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We conduct a systematic study of quantum circuits composed of multiple-control Z-rotation (MCZR) gates
as primitives, since they are widely used components in quantum algorithms and also have attracted much
experimental interest in recent years. We establish a circuit-polynomial correspondence to characterize the
functionality of quantum circuits over the MCZR gate set with continuous parameters. An analytic method for
exactly synthesizing such quantum circuit to implement any given diagonal unitary matrix with an optimal gate
count is proposed, which also enables the circuit depth optimal for specific cases with pairs of complementary
gates. Furthermore, we present a gate-exchange strategy together with a flexible iterative algorithm for effectively
optimizing the depth of any MCZR circuit, which can also be applied to quantum circuits over any other
commuting gate set. Besides the theoretical investigation, the practical performance of our circuit synthesis
and optimization techniques is further evaluated numerically on two typical examples in quantum computing,
including diagonal Hermitian operators and quantum approximate optimization algorithm circuits with tens of
qubits, which can demonstrate a reduction in circuit depth by 33.40% and 15.55% on average over relevant prior
works, respectively. Therefore, our methods and results provide a pathway for implementing quantum circuits
and algorithms on recently developed devices.
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I. INTRODUCTION

With the arrival of the noisy intermediate-scale quan-
tum era [1], the synthesis and optimization of quantum gate
circuits have become crucial steps towards harnessing the
power of quantum computing on realistic devices [2,3]. While
single-qubit rotation and two-qubit controlled-NOT gates have
been subjects of long-term investigations as they constitute an
elementary gate set capable of universal quantum computation
[4,5], the multiple-control rotation (MCR) gates defined to act
on more qubits have also attracted a great deal of interest in
terms of both fundamental and practical aspects.

(i) Theoretically, MCR operations often serve as impor-
tant components in many quantum algorithms or quantum
computing models such as preparing quantum hypergraph
states [6,7], building a circuit-based quantum random access
memory [8,9], participating in Shor’s factoring algorithm [10]
and different types of quantum search algorithms [11–13], the
quantum walk [14], and fault-tolerant quantum computation
[15,16]. Therefore, a good understanding of MCR circuits can
facilitate the design and analysis of new quantum information
processing schemes. In fact, MCR gates have been included
as basic building blocks in some popular quantum computing
software frameworks such as Qiskit [17] and PennyLane [18].

(ii) Instead of performing concatenated single- and two-
qubit gates in conventional experiments [11,19,20], recent
experimental progress has also been made in direct imple-
mentations of MCR gates in a variety of physical systems,
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including ion traps [21], neutral atoms [22,23], linear and
nonlinear quantum optics [24–26], and superconducting cir-
cuit systems [27–29]. In particular, MCR gates have been
used as native quantum gates in practical experiments for
demonstrating quantum algorithms [30,31] and quantum er-
ror correction [32]. Therefore, quantum circuits over suitable
MCR gates for benchmarking and exploiting these ongoing
quantum hardware need to be specifically considered.

Several notable works have investigated quantum circuit
models at the level of MCR gates with various techniques and
results. For example, discussions about the use of multiple-
control Toffoli gates as basic building blocks in circuit
synthesis were presented early on, including the use of Reed-
Muller spectra [33], Boolean satisfiability techniques [34],
and NCV-|v1〉 libraries [35]. Typically, the issue of decompos-
ing diagonal Hermitian quantum gates into a set consisting of
solely multiple-controlled Pauli Z operators had been studied
[36] by introducing a binary representation of these gates.
Subsequently, different circuit identities that can replace cer-
tain configurations of the multiple-control Toffoli gates with
their simpler multiple-control relative-phase implementations
were reported [37], showing the optimized resource counts.
Given these promising results, quantum circuits based on a
wider range of multiple-control quantum gates and their ap-
plications are worthy of more in-depth exploration as well.

In this paper we develop a systematic characterization,
synthesis, and optimization of quantum circuits over multiple-
control Z-rotation (MCZR) gates with continuous parameters,
each of which would apply a Z-axis rotation gate RZ (θ ) =
diag{1, eiθ } with a real-valued θ to the target qubit only when
all its control qubits are set to 1. In fact, such quantum gates
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play a prominent role in quantum state generation [6,38–
40], quantum circuit construction [41–43], and fault-tolerant
quantum computation [15,16]. Accordingly, schemes aimed
at realizing fast and high-fidelity special or general MCZR

gates are constantly being proposed [44–49] as well as ex-
perimentally demonstrated [22,23,28,30–32] in recent years.
One-step implementation of the two-qubit controlled-Z (CZ),
three-qubit CCZ, and four-qubit CCCZ gates has been real-
ized with experimental fidelities of about 0.94, 0.868, and
0.817, respectively, based on the continuous-variable geomet-
ric phase in a superconducting circuit [28]. Then a multimode
superconducting processor circuit with all-to-all connectiv-
ity that can implement the near-perfect generalized CCZ(θ )
gates with an arbitrary angle θ as the native three-qubit con-
trolled operations was presented [30] and a three-qubit Grover
search algorithm and the quantum Fourier transform were
demonstrated experimentally. Hence, how to perform quan-
tum computing tasks over such gates with a low gate count
and circuit depth is of practical significance, motivating us to
conduct a systematic study in this work. For a general consid-
eration, the number of control qubits, the set of acting qubits,
and the angle parameters θ of MCZR gates are all unrestricted
in our discussion.

The rest of this paper is organized as follows. In Sec. II
we put forward a convenient polynomial representation to
describe the functionality of the MCZR circuits, indicating
that any realizable unitary matrix must be a diagonal one.
In Sec. III we analytically derive a circuit synthesis method
that can provide an optimal gate count for implementing any
given diagonal unitary matrix, which also achieves an optimal
circuit depth for cases consisting of well-defined pairs of
complementary gates. In Sec. IV we consider how to reduce
the circuit depth of any given MCZR circuit by proposing a
gate-exchange strategy together with a flexible iterative depth-
optimization algorithm, which can yield better optimization
results at the cost of more execution time. In Sec. V we vali-
date the performance of our synthesis and depth-optimization
methods for MCZR circuits by numerical evaluations on two
typical examples, including the diagonal Hermitian quantum
operators and quantum approximate optimization algorithm
(QAOA) circuits, both of which show improvements over
previous results. For the former, our constructed circuits on
average can achieve a 33.40% depth reduction over the prior
work [36] for the circuit size n ∈ [2, 12]. For the latter, our op-
timized circuit depth ranges from 3.00 to 4.05 for n ∈ [6, 50]
and on average can reduce the circuit depth up to 58.88%
over randomly selected circuits and 15.55% over the results
from Ref. [50], respectively. Notably, here we achieve a nearly
constant depth for moderate-size QAOA circuits on 3-regular
graphs. We expect the methods and results of this paper to
be beneficial to the study of implementing quantum circuits
and algorithms on specific quantum systems, and several di-
rections for future work are discussed in Sec. VI.

