg show deviations in the fourth
decimal. The leakage measure μleak and the statistical distance
μSD are affected in only one case (see rows 3 and 4).

Figures 9(a)–9(l) show the diamond distance μ

[Figs. 9(a), 9(e), 9(i), 9(c), 9(g), and 9(k)] and the infidelity
μIFavg [Figs. 9(b), 9(f), 9(j), 9(d), 9(h), and 9(l)] as functions
of the number of gates for the two-qubit [Figs. 9(a)–9(d)],
three-qubit [Figs. 9(e)–9(h)], and four-qubit [Figs. 9(i)–9(l)]
NIGQCs illustrated in Figs. 1(a)–1(c). We execute programs
which contain 40 CZ [Figs. 9(a), 9(b), 9(e), 9(f), 9(i), and
9(j)] and 40 CNOT [Figs. 9(c), 9(d), 9(g), 9(h), 9(k), and 9(l)]
gates in a row on the different NIGQCs. As before, we do
not remove the H0 gates from the circuit sequence to study
how the errors of the CZ gates interact with the errors of
the H gates. In each panel we show the results for the two
different cases: The adiabatic regime (blue solid line) and the
nonadiabatic regime (green dash-dotted line).

In Figs. 9(a)–9(l) we see that the small numerical devia-
tions in the third and fourth decimals for the gate-error metrics
listed in Table V can over time result in substantial changes
in the qualitative and quantitative behaviors of the gate-error
trajectories which result from modeling transmon qubits in
the adiabatic regime. Furthermore, we find that overall the
deviations between the adiabatic and nonadiabatic models
are much larger than for the case where we implement the
CZ gates with UMPs instead of BMPs. Note that the BMP
and UMP in Figs. 2(b) and 2(c) are very similar except for
the large pulse flank in the middle of the BMP pulse. If we
compare Figs. 8(a)–8(d) and Figs. 9(a)–9(d), we also find
that the qualitative and quantitative behaviors of the gate-error
trajectories are not the same if we model them with different
pulses. However, this is not surprising since in Sec. IV D we
have already seen that gate-error trajectories are also very
sensitive to changes in the model parameters and both sets of
pulse parameters were optimized independently, i.e., this can
potentially explain why we see these substantial differences.

We emphasize that we have selected data which high-
light the small border between the adiabatic and nonadiabatic
regimes. In Appendix C we show the results for a different
device architecture, which is discussed in Refs. [46,48,49,54],
for which the results obtained with the two different mod-
els deviate much more. Furthermore, the authors of Ref. [9]
used an adiabatic effective model to describe a flux-driven
two-qubit system which consists of two transmon qubits and
a coupling resonator. Here bimodal flux pulses with much
shorter gate durations are considered. The data presented
in this section suggest that the corresponding numerical re-
sults change once the flux drive term in Eq. (10) is part of
the effective model. The reader may recall that in this sec-
tion we considered only one approximation, i.e., assumption,
which simplifies the model Hamiltonian. Most of the effective
Hamiltonians used are the result of numerous approximations.

Finally, we conclude that it is not possible to decide
beforehand whether or not an approximation, i.e., an as-
sumption which affects the time evolution of the system, is
justified when it comes to modeling gate-error metrics like
the diamond distance or the average infidelity. As before, we
exclude the unlikely case that we can explicitly show that the
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(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2(a) CZ0,1/ N=2 (b) CZ0,1/ N=2 (c) CNOT0,1/ N=2 (d) CNOT0,1/ N=2

(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3(e) CZ0,1/ N=3 (f) CZ0,1/ N=3 (g) CNOT0,1/ N=3 (h) CNOT0,1/ N=3

(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4(i) CZ0,1/ N=4 (j) CZ0,1/ N=4 (k) CNOT0,1/ N=4 (l) CNOT0,1/ N=4

FIG. 9. Gate errors as functions of the number of gates for a program which executes (a), (b), (e), (f), (i), and (j) 40 CZ gates in a row (CZ0,1)
and (c), (d), (g), (h), (k), and (l) 40 CNOT gates in a row (CNOT0,1) for (a), (c), (e), (g), (i), and (k) diamond distance and (b), (d), (f), (h), (j), and
(l) average infidelity. Note that every CNOT gate is implemented with one BMP pulse and two MP pulses. We run the program on (a)–(d) the
two-qubit NIGQC (N = 2), (e)–(h) the three-qubit NIGQC (N = 3), and (i)–(l) the four-qubit NIGQC (N = 4). The two-, three-, and four-qubit
systems are illustrated in Figs. 1(a)–1(c), respectively. The results are obtained with the effective Hamiltonian (2) and the device parameters
listed in Table I. We run the program two times on each NIGQC. On the first run, we model the flux-tunable transmons as adiabatic qubits.
These results are displayed with blue solid lines. On the second run, we model the flux-tunable transmons as nonadiabatic qubits. These results
are displayed with green dash-dotted lines. We can observe large qualitative and quantitative deviations for the gate-error trajectories which
are generated by the two different models. In addition, we observe a variety of interesting nonlinear behaviors for the gate-error trajectories
which are generated by the CZ and CNOT programs.

truncated time-evolution operators [see Eqs. (21) and (31)] for
both models are the same. Consequently, every approximation
(assumption) constitutes a new NIGQC model and we do not
know whether or not the old reference model yields the same
gate-error metrics. The data discussed in this section lead to
the conjecture that the quantitative and qualitative behaviors
of gate-error trajectories are not simply given by the sum
of the individual gate-errors but emerge due to a complex
interplay of small deviations with respect to the target gates
which occur over time (cf. Refs. [55–57]). Note that the
Hamiltonians [see Eq. (7)] for the adiabatic and nonadiabatic
cases deviate only for small periods of time and that the gate
errors for the different models gradually diverge over time and
in the end might show substantially different qualitative and
quantitative behaviors.

Furthermore, as in Sec. IV D, the data presented in this
section suggest that in our NIGQC models the gate-error met-
rics obtained for a single gate cannot be used to predict how
the gate-error metrics for the next gates in the gate sequence
(the program) behave. Consequently, the future behavior of
a gate-error trajectory is determined not only by its initial
value. As before, we can explain this finding as follows. The
future state of the system |�(t )〉 is still governed by the time-
dependent Schrödinger equation given by Eq. (1) and not the
value of the gate-error metric itself. Consequently, there is no

reason why gate-error metrics should allow a prediction of
the time evolution of the system beforehand. Note that we can
clearly observe a divergence between the two types of NIGQC
models we studied in this section.

V. CONCLUSION

We have studied the gate-error trajectories which arise
if one repeats a gate several times in a row. For the sim-
ulations we modeled two-qubit, three-qubit, and four-qubit
superconducting nonideal gate-based transmon quantum com-
puters, or nonideal gate-based quantum computers for short
[see Sec. I and Figs. 1(a)–1(c)]. The time evolution of the state
vector |�(t )〉, which by assumption completely determines
the state of a NIGQC, is generated by the time-dependent
Schrödinger equation for a time-dependent Hamiltonian Ĥ (t ).
We used the circuit Hamiltonian (2) and the associated effec-
tive Hamiltonian (7) to generate the dynamics of the systems.
The control pulses discussed in Sec. II C were used to im-
plement two types of gates. We used the microwave pulse
in Eq. (12) [see Fig. 2(a)] to implement the single-qubit
R(x)(π/2) rotations. We also implemented CZ gates. We used
either the unimodal pulse in Eq. (13) [see Fig. 2(b)] or
the bimodal pulse in Eq. (14) [see Fig. 2(c)]. This allowed
us to compute various gate-error metrics like the diamond
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distance and the average infidelity as functions of the num-
ber of gates executed on the NIGQCs. For the computations
we implemented the product-formula algorithms to solve the
time-dependent Schrödinger equation (see Ref. [58]), the al-
gorithms discussed in Ref. [59] to determine the state |ψ〉 of
the ideal gate-based quantum computer, and the open-source
library NLOPT (see Ref. [45]) to optimize the control pulse
parameters. The complete simulation software except for the
optimization algorithms was developed and implemented in
house. The main results in this manuscript were presented in
Sec. IV. All results in this work were obtained with the device
parameters listed in Table I.

In Sec. IV A we discussed the spectrum of the four-qubit
NIGQC illustrated in Fig. 1(c) and its relevance for the im-
plementation of two-qubit CZ gates. We modeled the system
with the circuit Hamiltonian (2) and discussed how the com-
plexity of the energy levels, which increases with the system
size, i.e., the number of transmon qubits and couplers, can
affect the gate-error metrics of the two-qubit CZ gates that we
considered. Furthermore, this problem also affects the scaling-
up capabilities of the device architecture discussed in this
work.

In Sec. IV B we discussed the results of the control
pulse optimization (see Fig. 5 and Tables XX–XXV). The
corresponding control pulse parameters are listed in Ta-
bles VIII–XIX in Appendix D. We found that the gate-error
metrics have a tendency to grow with the system size and
that we can explain this tendency by studying the energy
spectrum of the system [see, for example, Figs. 4(a)–4(c)] and
by assessing the difficult task we present to the optimization
algorithms that we need to use.

In Sec. IV C we studied a simple sequence which consists
of 20 single-qubit R(x)(π/2) gates on a four-qubit NIGQC [see
Fig. 1(c)]. We modeled the system by the circuit Hamiltonian
(2) and computed gate-error metrics with four and 16 basis
states for every flux-tunable transmon in the system. The
results are displayed in Figs. 6(a)–6(d). We found that after 20
repetitions the diamond distances and the average infidelities
computed with different numbers of basis states deviate by
about 10%. Moreover, we also saw that the deviations for the
leakage error measure and the statistical distances are smaller
by about a factor of 100. This can potentially be explained
by the fact that these gate-error quantifiers are computed from
the squares of the state vector amplitudes only. Note that gates
are often modeled with two or three basis states only (see, for
example, Refs. [9,46–50]).

In Sec. IV D we studied a sequence which consists of 20
CNOT gates on a two-qubit, a three-qubit, and a four-qubit
NIGQC [see Figs. 1(a)–1(c), respectively]. The results were
shown in Figs. 7(a)–7(f). We modeled the system by the
circuit Hamiltonian (2) and used the UMP given by Eq. (13)
[see Fig. 2(b)] to implement the CZ gates. We repeated
the simulations four times and added the offsets �δ/2π ∈
{0, 10−6, 10−5, 10−4} to the calibrated control pulse ampli-
tudes δ which implement the CZ gates. The parameters can
be found in the first rows of Tables IX, XI, and XI. We found
that the gate-error metrics are affected, to some extent, by all
three nonzero offset values �δ. We also noticed some type
of tipping behavior for the offset factor �δ/2π = 10−4, i.e.,
the qualitative and qualitative behaviors of the gate-error tra-

jectories changed drastically for this offset. This was the case
for all three systems [see Figs. 1(a)–1(c)]. If we converted the
offset factor �δ/2π = 10−6 for the flux �� = (�0�ϕ)/2π

from webers to teslas for an area of 10 × 10 µm2, which is
characteristic for a flux-tunable transmon (see Ref. [52]), we
found that the gate-error metrics in NIGQCs modeled with
the circuit Hamiltonian (2) were sensitive to field strengths
of about 10−11 T. For reasons of comparison, we stated that
the earth’s magnetic-field strength is about 10−5 T strong.
Additionally, we found that the gate-error trajectories which
are generated by the circuit Hamiltonian (2) and the time-
dependent Schrödinger equation exhibit interesting nonlinear
behavior.

In Sec. IV E we presented results for sequences of 40
CZ and 40 CNOT gates on two-qubit, three-qubit, and four-
qubit NIGQCs. The results were shown in Figs. 8(a)–8(l) and
Figs. 9(a)–9(l). We modeled the system with the effective
Hamiltonian (7) and used the UMP to obtain the results in
Figs. 8(a)–8(l) and the bimodal pulse to obtain the results in
Figs. 9(a)–9(l). We ran the CZ and CNOT sequences on two
different types of NIGQCs. On the first type of NIGQC the
flux-tunable transmons were modeled adiabatically, i.e., we
set the time derivative ϕ̇(t ) = 0 of the external flux, which
was used to implement the CZ gates, to zero. On the second
type of NIGQC we modeled all flux-tunable transmons nona-
diabatically. Although the UMP we used seemingly justified
the adiabatic approximation [see Fig. 2(b)], we found that the
results for the diamond distance can vary up to 0.2 and the
results for the average fidelity up to 0.1. In addition, in most
cases the qualitative behavior of the gate-error trajectory was
not affected by the adiabatic approximation for the UMP. The
bimodal pulses we used do not seem to justify making the adi-
abatic approximation [see Fig. 2(c)] and in fact we found that
the corresponding gate-error trajectories for the adiabatic and
nonadiabatic cases showed strong qualitative and quantitative
deviations. Additionally, we also observed that the gate-error
trajectories which were generated by the effective Hamilto-
nian (7) and the time-dependent Schrödinger equation showed
interesting nonlinear behavior. Furthermore, we found that the
qualitative behaviors of the gate-error trajectories for the CZ

and CNOT gates were usually not the same. In fact, often they
showed completely different behaviors. Therefore, we suspect
that the qualitative behavior of a gate-error trajectory is not
simply given by the sum of the individual errors but arises
due to a complex interplay of small deviations with respect to
the target gates.