II. CHARACTERIZATION OF MCZR CIRCUITS

To characterize the functionality of the MCZR circuit,
we first establish a useful circuit-polynomial correspondence
and then illustrate its unitary matrix representation. For

convenience, here we introduce some of the notation used
throughout this paper.

A. Notation

We denote the set {a, a + 1, a + 2, . . . , b} by [a, b] with a
and b integers and a � b. When a = 1, the denotation [a, b]
is simplified to [b]. For a binary number x, we use q(x) to
represent its corresponding decimal number. The symbols ‖v‖
and |A| indicate the Hamming weight of a binary string v

(i.e., the number of 1’s in v) and the size of the set S (i.e.,
the number of its elements), respectively. For an n-bit string
v = v1v2 · · · vn, we denote the set of positions of all 1 bits by
Pv = {p1, p2, . . . , p‖v‖} such that vp1 = vp2 = · · · = vp‖v‖ =
1. We use Im×n to denote the size m × n identity matrix and
the symbol ◦ is used to concatenate m (m � 2) subcircuits
{C1,C2, . . . ,Cm} to form a circuit C such that C = C1 ◦ C2 ◦
· · · ◦ Cm.

B. Circuit characterization

The MCZR gate family for an n-qubit quantum circuit can be
denoted by {C(k)Z (θc,t ) : c ⊂ [n], t ∈ [n], k = |c|}, with c the
control set, t the target, and θc,t a Z-rotation angle parameter.
By definition, the action of an MCZR gate on each computa-
tional basis state is

C(k)Z (θc,t ) : |x1, x2, . . . , xn〉

�→ exp

⎛
⎝iθc,t xt

∏
j∈c

x j

⎞
⎠|x1, x2, . . . , xn〉. (1)

The global phase factor in Eq. (1) indicates that the function of
gate C(k)Z (θc,t ) remains unchanged under any permutation of
k control and one target qubits in the set γ = c

⋃
t . Therefore,

we can simply denote each MCZR gate acting on all qubits in
a set γ ⊆ [n] as G(γ , θγ ) such that

G(γ , θγ ) : |x1, x2, . . . , xn〉

�→ exp

⎛
⎝iθγ

∏
j∈γ

x j

⎞
⎠|x1, x2, . . . , xn〉. (2)

In this way, any quantum circuit C consisting of m MCZR gates
G(γ1, θγ1 ), G(γ2, θγ2 ), . . ., G(γm, θγm ) can transform each ba-
sis state as

C : |x1, x2, . . . , xn〉
�→ exp[ip(x1, x2, . . . , xn)]|x1, x2, . . . , xn〉, (3)

with

p(x1, x2, . . . , xn) =
m∑

k=1

θγk

⎛
⎝∏

j∈γk

x j

⎞
⎠ (4)

a phase polynomial associated with the circuit C. In other
words, any given n-qubit MCZR circuit C corresponds to a
unique phase polynomial with real coefficients and degree at
most n.
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FIG. 1. Three-qubit circuit C consisting of three MCZR gates
with angle parameters θ{1}, θ{2,3}, and θ{1,2,3}, respectively, which
can add a phase factor eip(x1,x2,x3 ) to the basis state |x1, x2, x3〉 with
a phase polynomial p(x1, x2, x3) = θ{1}x1 + θ{2,3}x2x3 + θ{1,2,3}x1x2x3.
The unitary matrix represented by C is a diagonal one as D(C) =
diag{1, 1, 1, eiθ{2,3} , eiθ{1} , eiθ{1} , eiθ{1} , ei(θ{1}+θ{2,3}+θ{1,2,3} )}.

Now we turn to the unitary matrix representation of n-qubit
MCZR circuits. Equation (2) reveals that each MCZR gate can
be explicitly expressed as a diagonal unitary matrix of size
2n × 2n as

G(γ , θγ ) =
∑

x∈{0,1}n

exp

⎛
⎝iθγ

∏
j∈γ

x j

⎞
⎠|x〉〈x|, (5)

with all its diagonal elements being 1 or eiθγ . Since all MCZR

gates are diagonal and commutative, two or more MCZR gates
that act on the same set of qubits in a circuit can be merged
into one by just adding their angle parameters. Without loss
of generality, in this paper we focus on the nontrivial MCZR

circuit C such that all the constituent m gates have a distinct
qubit set γk (k = 1, 2, . . . , m) and its unique phase polynomial
in Eq. (4) exactly has degree max{|γk| : k = 1, 2, . . . , m} and
m terms with real coefficients being the angle parameters {θγk :
k = 1, 2, . . . , m}. Accordingly, the circuit C in Eq. (3) would
function as a diagonal unitary matrix as

D(C) =
∑

x∈{0,1}n

exp[ip(x)]|x〉〈x|, (6)

with the polynomial p(x = x1, x2, . . . , xn) defined in Eq. (4).
Obviously, two MCZR circuits over different gate sets would
implement two distinct diagonal unitary matrices. For clarity,
we display an instance circuit with n = 3 and its polynomial
as well as unitary matrix representation in Fig. 1.

III. OPTIMAL SYNTHESIS OF MCZR CIRCUITS

In the preceding section we revealed that an MCZR circuit
can implement a diagonal unitary matrix. This in turn raises a
natural question: Can an arbitrary diagonal operator be imple-
mented by an MCZR gate circuit exactly? This is an attractive
subject since diagonal unitary matrices have a wide range of
applications in quantum computing and quantum information
[14,50–53].

In this section we address this issue by proposing a circuit
synthesis method to construct an n-qubit gate-count-optimal
MCZR circuit for implementing a size N × N (N = 2n) diago-

nal unitary matrix

D(�α = [α0, α1, . . . , αN−1]) =

⎡
⎢⎢⎢⎢⎣

eiα0 0 · · · 0 0

0 eiα1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 eiαN−1

⎤
⎥⎥⎥⎥⎦

=
∑

x∈{0,1}n

exp(iαq(x) )|x〉〈x|, (7)

with q(x) being the decimal number of x, which simultane-
ously enables the circuit depth optimal for specific cases. In
particular, we emphasize that the optimality mentioned in this
paper always indicates an exact optimal value for the gate
count and circuit depth rather than asymptotically optimal
results, indicating that our optimal results cannot be improved
any more. For convenience, here we rewrite each available
gate G(γ , θγ ) in Eq. (2) as G(v, θv ) by associating γ with an
n-bit string v = v1v2 · · · vn ∈ {0, 1}n such that

v j :=
{

1, j ∈ γ

0, j ∈ [n]\γ .
(8)

Our main results in this section are summarized in Theo-
rems 1–3.