The results in Secs. IV B–IV E showed that even seemingly
small changes in the model, i.e., in the assumptions we made,
can substantially affect the gate-error metrics we compute.
The fact itself is not surprising and something one should
expect. However, the extent to which the changes affected
the gate-error metrics during the course of the time evolution
is something worth knowing. Note that in each section we
focused on one aspect of the model which affects the com-
putation of gate-error metrics. One can easily imagine what
happens if one begins to combine changes in the different
aspects of the models, namely, that we cannot determine a root
cause anymore.

Based on the data presented in Secs. IV A–IV E, we con-
cluded that almost all assumptions we made about the model

022604-16



FRAGILITY OF GATE-ERROR METRICS IN SIMULATION … PHYSICAL REVIEW A 108, 022604 (2023)

could substantially affect the time evolution of the systems
and consequently the gate-error metrics we modeled. There-
fore, we advocate the view that every assumption leads to
a new independent NIGQC model and we simply cannot
estimate how the different assumptions affect the gate-error
metrics we model. Again we excluded the unlikely case that
we can explicitly show that the truncated time-evolution oper-
ators [see Eqs. (21) and (31)] for both models are the same.
Therefore, the data presented in this work emphasize the
narrow borders between certain NIGQC models. Note that
we could have selected other data which show much larger
deviations between the various NIGQC models. However,
emphasizing the narrow path between two seemingly very
similar models also has the benefit of adding evidence to our
conjecture that in NIGQC models gate errors for consecutive
gates are not simply given by the sum of the gate errors for
the individual gates in the program sequence but emerge due
to a complex interplay of small deviations with respect to the
target gates which occur over time (cf. Refs. [55–57]).

Since we found that nearby values for the diamond distance
and the average infidelity for a given target gate can lead to
very different qualitative behavior for the gate-error trajecto-
ries which arise if we execute the target gate several times,
we concluded that the gate-error metrics for a given target
gate cannot be used to predict the behavior of the gate-error
sequence which emerges over time. Note that we showed this
with two different generic model Hamiltonians (2) and (7),
i.e., this is not a feature of one particular model. Moreover, if
we take into account the results in Refs. [3,29], we also find
that this not a feature of one particular device architecture.
Consequently, we advocate the view that gate-error metrics
are at most snapshots for the state of a system at one par-
ticular moment in time and not predictors of the gate errors
which emerge over time and/or the performance for complete
programs (algorithms) executed on the system. In fact, this
shortcoming is something we should expect. The gate-error
metrics we computed were derived in the context of the IGQC
model. This model is inherently static, i.e., changes in the state
of the system are modeled as if they occur instantaneously.
However, if the future state of the system is governed by
the time-dependent Schrödinger equation, there is no reason
why gate-error metrics alone should be able to predict the
time evolution of the system. They are at most a measure of
closeness at one particular point in time.

This then leads to the following question: How can we
actually study gate errors in PGQCs if, in most cases, we can-
not conclusively compare two NIGQC models and determine
where the differences in the gate-error metrics originate from?
In Sec. I we briefly mentioned (see Refs. [9–12,12,60,61])
several problems which plague superconducting PGQCs. The
seemingly more complex circuit Hamiltonian (2) was de-
rived on the basis of the lumped-element approximation (see
Sec. 1.4 in Ref. [17]) and neglected many of these problems
by assumption. Additionally, it is not a trivial task to access
the state vector and/or the density operator which is supposed
to describe the complete state of a PGQC, also by assumption.
Adding this uncertainty to all the other uncertain factors in an
experiment, we found ourselves in a position where studying
individual gate errors in an actual experiment seems impos-
sible. Therefore, we advocate the view that one should use

Φe(t)Cl EJ,l EJ,r Cr

FIG. 10. Illustration of a lumped-element circuit with two linear
capacitors with capacitances Cl (left) and Cr (right), two Josephson
junctions with Josephson energies EJ,l (left) and EJ,r (right), and
an external flux �e(t ) threading through the central loop. As it is
common practice, we mark the ground node by a dashed triangle.

benchmark protocols like the ones discussed in Refs. [3,4] to
assess and/or compare different PGQCs.

In this work we focused on the execution of simple gate
sequences which generate interesting gate-error trajectories
for various simulation settings. For future work it might be
interesting to see how variational hybrid algorithms such
as the quantum approximate optimization algorithm (see
Refs. [62,63]) perform on the NIGQCs calibrated for this
work.
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APPENDIX A: DERIVATION OF A CIRCUIT
HAMILTONIAN FOR FLUX-TUNABLE TRANSMONS

WITH AN ADDITIONAL CHARGE DRIVE TERM

In the main text we used the circuit Hamiltonian (4) to
model flux-tunable transmons with a linear charge drive term.
In this Appendix we derive circuit Hamiltonian (4) from the
assumptions which constitute the lumped-element approxima-
tion (see Sec. 1.4 in Ref. [17]). The external charge variable
ng(t ) provides us with a linear drive term which can be used
to implement single-qubit gates. Similarly, the external flux
variable �e(t ) provides us with a drive term which can be
used to implement two-qubit gates. The following derivation
is motivated by the work in Ref. [23], i.e., we take into account
recent developments in the theory of circuit quantization. Note
that the underlying assumptions we use are slightly different
from the ones used in Ref. [23]. We use h̄ = 1 throughout this
work.

We begin with the quantization of the lumped-element
circuit illustrated in Fig. 10. Kirchhoff’s voltage law yields

�l (t ) + �r (t ) = �e(t ) (A1)
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for the central loop of the circuit. In our lumped-element
model, we treat the external flux �e(t ) as an electromotive
force (EMF) �̇e(t ).