Theorem 1. The MCZR gate set {G(v, θv )} for implement-
ing a target diagonal unitary matrix D(�α) in Eq. (7) with 2n

given parameters [α0, α1, . . . , αN−1] is unique and each gate
parameter can be computed analytically as

θv = (−1)‖v‖ ∑
x:Px⊆Pv

(−1)‖x‖αq(x), v ∈ {0, 1}n, (9)

with q(x), Pv , Px, ‖v‖, and ‖x‖ defined in Sec. II A. Since
θv = 0 indicates a trivial identity gate that can be omitted, the
optimal gate count for implementing D(�α) is thus |{G(v, θv �=
0)}| with θv from Eq. (9).

Proof. According to Eq. (8), there are totally 2n − 1 differ-
ent types of gates {G(v, θv ) : v ∈ {0, 1}n\00 · · · 0} available to
construct an MCZR circuit C that functions as Eq. (6), with its
phase polynomial p(x) in Eq. (4) rewritten as

p(x) =
∑

v∈{0,1}n\00···0
θv

(
xv1

1 xv2
2 · · · xvn

n

)
. (10)

Since two quantum circuits which differ only by a global
phase factor are equivalent, we suppose that a circuit C de-
scribed by Eq. (6) can perform the target diagonal matrix D(�α)
in Eq. (7) as

eiθ00···0
∑

x∈{0,1}n

exp[ip(x)]|x〉〈x|

=
∑

x∈{0,1}n

exp(iαq(x) )|x〉〈x|, (11)

leading to

θ00···0 + p(x) = αq(x), x ∈ {0, 1}n, (12)

with θ00···0 a global phase factor, p(x) defined in Eq. (10), and
q(x) defined in Sec. II A. In total, Eq. (12) gives us 2n linear
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equations

x = 00 · · · 00 : θ00···00 = α0,

x = 00 · · · 01 : θ00···00 + θ00···01 = α1,

x = 00 · · · 10 : θ00···00 + θ00···10 = α2,

x = 00 · · · 11 : θ00···00 + θ00···01 + θ00···10 + θ00···11 = α3,

...

x = 11 · · · 11 :
∑

v∈{0,1}n

θv = αN−1. (13)

Thus, if we can solve a set of 2n angle parameters
{θv : v ∈ {0, 1}n} satisfying Eq. (13) for any given �α =
[α0, α1, . . . , αN−1], then we obtain an MCZR circuit over the
gate set {G(v, θv )} for implementing any D(�α) in Eq. (7). In
the following, we give an exact analytical expression of the
solution to Eq. (13) and prove its uniqueness.

The linear equations (13) can be succinctly summarized
into a standard form as

J

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ00···00

θ00···01

θ00···10

θ00···11

...

θ11···11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

α2

α3

...

αN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

such that the size 2n × 2n coefficient matrix J has elements

Jq̃(x),q̃(v) =
{

1 for Pv ⊆ Px

0 otherwise,
(15)

where x, v ∈ {0, 1}n, the function q̃(·) = q(·) + 1 transforms
a binary string into a decimal number as the row or column
index of a matrix, and the set Px (v) about a string x (v) is
defined in Sec. II A. Consider another size 2n × 2n matrix
denoted by K with elements

Kq̃(v),q̃(x) =
{

(−1)‖v‖+‖x‖ for Px ⊆ Pv

0 otherwise,
(16)

where x, v ∈ {0, 1}n. Here we can prove the product of two
matrices in Eqs. (16) and (15) as Q = K × J is exactly an
identity matrix of size 2n × 2n. By definition, the matrix el-
ements of Q are

Qq̃(v1 ),q̃(v2 ) =
∑

x∈{0,1}n

Kq̃(v1 ),q̃(x)Jq̃(x),q̃(v2 )

= (−1)‖v1‖
∑

x:Pv2 ⊆Px⊆Pv1

(−1)‖x‖ + 0,

v1, v2 ∈ {0, 1}n. (17)

For the diagonal element of Q with v1 = v2 and Pv1 = Pv2 ,
Eq. (17) turns into

Qq̃(v1 ),q̃(v1 ) = (−1)‖v1‖(−1)‖v1‖ = 1, v1 ∈ {0, 1}n (18)

by taking x = v1. For the off-diagonal elements of Q with
v1 �= v2 and Pv1 �= Pv2 , we have two cases.

(i) If Pv2 �⊂ Pv1 , then no string x can satisfy Pv2 ⊆ Px ⊆ Pv1 ,
leading Eq. (17) to Qq̃(v1 ),q̃(v2 ) = 0.

(ii) If Pv2 ⊂ Pv1 , then there are in total 2‖v1‖−‖v2‖ strings
x that can satisfy Pv2 ⊆ Px ⊆ Pv1 , wherein ‖x‖ is even for
exactly half of these x and odd for the other half, leading
Eq. (17) to Qq̃(v1 ),q̃(v2 ) = 0.

At this point, we prove that K × J = I2n×2n and thus the
square matrix K defined in Eq. (16) is the unique inverse
matrix of the coefficient matrix J in Eq. (14) by the common
knowledge of linear algebra. By multiplying both sides of
Eq. (14) with K and using Eq. (16), we obtain an analytic
form of the solutions {θv} to Eq. (14) as

θv =
∑

x∈{0,1}n

Kq̃(v),q̃(x)αq(x)

= (−1)‖v‖ ∑
x:Px⊆Pv

(−1)‖x‖αq(x), v ∈ {0, 1}n, (19)

with q(x), Pv , Px, ‖v‖, and ‖x‖ defined in Sec. II A.
In summary, Eq. (19) represents a unique set of solutions

so that the resultant MCZR circuit for implementing D(�α) in
Eq. (7) naturally achieves an optimal gate count. The angle
parameter θv = 0 indicates its associated MCZR gate G(v, θv )
is a trivial identity gate that can be omitted. Therefore, the op-
timal gate count for realizing any diagonal unitary operator in
Eq. (7) is |{G(v, θv �= 0)}| with the gate parameters obtained
from Eq. (19) and in the worst case is 2n − 1 when all angle
parameters are solved to be nonzero. For clarity, an example
with n = 3 is shown in Figs. 2(a) and 2(b). �

As a by-product, the uniqueness of the gate set {G(v, θv )}
for implementing a diagonal unitary matrix as declared in
Theorem 1 gives us Lemma 1.

Lemma 1. All MCZR gates in {G(v, θv ) : v ∈ {0, 1}n, θv ∈
[0, 2π )} are independent, that is, none of them can be decom-
posed into a combination of the others.

Besides the gate count, the circuit depth is another impor-
tant circuit cost metric that needs attention, since a reduced
depth means less circuit execution time and the mitigation
of decoherence effect. A quantum circuit can be represented
as a directed acyclic graph in which each node corresponds
to a circuit’s gate and each edge corresponds to the input
or output of a gate. Then the circuit depth d is defined as
the maximum length of a path flowing from an input of the
circuit to an output [54]. In other words, d is the number of
layers of quantum gates that compactly act on disjoint sets of
qubits [55,56]. For example, the depth of the circuit in Fig. 1
with three nonzero angle parameters is d = 2. Note that a set
of MCZR gates may form distinct layer configurations with
respective circuit depths, as exemplified by the comparison
between the depth-4 circuit in Fig. 2(c) and depth-5 circuit in
Fig. 2(d). More generally, in Theorem 2 we reveal the optimal
circuit depth of any MCZR circuit constructed from pairs of
complementary gates as defined in Definition 1.

Definition 1. We call a pair of MCZR gates G(v1, θv1 ) and
G(v2, θv2 ) complementary if and only if they satisfy v1 ⊕ v2 =
11 · · · 11.

Theorem 2. The optimal circuit depth of any MCZR cir-
cuit constructed from d1 pairs of complementary gates is
exactly d1.
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Angle parameters of MCZR gates

n=3

1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

1 −1 −1 1 0 0 0 0

−1 0 0 0 1 0 0 0

1 −1 0 0 −1 1 0 0

1 0 −1 0 −1 0 1 0

−1 1 1 −1 1 −1 −1 1

Diagonal Unitary matrix

0 31 2

5 6 74

( ) { ,  ,  ,  ,

                       ,  ,   }

i ii i

i i ii

D diag e e e e
e e e e

MCZR circuit synthesis

(a)

(b)

Layer configuration 1:

d = 4

1x

2x

3x
111

100

011

010

101001

110

Layer configuration 2:

d = 5

1x

2x

3x

100

111011

010

101001

110

(c)

(d)

1L 2L 4L3L

1L 2L 3L 4L
5L

FIG. 2. Example with n = 3 to show the gate-count-optimal synthesis of quantum MCZR circuits. To construct a circuit for realizing a given
diagonal unitary matrix D(�α) of size 8 × 8 in (a), we can first use Eq. (9) to solve the angle parameters {θv : v ∈ {0, 1}3} of all employed MCZR

gates as linear combinations of given {α0, α1, . . . , α7} with nonzero coefficients marked green shown in (b). Note that the angle parameter
θv = 0 indicates a trivial identity gate that can be removed in the circuit. Then these gates are arranged in different layers to give a circuit layer
configuration. For a general case, we present a circuit consisting of all gates in complementary pairs with a depth d = 4 in (c), while another
circuit with a depth d = 5 is depicted in (d) for comparison. As a summary, the circuit in (c) to implement (a) can be directly obtained by
Theorem 3.

Proof. Suppose we construct an n-qubit MCZR circuit over
d1 pairs of complementary gates {G(v, θv )} by arranging them
into d layers denoted by {L1, L2, . . . , Ld} such that all gates in
each layer Li (i = 1, 2, . . . , d) are disjoint. Here we prove that
the minimum value of d is d1.

For brevity, we denote each gate layer Li by an n-bit string
as

s(Li ) =
∑

v:G(v,θv )∈Li

v, i = 1, 2, . . . , d, (20)

and all d such strings have in total nd bits of 0 and 1. On
the other hand, the total number of 1 bits in 2d1 strings v

representing these gates is nd1. Therefore, we have

nd � nd1 (21)

and the lower bound of the circuit depth is

d � d1. (22)

Obviously, the equality in Eq. (22) can be achieved when ev-
ery gate layer Li (i = 1, 2, . . . , d) has a pair of complementary
gates, thus forming a circuit with an optimal depth d1. �

A typical application of Theorem 2 is to construct a
depth-optimal MCZR circuit over all 2n − 1 nonzero gate pa-
rameters solved from Theorem 1 for implementing a given
diagonal operator. Specifically, when all these gates are
arranged into (2n − 2)/2 = 2n−1 − 1 layers of complemen-
tary gates as L1 = [v = 00 · · · 01, v = 11 · · · 10], L2 = [v =
00 · · · 10, v = 11 · · · 01], . . ., L2n−1−1 = [v = 01 · · · 11, v =

10 · · · 00] plus a sole gate in L2n−1 = [v = 11 · · · 11], a circuit
with an optimal depth 2n−1 is obtained. For clarity, a circuit
example with n = 3 and the optimal depth d = 4 is shown in
Fig. 2(c), while another circuit with a larger depth d = 5 is
shown in Fig. 2(d) for comparison.

Finally, the combination of Theorems 1 and 2 leads to a
pairwise circuit synthesis method described as Theorem 3.

Theorem 3 (pairwise MCZR circuit synthesis). An MCZR

circuit C over the gate set {G(v, θv )} for implementing an ar-
bitrary diagonal unitary matrix D(�α) in Eq. (7) can be synthe-
sized by uniquely determining each gate parameter θv accord-
ing to Eq. (9) in a pairwise way as L1 = [v = 00 · · · 01, v =
11 · · · 10], L2 = [v = 00 · · · 10, v = 11 · · · 01], . . ., L2n−1−1 =
[v = 01 · · · 11, v = 10 · · · 00], L2n−1 = [v = 11 · · · 11] such
that C = L1 ◦ L2 ◦ · · · ◦ L2n−1 . Note that G(v, θv = 0) is an
identity gate that will not appear in C, and thus C has
an optimal gate count mD = |{G(v, θv �= 0)}| for any D(�α).
Specifically, C has an optimal circuit depth when the im-
plementation of D(�α) only employs pairs of complementary
gates. For example, this theorem gives us the circuit in
Fig. 2(c) to implement Fig. 2(a).

In summary, we provide a gate-count-optimal circuit syn-
thesis (that is, Theorem 3) to realize a given diagonal unitary
matrix in Eq. (7), which also enables the optimal circuit depth
when all obtained nonzero angle parameters correspond to
pairs of complementary gates. Furthermore, in the following
we consider how to optimize the depth of any other types of
MCZR circuits.