We intend to express the Lagrangian L of the system in
terms of the variable

�(t ) = ml�l (t ) + mr�r (t ). (A2)

Note that the left

�l (t ) = �(t ) − mr�e(t )

m�

(A3)

and the right

�r (t ) = −�(t ) − ml�e(t )

m�

(A4)

branch flux variables satisfy Eq. (A1) for all ml , mr ∈ R with-
out further ado. Here m� = ml − mr .

If we make use of the relations VCl = VEJl
and VCr = VEJr

for the left and right loops in Fig. 10, we can express the
Lagrangian as

L = Cl

2

(
�̇(t ) − mr�̇e(t )

m�

)2

+ Cr

2

(
�̇(t ) − ml�̇e(t )

m�

)2

− U [�(t )], (A5)

where the potential energy term U [�(t )] reads

U [�(t )] = − EJl cos

(
2π

�0

�(t ) − mr�e(t )

m�

)

− EJr cos

(
2π

�0

�(t ) − ml�e(t )

m�

)
. (A6)

In the next step we evaluate the squares and neglect all fac-
tors proportional to �̇e(t )2, which ultimately only contribute
nonmeasurable global phase factors to the time evolution of
the system. The Lagrangian after this step reads

L = C


2m2
�

�̇(t )2 − Cl mr + Crml

m2
�

�̇e(t )�̇(t ) − U [�(t )].

(A7)

The conjugate variable

Q = C


m2
�

�̇(t ) − Clmr + Crml

m2
�

�̇e(t ) (A8)

can be used to obtain the Hamiltonian function

H = m2
�

2C


Q2 + Clmr + Crml

C


�̇e(t )Q + U [�(t )] (A9)

by means of a Legendre transformation (see Ref. [64]). Here
again we neglect all factors which contribute only a non-
measurable global phase factors to the time evolution of the
system.

Finally, we can promote the conjugate variables � and Q to
the conjugate operators �̂ and Q̂ and perform the substitutions

ϕ̂ = 2π

�0
�̂, (A10a)

n̂ = 1

2e
Q̂, (A10b)

ϕe(t ) = 2π

�0
�e(t ) (A10c)

Φe(t)+
−Vg(t)

Cg
Cl EJ,l EJ,r Cr

FIG. 11. Illustration of a lumped-element circuit. The right
branch contains two linear capacitors with capacitances Cl (left) and
Cr (right), two Josephson junctions with Josephson energies EJ,l

(left) and EJ,r (right), and an external flux �e(t ) threading through
the loop between the two Josephson junctions. The left branch con-
tains a linear capacitor with capacitance Cg and a voltage source
Vg(t ). As it is common practice, we mark the ground node by a
dashed triangle.

to obtain the Hamiltonian operator

Ĥ = EC

n̂2 + Clmr + Crml

C


ϕ̇e(t )n̂ + U [ϕe(t )]. (A11)

Here we made use of h̄ = 1. The parametrization of the model
can be simplified by assuming m� = 1, Cl = Cr , C
 = C,
and mr = −β. With these assumptions, we can express the
Hamiltonian as

Ĥ = ECn̂2 + (
1
2 − β

)
ϕ̇e(t )n̂ + U [ϕe(t )]. (A12)

The next step in the derivation of the circuit Hamiltonian
(4) is to add a linear drive term of the form ng(t )n̂ to the model.
In Fig. 11 we display a modified circuit. The circuit shown in
Fig. 11 contains an additional branch with a voltage source
modeled with the real-valued function Vg(t ) and a coupling
capacitor with the capacitance Cg. Note that we model the
voltage source also as an EMF.

Kirchhoff’s voltage law for the central loop

VCg + Vg(t ) = VCl (A13)

can be used to obtain the circuit Hamiltonian Ĥ∗ for the
system displayed in Fig. 11 by making use of the previously
obtained results for the circuit displayed in Fig. 10.

The Lagrangian L∗ of the modified system reads

L∗ = L + Cg

2
[�̇l (t ) − Vg(t )]2. (A14)

Therefore, L∗ can also be expressed in terms of the variable
�(t ). If we evaluate the square in Eq. (A14), we find

L∗ = L + Cg

2m2
�

�(t )2 − Cg

m2
�

�̇(t )[mr�̇e(t ) + m�Vg(t )],

(A15)

where we neglect all factors which contribute only a non-
measurable global phase factors to the time evolution of the
system. As before, we simplify the parametrization. Assuming
m� = 1, Cl = Cr , C = C
 , and mr = −β yields

L∗ = C + Cg

2
�̇(t )2 −

(
C

2
− β(C + Cg)

)
�̇e(t )�̇(t )

− CgVg(t )�̇(t ) − U [�(t )], (A16)

where we also neglected factors which in the end con-
tribute only a nonmeasurable global phase factors to the time
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evolution of the system. Next, in an ad hoc manner, we make
the assumption that C + Cg → C in such a way that the sys-
tem’s time evolution can be modeled with the Lagrangian

L∗ = C

2
�̇(t )2 − C

(
1

2
− β

)
�̇e(t )�̇(t ) − CgVg(t )�̇(t )

− U [�(t )]. (A17)

This allows us to express the conjugate variable as

Q = C�̇(t ) − C
(

1
2 − β

)
�̇e(t ) − CgVg(t ). (A18)

Consequently, the first part of the Hamiltonian function reads

Q�̇(t ) = Q2

C
+

(
1

2
− β

)
�̇e(t )Q + Cg

C
Vg(t )Q (A19)

and the second part of the Hamiltonian function can be ex-
pressed as

L∗ = Q2

2C
− U [�(t )], (A20)

where all factors which contribute only a nonmeasurable
global phase factors to the time evolution of the system are
neglected. Therefore, adding both parts yields

H∗ = EC

(
Q

2e

)2

+
(

1

2
− β

)
(2e)�̇e(t )

(
Q

2e

)

− 2ECng(t )

(
Q

2e

)
+ U [�(t )], (A21)

where the real-valued function ng(t ) is defined as

ng(t ) = −CgVg(t )

2e
. (A22)

As before, we use h̄ = 1 to simplify the Hamiltonian.
If we promote the conjugate variables to conjugate oper-

ators, complete the square with regard to the external charge
variable, make use of the substitutions in Eqs. (A10a)–(A10c),
and drop all terms which contribute only nonmeasurable
global phase factors to the time evolution of the system, we
obtain the result

Ĥ∗ = EC[n̂ − ng(t )]2 + (
1
2 − β

)
ϕ̇e(t )n̂

− EJ,l cos[ϕ̂ + βϕe(t )]

− EJ,r cos[ϕ̂ + (β − 1)ϕe(t )]. (A23)
In the main text we used the Hamiltonian (A23) to model flux-
tunable transmons. Note that in the main text we omitted the
labels e and g in the real-valued functions ng(t ) and ϕe(t ).