022603-5



SHIHAO ZHANG, JUNDA WU, AND LVZHOU LI PHYSICAL REVIEW A 108, 022603 (2023)

IV. DEPTH OPTIMIZATION OF MCZR CIRCUITS

Since all MCZR gates are diagonal and commutative, the
task of optimizing the depth of any given MCZR circuit is
equivalent to rearranging all its gates into as few disjoint
layers as possible. In this section we propose a gate-exchange
strategy together with a flexible algorithm for effectively re-
ducing the circuit depth.

A. Gate-exchange strategy for optimizing circuit depth

First of all, we present a simple but useful strategy in
Lemma 2 that can reduce (or retain) the depth of any MCZR

circuit.
Lemma 2. For a depth-d1 MCZR circuit C1 over the gate

set S = {G(v, θv )}, suppose that (a) a pair of complementary
gates G(v1, θv1 ) and G(v2, θv2 ) are located in two different
layers of C1 and (b) the gate G(v1, θv1 ) and a subset of gates
{G(v′, θv′ )} ⊂ S are located in the same layer of C1. Then the
exchange of {G(v′, θv′ )} and G(v2, θv2 ) in C1 would arrange
G(v1, θv1 ) and G(v2, θv2 ) into one layer, leading to a new
depth-d2 circuit C2 with d2 � d1.

We give an intuitive explanation of Lemma 2. In the origi-
nal depth-d1 circuit C1, suppose the gate G(v1, θv1 ) and gates
in {G(v′, θv′ )} are located in a layer indexed by L1, while the
gate G(v2, θv2 ) is located in another layer indexed L2. Then the
exchange of G(v2, θv2 ) and {G(v′, θv′ )} arranges the former
and the latter into the layers L1 and L2, respectively. Since
the gate G(v2, θv2 ) alone acts on more qubits than any gate in
{G(v′, θv′ )} does, such a gate-exchange operation would lead
to two possible situations about the resultant circuit C2: (i) C2

has the same depth d1 as C1 or (ii) some (or all) of the gates in
{G(v′, θv′ )} and the gates adjacent to layer L2 can be merged
into the same layer, thus causing a depth reduction over C1.

Based on Lemma 2, we can derive a two-step framework
for achieving a depth-optimal MCZR circuit as described in
Lemma 3.

Lemma 3. In principle, the optimal circuit depth dopt of
the MCZR circuits constructed from a given gate set S =
{G(v, θv )} with |S| = m can be achieved by two steps: (a)
Arrange all d1 pairs of complementary gates in S into a depth-
d1 configuration and (b) find a depth-optimal circuit over the
other r = m − 2d1 gates. Then dopt is equal to the total depth
of these two parts.

A special case of Lemma 3 is Theorem 2 such that m = 2d1

gives us dopt = d1. In general, we can accomplish the second
step of Lemma 3 by comparing at most r! different layer
configurations and finding the depth-optimal circuit over a
given gate set S. However, for S with a moderate value r, the
number of all possible layer configurations can be quite large
and thus the optimal depth is usually hard to determine. To
deal with such complicated cases, in the following we further
propose a flexible iterative algorithm for optimizing the depth
of a circuit with no complementary gates.

B. Flexible iterative depth-optimization algorithm

In this section we propose an iterative algorithm, Algo-
rithm 1, for optimizing the depth of MCZR circuits with no
complementary gates, and reveal its flexibility with a use case.

Algorithm 1. Iterative depth-optimization algorithm for MCZR

circuits.

Input: A depth-d MCZR circuit C with its
constituent gates located from left to right as
a sequence S = [γk : k = 1, 2, . . . , m],
with γk the qubit set of the kth gate,
an iteration number T � 1.

Output: A circuit Copt over gates in S with a
layer configuration
R = {Li : i = 1, 2, . . . , dopt} such that
dopt � d .

1 main program:
2 Calculate the circuit depth lower bound dL for S

by Eq. (23).
3 [R(1), d (1)] = Greedy_Layer_Formation (S); t ← 1;
4 if d (1) > dL & T � 2 then // Perform

iterative layer formation.
5 for t ← 2 to T do
6 S(t ) = Generate_New_GateSeq(R(t−1) );
7 [R(t ), d (t )] =

Greedy_Layer_Formation(S(t ) );
8 if d (t ) == dL then
9 break;

10 end if
11 end for
12 end if
13 dopt ← d (p) = min{d (q) : q ∈ [t]}; R ← R(p);
14 return [R, dopt].
15 function Greedy_Layer_Formation(S)
16 i ← 0;
17 while |S| �= 0 do
18 i ← i + 1; c ← 0; Li ← ∅; remove_set ← ∅;
19 for k ← 1 to |S| // Greedily form

the layer Li.
20 if Li and S[k] have no integers in

common then
21 c ← c + 1; Li[c] ← S[k];

remove_set[c] ← k;
22 end if
23 end for
24 Delete S[remove_set];
25 end while
26 d ← i;
27 return [R = {L1, L2, . . . , Ld}, d] .
28 end function
29 function Generate_New_GateSeq(

R = {Li = [γ i
1, γ

i
2, . . . , γ

i
|Li |] : i = 1, 2, . . . , d}):

30 S =
[γ 1

1 , γ 2
1 , . . . , γ d

1 , γ 1
2 , γ 2

2 , . . . , γ d
2 , . . . , γ

p
|Lp|]

with the layer index p such that
|Lp| = max{|Li| : i ∈ [d]};

31 return S .
32 end function

The input of Algorithm 1 includes a given MCZR cir-
cuit C with its constituent gates located from left to right
as a sequence S = [γk : k = 1, 2, . . . , m], with γk the set of
qubits acted upon by the kth gate and an iteration num-
ber T ∈ N+. The output is a circuit over gates in S that
has a depth smaller than or equal to that of C. Notice that
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two subroutine functions Greedy_Layer_Formation and
Generate_New_GateSeq are introduced here: The former
receives a gate sequence S and can arrange as many
disjoint gates in S into each layer as possible to form a circuit
layer configuration R, while the latter can generate a new gate
sequence S from a given circuit R = {Li : i = 1, 2, . . . , d} by
extracting and regrouping gates in original layers Li. Since
the application of our greedy layer formation procedure on
different sequences over a given MCZR gate set may result in
distinct circuits, we will iteratively use these two functions in
our main program to seek circuits with the shortest possible
depth as follows.

First, since two gates that act on the same qubit must be
located in different layers of a circuit, a depth lower bound dL

on all possible circuits constructed from the input gate set S
can be derived as

dL(S) = max{c( j, S) : j ∈ [n]}, (23)

where c( j, S) indicates the number of integer j
appearing in S. Second, we apply the function
Greedy_Layer_Formation to the input gate sequence
S and obtain a new depth-d (1) circuit with layer configuration
R(1) such that d (1) � d . Third, if d (1) > dL and T � 2, we
can further iteratively generate a new gate sequence S(t ) from
the previous circuit R(t−1) via Generate_New_GateSeq ,
followed by applying Greedy_Layer_Formation to obtain
a new circuit R(t ) of depth d (t ) in each loop t � 2. In this
process, we can terminate the loop when getting the optimal
depth as d (t ) = dL. Finally, we choose the circuit with the
shortest depth among all constructed {R(t )} above as our
output depth-optimized circuit R = {L1, L2, . . . , Ldopt}. As a
result, Algorithm 1 ensures that (i) dopt � d (1) � d and (ii)
dopt2 � dopt1 for two iteration numbers T2 � T1. Therefore,
Algorithm 1 controlled by an iteration number T is a flexible
depth-optimization algorithm by considering the relation
between the reduced depth and optimization time cost.

A demonstrative example of Algorithm 1 is shown in
Fig. 3. The gate sequence for the six-qubit and depth-7 cir-
cuit C consisting of nine two-qubit CZ(θ ) gates as shown in
Fig. 3(a) is

S = [{1, 2}, {1, 3}, {2, 3}, {1, 4}, {4, 5},
{5, 6}, {2, 5}, {3, 6}, {4, 6}]. (24)

We apply Algorithm 1 with T = 2 to achieve a depth-
optimized circuit as follows.

(i) First, we calculate the depth lower bound on circuits
for S by Eq. (23) as dL = 3.

(ii) Second, we apply Greedy_Layer_Formation to S
in Eq. (24) and obtain a new circuit C(1) of depth d (1) = 4
as shown in Fig. 3(b), which has a layer configuration R(1) =
{L1, L2, L3, L4} with

L1 = [
γ 1

1 = {1, 2}, γ 1
2 = {4, 5}, γ 1

3 = {3, 6}],
L2 = [

γ 2
1 = {1, 3}, γ 2

2 = {5, 6}],
L3 = [

γ 3
1 = {2, 3}, γ 3

2 = {1, 4}],
L4 = [

γ 4
1 = {2, 5}, γ 4

2 = {4, 6}]. (25)

FIG. 3. Example demonstrating Algorithm 1 with T = 2.
(a) Given six-qubit MCZR circuit C of depth d = 7, with
its nine two-qubit gates CZ(θ{i, j}) being separated by
green dashed lines as {L1, L2, . . . , L7} and in a sequence
S = [{1, 2}, {1, 3}, . . . , {3, 6}, {4, 6}]. The circuit depth lower
bound for S is dL = 3 by Eq. (23). Then we apply the function
Greedy_Layer_Formation to (a) and obtain a circuit C (1)

of depth d (1) = 4, as shown in (b), where its four gate layers
are separated by red dashed lines as R(1) = {L1, L2, L3, L4} and
Eq. (25). Due to d (1) > dL and T = 2, next we apply the function
Generate_New_GateSeq to R(1) and generate a new gate sequence
S(2) in (c). Once again, we apply Greedy_Layer_Formation to
(c) and obtain a new circuit C (2) of depth d (2) = 3 in (d), achieving
the optimal circuit depth dL .

Intuitively, the comparison between the circuit C in Fig. 3(a)
and C(1) in Fig. 3(b) reveals that the working principle of our
function Greedy_Layer_Formation is to move the gates in
the right column of the original circuit to fill the vacancies
in the left column as much as possible, thus causing a circuit
depth reduction.

(iii) Third, we apply Generate_New_GateSeq to R(1) in
Eq. (25) due to the condition d (1) > dL and T > 1 and gener-
ate a new gate sequence S(2) shown in Fig. 3(c) as

S(2) = [{1, 2}, {1, 3}, {2, 3}, {2, 5}, {4, 5},
{5, 6}, {1, 4}, {4, 6}, {3, 6}]. (26)

(iv) Finally, we apply Greedy_Layer_Formation again
to Eq. (26) and obtain a new layer configuration {L1, L2, L3},
that is, the circuit C(2) of depth d (2) = 3 as shown in Fig. 3(d).
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Note that if we apply Algorithm 1 with only T = 1 to S in
Fig. 3(a), the resultant depth-optimized circuit would be just
C(1) in Fig. 3(b). This simple example implies that if we apply
Greedy_Layer_Formation to more distinct gate sequences
generated from Generate_New_GateSeq , the more signifi-
cant depth reduction over the original circuit is likely to occur
at the expense of more optimization time. More practical cases
of applying Algorithm 1 to optimize the MCZR circuit depth
will be demonstrated in Sec. V.

V. PERFORMANCE EVALUATION

To further evaluate the performance of the proposed syn-
thesis and optimization methods, here we refine them into
two explicit workflows and consider their applications to two
typical use cases in quantum computing. All evaluations are
performed with MATLAB 2022A on an Intel Core i5-12500
CPU operating at 3.00 GHz frequency and with 16 GB of
RAM.

A. Workflow of our synthesis and optimization methods

For convenience, here we summarize the main results in
Secs. III and IV into the workflow to fulfill two types of tasks
as follows.

Task 1. Determine how to construct a gate-count-optimal
MCZR circuit followed by further depth optimization to imple-
ment a given diagonal unitary matrix in Eq. (7).

Workflow 1. First, we synthesize a gate-count-optimal
MCZR circuit according to Theorem 3 with m gates, which
includes two parts: (i) d1 layers of complementary gates de-
noted by C1 and (ii) the other (m − 2d1) gates. Second, we
apply Algorithm 1 with a specified parameter T to optimize
part (ii) into a depth-d2 circuit C2. Finally, the overall output
circuit is C = C1 ◦ C2 of depth d1 + d2.

Task 2. Determine how to optimize the circuit depth of a
given MCZR circuit C over the gate set S = {G(v, θv )} with
|S| = m.

Workflow 2. First, we perform the gate-exchange operation
to C according to Lemma 2, which arranges all d1 pairs of
complementary gates in S into a depth-d1 circuit denoted by
C1. Second, we apply Algorithm 1 to the other m − 2d1 gates
and obtain a circuit C2 of depth d2. Finally, putting these re-
sults together gives an optimized-depth circuit Copt = C1 ◦ C2

of depth d1 + d2.
In the following, we demonstrate the utility of the above

workflows for two practical quantum computing tasks: (i)
constructing diagonal Hermitian quantum operators and (ii)
optimizing the depth of QAOA circuits.