APPENDIX B: DETAILED DISCUSSION OF THE
EFFECTIVE HAMILTONIAN

In this Appendix we provide a detailed discussion of the
effective Hamiltonian (7) we use to obtain the results in
Sec. IV E. Note that we use h̄ = 1 throughout this work.

The effective Hamiltonian we use to model our NIGQCs is
defined as

Ĥeff = Ĥres,
 + Ĥtun eff,
 + D̂charge + D̂flux + Ŵint. (B1)
The first term

Ĥres,
 =
∑
k∈K

ω
(R)
k â†

k âk (B2)

describes a collection of noninteracting resonators. Here K ⊆
N0 denotes an index set for the resonators and ω

(R)
k refers to

the different resonator frequencies. The operators â and â† are
the bosonic annihilation and creation operators, respectively.
We use the basis states of the time-independent harmonic
oscillator (see Sec. 2.5 in Ref. [34]) as the basis states for our
simulations.

The second term

Ĥtun eff,
 =
∑
j∈J

ω
(q)
j (t )b̂†

j b̂ j + α
(q)
j (t )

2
[b̂†

j b̂ j (b̂
†
j b̂ j − Î )] (B3)

describes a collection of noninteracting flux-tunable trans-
mons which are modeled as adiabatic, anharmonic oscillators.
The operators b̂ and b̂† are the bosonic annihilation and cre-
ation operators. The function

ω
(q)
j (t ) =

√
2ECj EJeff, j (t ) − ECj

4

24∑
n=0

an�(t )n (B4)

is used to model the flux-tunable transmon qubit frequency.
Here an are real-valued constants and ECj and EJeff, j (t ) are the
capacitive and effective Josephson energies for the transmon
qubits, respectively. The latter is defined as

EJeff, j (t ) = E
, j

√
cos

(
ϕ j (t )

2

)2

+ d2
j sin

(
ϕ j (t )

2

)2

, (B5)

where d j = (EJr, j − EJl, j )/(EJr, j + EJl, j ). The function � j (t ) in
Eq. (B4) is defined as

� j (t ) =
√

ECj

2EJeff, j (t )
. (B6)

Furthermore, we define the flux-tunable anharmonicity as

α
(q)
j (t ) = −ECj

4

24∑
n=0

bn�(t )n, (B7)

where the different bn are real-valued constants. We empha-
size that Eqs. (B4) and (B7) are taken from Ref. [25]. The
functions in Eqs. (B4) and (B7) are used to approximate the
lowest three eigenvalues of the circuit Hamiltonian (4). In
Appendix B in Ref. [18] the authors assess and discuss the
accuracy of this approximation.

We use the time-dependent harmonic basis states

ψ (m)[x(t )] = 1√
2mm!

(
ξ (t )

π

)1/4

e−x2(t )/2Hm[x(t )] (B8)

of the time-dependent harmonic oscillator

Ĥ = ECn̂2 + EJ,eff(t )

2
[ϕ̂ − ϕeff(t )]2 (B9)

as the basis states for our simulations of the effective flux-
tunable transmons. Additionally, we define the auxiliary
functions

ξ (t ) =
(

EJ,eff(t )

2EC

)1/2

, (B10a)

x(t ) =
√

ξ (t )[ϕ − ϕeff(t )], (B10b)

ϕeff(t ) = arctan

[
d tan

(
ϕ(t )

2

)]
(B10c)

and note that Hm denotes the Hermite polynomial of order
m ∈ N0.

The third term
D̂charge =

∑
j∈J

� j (t )(b̂†
j + b̂ j ) (B11)
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ω
(Q)
0

ω
(Q)
2

ω
(Q)
1

G 0,
2

G 1,
2

FIG. 12. Illustration of fixed-frequency transmon qubits with
qubit frequencies ω

(Q)
0 and ω

(Q)
1 and a flux-tunable transmon with

park frequency ω
(Q)
2 , which constitute a nonideal gate-based trans-

mon quantum computer with two qubits. The Hamiltonian we use
to model the dynamics of our NIGQC is given by Eq. (7). The
device parameters we use to specify the Hamiltonian are listed in
Table VI. The control pulses we use to implement the gate are given
by Eq. (C1).

describes a charge drive. Here � j (t ) ∝ −2ECj n j (t ) and we
approximate the charge operators n̂ j by effective charge op-
erators n̂ j,eff, which can be expressed in terms of the bosonic
annihilation and creation operators (see Ref. [22]).

The fourth term

D̂flux =
∑
j∈J

−i

√
ξ j (t )

2
ϕ̇eff, j (t )(b̂†

j − b̂ j )

+
∑
j∈J

i

4

ξ̇ j (t )

ξ j (t )
(b̂†

j b̂
†
j − b̂ j b̂ j ) (B12)

describes a nonadiabatic flux drive. We find

ϕ̇eff j (t ) = ϕ̇ j (t )
d j

2
[

cos
( ϕ j (t )

2

)2 + d2
j sin

( ϕ j (t )
2

)2] (B13)

and

ξ̇ j (t )

ξ j (t )
= ϕ̇ j (t )

(
d2

j − 1
)

sin[ϕ j (t )]

8
[

cos
( ϕ j (t )

2

)2 + d2
j sin

( ϕ j (t )
2

)2] . (B14)

The term in Eq. (B12) results from the fact that we model
the effective flux-tunable transmon in a time-dependent basis.
Therefore, for the time-dependent Schrödinger equation to
stay form invariant, a time-dependent basis transformation
term is needed (see Ref. [18]).

The fifth term

Ŵint =
∑

(k, j)∈K×J

g(a,b)
k, j (t )(â†

k + âk ) ⊗ (b̂†
j + b̂ j ) (B15)

describes time-dependent dipole-dipole interactions. As be-
fore, the time dependence of the interaction strength

g(a,b)
k, j (t ) = Gk, j

4

√
EJeff,j (t )

8ECj

(B16)

is a result of the fact that we model the effective flux-tunable
transmon in a time-dependent basis (see Ref. [18]). This time-
dependent interaction strength model is motivated by the work
in Ref. [22].