B. Diagonal Hermitian quantum operators

We use D(n)
H to denote an n-qubit diagonal Hermitian quan-

tum operator with its diagonal elements being ±1, and there
are totally 22n−1 different such operators since D(n)

H and −D(n)
H

are essentially equivalent. Note that operators of this type act
as the oracle operator or fixed operator in the well-known
Deutsch-Jozsa algorithm [57,58], Grover’s algorithm [59],
and some recent algorithms showing quantum advantage for
string learning and identification [53,60,61]. Therefore, an
efficient construction of D(n)

H over MCZR gates would facil-

itate the implementation of relevant quantum algorithms on
specific devices [23,28,31].

Prior work [36] has revealed that D(n)
H can be synthesized

by at most 2n − 1 multiple-controlled Pauli Z gates, that
is, MCZR gates with a fixed angle parameter π , based on a
binary representation and solving linear equations over the
binary field F2. As a comparison, here we apply our synthesis
and optimization methods to construct circuits for realizing
such operators; to be more specific, our strategies include
a pairwise synthesis method in Theorem 3 (app01) and our
Workflow 1 in Sec. V A with T = 1 (app02), T = 5 (app03),
and T = 20 (app04), respectively. We compare their perfor-
mance on all 8, 128, and 32 768 diagonal Hermitian operators
D(n)

H for n = 2, 3, 4, respectively, as well as 100 randomly
selected ones for each 5 � n � 12, and compare our results
with the previous work. Due to the uniqueness property, our
constructed circuits have the same MCZR gate set as that from
Ref. [36] and therefore we mainly illustrate our circuit depth
reduction. The detailed evaluation results are presented in
Fig. 4.

In Fig. 4(a) we present the average circuit depth of n-qubit
MCZR circuits (n ∈ [2, 12]) constructed from the previous
work [36] and our four strategies app01, app02, app03, and
app04 by the blue, purple, orange, green, and red curve,
respectively. Accordingly, the average execution time to con-
struct a circuit of size n by these strategies is recorded in
Fig. 4(b). Typically, the time growth of our sole circuit syn-
thesis algorithm app01 as a function of n agrees well with
the total time complexity of calculating Eq. (9), that is, pro-
portional to n3n. As a comparison, the time of previous work
[36] increases more drastically with n, since its most time-
consuming procedure for solving linear equations over F2

to determine whether each MCZR gate exists or not would
require time scaling roughly as O(N3) = O(8n). It is worth
noting that all four of our strategies have both a reduced
circuit depth and less execution time compared to the pre-
vious work. In Fig. 4(c) the circuit depth reduction curve
for each of our strategies shows an explicit upward trend
as the circuit size n increases, which can achieve as high
as 28.88%, 40.51%, 41.40%, and 42.27% for constructing a
circuit of n = 12 on average for times 38.40, 38.79, 40.16,
and 45.78 s, respectively. Also, the usefulness of Algorithm
1 is reflected by observing that app02 can achieve a 11.57%
smaller depth than the sole synthesis algorithm app01 at the
expense of only 1.03% more time for circuits of n = 12,
while app03 and app04 give us shorter and shorter depths
as T increases. Finally, in Fig. 4(d) we evaluate the overall
average performance of our strategies app01, app02, app03,
and app04 for all involved circuit instances with n ∈ [2, 12],
including the average depth reductions of 23.29%, 32.16%,
32.88%, and 33.40% and the average time ratios of 36.93%,
37.31%, 38.59%, and 43.67% with respect to the previous
work, respectively. It seems that for such circuit instances,
the average depth-optimization trend would rise slowly as the
iteration number T in Workflow 1 increases.

In summary, we have demonstrated our Workflow 1 for
synthesizing and optimizing MCZR circuits by taking diag-
onal Hermitian operators as an example, which can show
substantial improvement over the previous work in terms of
both circuit depth and execution time. In addition, our results
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FIG. 4. Evaluation results of constructing diagonal Hermitian operators with size n ∈ [2, 12] by applying a previous method [36], our
circuit synthesis method in Theorem 3 (app01), and our Workflow 1 with T = 1(app02), 5(app03), and 20(app04), respectively. (a) Blue,
purple, orange, green, and red curves indicate the average depth of circuits obtained from previous work and app01–app04 for each n,
respectively. Accordingly, the execution time and circuit depth reduction over the previous work as a function of n on average are recorded
in (b) and (c), respectively, indicating that our four strategies can achieve both a reduced circuit depth and less execution time compared
to previous work. Notably, all our strategies can have a more significant depth reduction for large-size n, and the effectiveness of our
depth-optimization Algorithm 1 can be reflected by comparing app02–app04 with app01. (d) As an overall performance evaluation, the average
depth reduction and time ratio of our four strategies over the previous work for the entire set of instances are displayed by dark blue and dark
red lines, respectively, such that on average we can achieve a 33.40% depth reduction with only 43.67% time by app04.

empirically validate that a shorter circuit depth is likely to be
achieved by increasing the iteration number T in Algorithm
1 with more time [see Fig. 4(d)], thereby demonstrating the
applicability of our algorithm for the general case that consists
of one-qubit to n-qubit MCZR gates. In the following, we focus
on another example to highlight the flexibility of Algorithm 1
for realizing controllable depth optimization.

C. Phase-separation part in the QAOA circuit

The quantum approximate optimization algorithm is a
well-known hybrid quantum-classical algorithm designed to
solve combinatorial optimization problems. A typical stage
of the QAOA circuit for the max-cut problem consists of
three parts: a layer of Hadamard gates, a phase-separation part
consisting of CZ(θ ) gates, and a layer of Rx rotation gates.
Here we focus on reducing the depth of the middle part in
n-qubit max-cut QAOA circuits of 3-regular graphs [50] by
using our Workflow 2 in Sec. V A, which is thus Algorithm 1
for n � 6.

Prior work [50] has used a so-called min-layer formation
(MLF) procedure to reduce the number of CZ(θ ) gate layers

in QAOA circuits, which is exactly a particular case of our
Algorithm 1 with the iteration number taken as T = 1. For
comparison, here we apply Algorithm 1 with T = 1, 2, 3, 4, 5
to optimize such a phase-separation part consisting of two-
qubit CZ(θ ) gates in QAOA circuits, respectively. According
to the definition of 3-regular graphs such that every vertex
is connected to three other vertices, the circuit depth lower
bound in Eq. (23) is determined to be 3 for any circuit instance
input to Algorithm 1. As an example, the depth optimization
of a six-qubit phase-separation circuit C of depth 7 by taking
T = 2 has been presented in Fig. 3. More broadly, here we
pick the n-qubit circuit instances corresponding to n-node
3-regular graphs with n an even number in the range from 6 to
50, and for each size n we randomly pick 100 graphs. Thus,
a total of 23 × 100 = 2300 max-cut QAOA circuit instances
have been used for the evaluation. The evaluation results are
presented in Fig. 5.