The relation between the effective and the circuit model is
discussed in Ref. [18].

TABLE VI. Device parameters for the system illustrated in
Fig. 12. The units are the same as for the parameters in Table I.
The device parameters are motivated by the experiments discussed
in Ref. [54].

i ω
(Q)
i /2π α

(Q)
i /2π ECi /2π EJl,i /2π EJr,i /2π ϕ0,i/2π

0 5.100 −0.310 1.079 13.446 0 0
1 6.200 −0.285 1.027 20.371 0 0
2 8.100 −0.235 0.880 17.905 21.486 0.075

APPENDIX C: SIMULATIONS OF THE PARAMETRIC
COUPLER DEVICE ARCHITECTURE

In Sec. IV E we investigated the influence of the adiabatic
approximation on gate-error trajectories obtained with the ef-
fective Hamiltonian (7) for the device architecture illustrated
in Figs. 1(a)–1(c). There the adiabatic approximation was
applied to one effective flux-tunable transmon only. In this
Appendix we perform analogous simulations for a different
device architecture studied in Refs. [46,48,49,54,65]. Here we
use a flux microwave pulse to implement two-qubit CZ gates.

The device architecture is illustrated in Fig. 12 and the de-
vice parameters are listed in Table VI. The interaction strength
G is set to 85 MHz for all simulations (see Appendix B). Here
we couple two fixed-frequency transmons with qubit frequen-
cies ω

(Q)
0 and ω

(Q)
1 by means of a flux-tunable transmon with

park frequency ω
(Q)
2 . We use the control pulse

ϕ(t ) = ϕ0 + δe(t ) cos(ω(D)t ) (C1)

for the external flux ϕ(t ) to implement a sequence of CZ gates.
The real-valued function e(t ) is an envelope function, δ is the
pulse amplitude, ω(D) is the drive frequency, and ϕ0 denotes
the flux offset. Since the flux offset defines an operating point
for the device, we list the parameter in Table VI. The envelope
function is defined as

e(t ) =

⎧⎪⎪⎨
⎪⎪⎩

sin(λt ) if 0 � t < TRF

1 if TRF � t � �T

sin
[

π
2 + λ(t − �T )

]
if �T < t � Tp,

(C2)

where TRF denotes the rise and fall time, λ = π/2TRF, and
�T = Tp − TRF. Note that in the computer program we add
an additional free time evolution (the buffer time) to the pulse
such that the complete pulse duration Td is 5 ns longer than
Tp. The pulse parameters for the pulse we use to obtain the
results in this Appendix are listed in Table VII. Note that
we use single-qubit z-axis rotations R(z)

i (φi) for every qubit
to improve the gate performance.

Figures 13(a) and 13(b) show the diamond distance μ

[Fig. 13(a)] and the average infidelity μIFavg [Fig. 13(b)] as
functions of the number of gates for the two-qubit NIGQC
illustrated in Fig. 12. Here we executed a program which
consists of 40 CZ gates in a row. In each panel we show the
results for the two different cases: The adiabatic regime (blue
solid line) and the nonadiabatic regime (green dash-dotted
line).

As one can see, for the adiabatic case we find smaller
gate errors and a smaller increase in gate errors over time.
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TABLE VII. Control pulse parameters for the implementation
of a CZ0,1 two-qubit gate on a two-qubit NIGQC as illustrated in
Fig. 12. We use the parameters to specify the microwave pulse given
by Eq. (C1). The first column shows the gate we implement, the
second column shows the rise and fall time TRF in nanoseconds,
the third column shows the pulse duration without buffer time Tp in
nanoseconds, the fourth column shows the pulse duration with buffer
time Td in nanoseconds, the fifth column shows the unitless pulse
amplitude δ, and the sixth column shows the drive frequency ω(D) in
gigahertz. We use the effective Hamiltonian (7) to obtain the results.

Gate TRF Tp Td δ/2π ω(D)/2π

CZ0,1 24.674 299.406 304.406 0.082 0.808

Furthermore, after 40 CZ gate repetitions we find that the di-
amond distances deviate up to 0.8 and the average infidelities
differ by about 0.6. Consequently, we find that neglecting
the flux drive term in Eq. (10) leads to substantial deviations
between the two NIGQC models.

Prototype gate-based quantum computers with similar de-
vice parameters are discussed in Refs. [46,48,49,54,65]. We
find that most models which theoretically describe this device
architecture model flux-tunable transmons adiabatically.

APPENDIX D: CONTROL PULSE PARAMETERS AND
GATE-ERROR QUANTIFIERS

In this Appendix we provide the control pulse parameters
listed in Tables VIII–XIX which we use to obtain the results in
Sec. IV and the gate-error metrics listed in Tables XX–XXV
we use to obtain Fig. 5.

The control pulse parameters for the circuit Hamiltonian
(2) NIGQC model are listed in Tables VIII–XIII. Similarly,

(a) CZ0,1 (b) CZ0,1(a) CZ0,1 (b) CZ0,1

FIG. 13. Gate errors as functions of the number of gates for a
program which executes 40 CZ gates in a row (CZ0,1) for (a) the dia-
mond distance and (b) the average infidelity. We run the program on
the two-qubit NIGQC illustrated in Fig. 12. The results are obtained
with the effective Hamiltonian (2) and the device parameters listed
in Table VI. We run the program two times on each NIGQC. On the
first run, we model the flux-tunable transmons as adiabatic qubits.
These results are displayed as a blue solid line. On the second run,
we model the flux-tunable transmons as nonadiabatic qubits. These
results are displayed as a green dash-dotted line. We can observe that
the gate-error trajectories for the two cases can deviate up to 0.8 for
the diamond distance and 0.6 for the average infidelity. Moreover,
we can observe that the gate-error trajectories for both cases exhibit
rather different qualitative behavior.

the control pulse parameters for the effective Hamiltonian (7)
NIGQC model are listed in Tables XIV–XIX.

The gate-error metrics for the circuit Hamiltonian (2)
NIGQC model are provided in Tables XX–XXII. Simi-
larly, the gate-error metrics for the effective Hamiltonian (7)
NIGQC model are listed in Tables XXIII–XXV.

TABLE VIII. Control pulse parameters for the implementation of
R(x)(π/2) rotations on a two-qubit NIGQC as illustrated in Fig. 1(a).
We use the parameters to specify the microwave pulse given by
Eq. (12). The first column shows the gate we implement, the second
column shows the pulse duration Td in nanoseconds, the third column
shows the drive frequency ω(D) in gigahertz, the fourth column shows
the pulse amplitude a as a unitless quantity, the fifth column shows
the envelope function parameter σ in nanoseconds, and the sixth
column shows the DRAG amplitude b in nanoseconds. We use the
circuit Hamiltonian (2) to obtain the results.

Gate Td ω(D)/2π a σ b

R(x)
0 (π/2) 52.250 4.196 0.004 12.082 0.072

R(x)
1 (π/2) 52.950 5.195 0.005 10.000 0.070

TABLE IX. Control pulse parameters for the implementation of
CZ gates on a two-qubit NIGQC as illustrated in Fig. 1(a). We use
the parameters to specify the unimodal pulse given by Eq. (13). The
first column shows the gate we implement, the second column shows
the pulse type, the third column shows the pulse time parameter Tp

in nanoseconds, the fourth column shows the pulse duration Td in
nanoseconds, the fifth column shows the unitless pulse amplitude
δ, and the sixth column shows the rise and fall parameter σ in
nanoseconds. We use the circuit Hamiltonian (2) to obtain the results.

Gate Pulse Tp Td δ/2π σ

CZ0,1 UMP 99.835 125.000 0.392 1.313

TABLE X. Control pulse parameters for the implementation
of R(x)(π/2) rotations on a three-qubit NIGQC as illustrated in
Fig. 1(b). The units are the same as in Table VIII. We use the circuit
Hamiltonian (2) to obtain the results.

Gate Td ω(D)/2π a σ b

R(x)
0 (π/2) 52.250 4.196 0.004 12.093 0.168

R(x)
1 (π/2) 52.950 5.190 0.004 9.997 0.067

R(x)
2 (π/2) 52.950 5.695 0.004 10.011 0.066

TABLE XI. Control pulse parameters for the implementation of
CZ gates on a three-qubit NIGQC as illustrated in Fig. 1(b). The units
are the same as in Table IX. We use the effective Hamiltonian (2) to
obtain the results.

Gate Pulse Tp Td δ/2π σ

CZ0,1 UMP 96.026 125.000 0.391 1.823
CZ1,2 UMP 75.367 110.000 0.276 0.513
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TABLE XII. Control pulse parameters for the implementation of
R(x)(π/2) rotations on a four-qubit NIGQC as illustrated in Fig. 1(c).
The units are the same as in Table VIII. We use the circuit Hamilto-
nian (2) to obtain the results.

Gate Td ω(D)/2π a σ b

R(x)
0 (π/2) 52.250 4.193 0.004 12.378 0.047

R(x)
1 (π/2) 52.950 5.190 0.004 10.255 0.063

R(x)
2 (π/2) 52.950 5.689 0.004 10.312 0.065

R(x)
3 (π/2) 52.950 4.951 0.005 10.191 0.012

TABLE XIII. Control pulse parameters for the implementation
of CZ gates on a four-qubit NIGQC as illustrated in Fig. 1(c). The
units are the same as in Table IX. We use the circuit Hamiltonian (2)
to obtain the results.

Gate Pulse Tp Td δ/2π σ

CZ0,1 UMP 100.241 125.000 0.392 1.283
CZ1,2 UMP 68.046 90.000 0.275 0.182
CZ2,3 UMP 80.500 94.000 0.320 0.500
CZ0,3 UMP 97.708 116.000 0.353 1.458

TABLE XIV. Control pulse parameters for the implementation of
R(x)(π/2) rotations on a two-qubit NIGQC as illustrated in Fig. 1(a).
We use the parameters to specify the microwave pulse given by
Eq. (12). The first column shows the gate we implement, the second
column shows the pulse duration Td in nanoseconds, the third column
shows the drive frequency ω(D) in gigahertz, the fourth column shows
the pulse amplitude a as a unitless quantity, the fifth column shows
the envelope function parameter σ in nanoseconds, and the sixth
column shows the DRAG amplitude b in nanoseconds. We use the
effective Hamiltonian (7) to obtain the results.

Gate Td ω(D)/2π a σ b

R(x)
0 (π/2) 52.250 4.196 0.058 12.082 0.072

R(x)
1 (π/2) 52.950 5.195 0.065 10.000 0.070

TABLE XV. Control pulse parameters for the implementation of
CZ gates on a two-qubit NIGQC as illustrated in Fig. 1(a). We use the
parameters to specify the unimodal pulse and bimodal pulse given
by Eqs. (13) and (14), respectively. The first column shows the gate
we implement, the second column shows the pulse type, the third
column shows the pulse time parameter Tp in nanoseconds, the fourth
column shows the pulse duration Td in nanoseconds, the fifth column
shows the unitless pulse amplitude δ, and the sixth column shows
the rise and fall parameter σ in nanoseconds. We use the effective
Hamiltonian (7) to obtain the results.

Gate Pulse Tp Td δ/2π σ

CZ0,1 UMP 87.258 95.000 0.391 0.459
CZ0,1 BMP 88.570 95.000 0.392 0.394

TABLE XVI. Control pulse parameters for the implementation
of R(x)(π/2) rotations on a three-qubit NIGQC as illustrated in
Fig. 1(b). The units are the same as in Table XIV. We use the effective
Hamiltonian (7) to obtain the results.

Gate Td ω(D)/2π a σ b

R(x)
0 (π/2) 52.250 4.196 0.058 12.082 0.072

R(x)
1 (π/2) 52.950 5.189 0.065 10.000 0.070

R(x)
2 (π/2) 52.950 5.694 0.066 9.990 0.032

TABLE XVII. Control pulse parameters for the implementation
of CZ gates on a three-qubit NIGQC as illustrated in Fig. 1(b). The
units are the same as in Table XV. We use the effective Hamiltonian
(7) to obtain the results.

Gate Pulse Tp Td δ/2π σ

CZ0,1 UMP 87.252 95.006 0.391 0.494
CZ0,1 BMP 90.057 92.188 0.391 0.420
CZ1,2 UMP 68.831 80.000 0.276 0.554

TABLE XVIII. Control pulse parameters for the implementa-
tion of R(x)(π/2) rotations on a four-qubit NIGQC as illustrated in
Fig. 1(c). The units are the same as in Table XIV. We use the effective
Hamiltonian (7) to obtain the results.

Gate Td ω(D)/2π a σ b

R(x)
0 (π/2) 52.250 4.191 0.058 12.082 0.072

R(x)
1 (π/2) 52.950 5.189 0.065 10.000 0.070

R(x)
2 (π/2) 52.950 5.688 0.066 9.990 0.032

R(x)
3 (π/2) 52.950 4.950 0.066 9.990 0.032

TABLE XIX. Control pulse parameters for the implementation
of CZ gates on a four-qubit NIGQC as illustrated in Fig. 1(c). The
units are the same as in Table XV. We use the effective Hamiltonian
(7) to obtain the results.

Gate Pulse Tp Td δ/2π σ

CZ0,1 UMP 87.254 95.013 0.391 0.453
CZ0,1 BMP 89.925 98.114 0.392 0.400
CZ1,2 UMP 67.802 115.238 0.275 0.338
CZ2,3 UMP 71.620 98.197 0.320 0.543
CZ0,3 UMP 92.616 124.768 0.353 1.877
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TABLE XX. Gate-error quantifiers for R(x)(π/2) rotations and
CZ gates for a two-qubit NIGQC as illustrated in Fig. 1(a). The
gate-error quantifiers are obtained with the circuit Hamiltonian (2),
the device parameters listed in Table I, and the pulse parameters
listed in Tables VIII and IX. The first column shows the target gate,
the second column shows the pulse type [see Figs. 2(a)–2(c)], the
third column shows the diamond distance μ
 given by Eqs. (28) and
(29), the fourth column shows the average infidelity μIFavg given by
Eq. (24), and the fifth column shows the leakage measure μleak given
by Eq. (26).

Gate Pulse μ
 μIFavg μleak

R(x)
0 (π/2) MP 0.0093 0.0004 0.0004

R(x)
1 (π/2) MP 0.0080 0.0004 0.0004

CZ0,1 UMP 0.0290 0.0011 0.0008

TABLE XXI. Gate-error quantifiers for R(x)(π/2) rotations and
CZ gates for a three-qubit NIGQC as illustrated in Fig. 1(b). The gate-
error quantifiers are obtained with the circuit Hamiltonian (2), the
device parameters listed in Table I, and the pulse parameters listed
in Tables X and XI. The rows and columns show the same unitless
quantities as in Table XX.

Gate Pulse μ
 μIFavg μleak

R(x)
0 (π/2) MP 0.044 0.003 0.002

R(x)
1 (π/2) MP 0.038 0.002 0.001

R(x)
2 (π/2) MP 0.039 0.002 0.001

CZ0,1 UMP 0.044 0.010 0.010
CZ1,2 UMP 0.012 0.002 0.002

TABLE XXII. Gate-error quantifiers for R(x)(π/2) rotations and
CZ gates for a four-qubit NIGQC as illustrated in Fig. 1(c). The gate-
error quantifiers are obtained with the circuit Hamiltonian (2), the
device parameters listed in Table I, and the pulse parameters listed in
Tables XII and XIII. The rows and columns show the same unitless
quantities as in Table XX.

Gate Pulse μ
 μIFavg μleak

R(x)
0 (π/2) MP 0.058 0.004 0.002

R(x)
1 (π/2) MP 0.054 0.003 0.002

R(x)
2 (π/2) MP 0.053 0.003 0.002

R(x)
3 (π/2) MP 0.057 0.004 0.002

CZ0,1 UMP 0.031 0.005 0.004
CZ1,2 UMP 0.144 0.029 0.018
CZ2,3 UMP 0.073 0.008 0.005
CZ0,3 UMP 0.046 0.005 0.003

TABLE XXIII. Gate-error quantifiers for R(x)(π/2) rotations and
CZ gates for a two-qubit NIGQC as illustrated in Fig. 1(a). The
gate-error quantifiers are obtained with the effective Hamiltonian
(7), the device parameters listed in Table I, and the pulse parameters
listed in Tables XIV and XV. The first column shows the target gate,
the second column shows the pulse type [see Figs. 2(a)–2(c)], the
third column shows the diamond distance μ
 given by Eqs. (28) and
(29), the fourth column shows the average infidelity μIFavg given by
Eq. (24), and the fifth column shows the leakage measure μleak given
by Eq. (26).

Gate Pulse μ
 μIFavg μleak

R(x)
0 (π/2) MP 0.0089 0.0004 0.0004

R(x)
1 (π/2) MP 0.0090 0.0004 0.0004

CZ0,1 UMP 0.0424 0.0012 0.0005
CZ0,1 BMP 0.0167 0.0006 0.0005

TABLE XXIV. Gate-error quantifiers for R(x)(π/2) rotations and
CZ gates for a three-qubit NIGQC as illustrated in Fig. 1(b). The gate-
error quantifiers are obtained with the effective Hamiltonian (7), the
device parameters listed in Table I, and the pulse parameters listed in
Tables XVI and XVII. The rows and columns show the same unitless
quantities as in Table XXIII.

Gate Pulse μ
 μIFavg μleak

R(x)
0 (π/2) MP 0.046 0.003 0.002

R(x)
1 (π/2) MP 0.040 0.002 0.002

R(x)
2 (π/2) MP 0.039 0.002 0.002

CZ0,1 UMP 0.057 0.003 0.002
CZ0,1 BMP 0.031 0.004 0.004
CZ1,2 UMP 0.028 0.006 0.006

TABLE XXV. Gate-error quantifiers for R(x)(π/2) rotations and
CZ gates for a four-qubit NIGQC as illustrated in Fig. 1(c). The gate-
error quantifiers are obtained with the effective Hamiltonian (7), the
device parameters listed in Table I, and the pulse parameters listed in
Tables XVIII and XIX. The rows and columns show the same unitless
quantities as in Table XXIII.

Gate Pulse μ
 μIFavg μleak

R(x)
0 (π/2) MP 0.060 0.004 0.003

R(x)
1 (π/2) MP 0.056 0.003 0.002

R(x)
2 (π/2) MP 0.054 0.003 0.002

R(x)
3 (π/2) MP 0.060 0.004 0.002

CZ0,1 UMP 0.051 0.004 0.003
CZ0,1 BMP 0.041 0.004 0.004
CZ1,2 UMP 0.146 0.015 0.005
CZ2,3 UMP 0.078 0.010 0.007
CZ0,3 UMP 0.058 0.005 0.003
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