The black curve in Fig. 5(a) indicates the average cir-
cuit depth of 100 original randomly selected n-qubit QAOA
circuits with 3n/2 CZ(θ ) gates for n ∈ [6, 50], showing an
overall rising trend with some small oscillations. This is
because a larger number of qubits provide the possibil-
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FIG. 5. Evaluation results of optimizing the depth of phase-separation parts in 100 randomly selected n-qubit QAOA circuits with even
n ∈ [6, 50] by applying Algorithm 1 with T = 1, 2, 3, 4, 5, respectively. (a) Black, blue, purple, orange, green, and red curves indicate the
average circuit depth of original 100 random n-qubit instances as well as optimized ones with T = 1, 2, 3, 4, 5, respectively. Accordingly, the
circuit depth reduction and execution time as a function of n on average are recorded in (b) and (c), respectively, both of which show an upward
trend on the whole. Note that the results for T = 1 are equivalent to the previous min-layer formation method aimed at optimizing QAOA
circuits [50], while as comparison our Algorithm 1 is more flexible and useful since it can achieve a more significant circuit depth reduction
by adjusting the parameter T at the cost of more execution time. (d) As an overall performance evaluation, the average depth reduction and
execution time for all 2300 circuit instances with different T are displayed in dark blue and dark red, respectively, where the time cost shows
a nearly linear growth when increasing T .

ity of applying more CZ(θ ) gates in parallel and thus may
cause a smaller circuit depth compared to that with a lower
number of qubits for randomly picked circuits. As a com-
parison, the blue, purple, orange, green, and red curves
indicate the optimized circuit depth obtained from performing
Algorithm 1 with T = 1 (that is, the MLF procedure in
Ref. [50]) and T = 2, 3, 4, 5, respectively. Specifically, the
optimized circuit depth as indicated by the red line in Fig. 5(a)
with T = 5 grows quite slowly and ranges from 3.00 to 4.05
for n ∈ [6, 50]. Accordingly, Figs. 5(b) and 5(c) show the
circuit depth reduction and execution time for each instance
with size n on average, respectively. In particular, the depth-
reduction curve for each setting T in Fig. 5(b) is calculated
from Fig. 5(a) and grows overall with small oscillations as n
increases, which can achieve as high as 63.45% for n = 50
in time less than 0.05 s when adopting T = 5. Furthermore,
Fig. 5(d) shows the overall performance of Algorithm 1 with
T = 1, 2, 3, 4, 5 on all 2300 circuit instances, where on av-
erage we can achieve depth reductions of 51.19%, 56.17%,
57.71%, 58.44%, and 58.88% over one original randomly
selected QAOA circuit instance by using times of 0.0046,

0.0090, 0.0135, 0.0178, and 0.0222 s for each T ∈ [1, 5],
respectively. Notably, the average execution time scales nearly
linearly as T increases from 1 to 5, and the average depth
obtained from T = 5 is 15.55% smaller than that from T = 1
at the expense of a 4.81× increase in time. Once again, these
results reflect the flexibility of Algorithm 1 as it can achieve
a shorter circuit depth at the expense of more execution time.
Therefore, to deal with such a QAOA circuit case one can take
Algorithm 1 with gradually increasing iteration number T to
seek the best possible results.

Finally, we point out that the expense of depth-
optimization time overhead is especially worthwhile in the
use case of QAOA since the obtained circuit needs to be
executed on the quantum hardware many times to solve the
max-cut problem and thus a shorter circuit depth obtained
from the precedent optimization procedure could save a large
amount of time in the subsequent process of running the
QAOA circuit. As a result, our depth-optimized circuits might
be executed on the scalable quantum processor with nonlocal
connectivity [62] or can act as a better starting point for
possible further circuit compilation if needed [50].
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VI. CONCLUSION

In this study we presented a systematic study of quantum
circuits over multiple-control Z-rotation gates with con-
tinuous parameters. Based on an established polynomial
representation, we derived a gate-count-optimal synthesis of
such circuits to implement any diagonal unitary matrix, which
simultaneously enables the circuit depth optimal for specific
MCZR circuits. Furthermore, we proposed practical optimiza-
tion strategies for reducing the circuit depth of any given MCZR

circuit, which can show substantial performance improvement
over prior works for typical examples in quantum computing.
Compared to the conventional study of implementing diago-
nal unitary operators over the single- and two-qubit gate set
[63–65], here we provided an alternative scheme by utilizing
a multiqubit gate set as the computational primitives, which
would match the quantum experimental progress in certain
directions, such as neutral atoms [22,23] and superconducting
systems [28,30]. In addition, note that above techniques were
introduced to deal with general cases; we point out there may
also exist other useful ideas aimed at special-case circuits. For
example, particular quantum graph states [55] or hypergraph
states [66] can be prepared with linearly many MCZR gates and
constant depth by observing their underlying lattice graphs.

A relevant practical challenge is how to adapt our con-
structed circuits to quantum hardware that has certain physical
constraints, such as limited qubit connectivity. We anticipate
that such a quantum circuit compilation problem is likely
to be addressed by borrowing ideas from previous quantum
compilation work oriented to specific physical systems with
multiqubit gates [50,67,68]. For example, the strategy of ex-
changing adjacent qubits with a SWAP gate enables an MCZR

gate that originally acts on a set of unconnected qubits to be
accomplished. Meanwhile, the gate count and circuit depth are
two cost metrics of the compiled MCZR circuit that need to be

minimized to improve error resiliency and circuit execution
time. We believe the fruits of these explorations in future
work would lead to performing experimental validation on
real quantum hardware, which would enhance the practical
relevance of the study on MCZR circuits.

Although this paper mainly focused on quantum circuits
over MCZR gates, it may help the research on other types of
circuits as well. First, the circuit-polynomial correspondence
put forward to characterize MCZR circuits extends the con-
cept of phase polynomial representation [69], again implying
that an appropriate representation could facilitate circuit syn-
thesis and/or optimization. Second, the depth-optimization
strategies introduced in Sec. IV are actually suitable for
any quantum circuit over commuting gates, such as instanta-
neous quantum polynomial-time circuits used to demonstrate
quantum advantage [70]. Third, this study sheds light on im-
plementing diagonal unitary operators over alternative gate
sets; for example, a C(k)Z (θ ) gate with k � 2 and any pa-
rameter θ in our constructed circuit can be replaced by a set
of multiple-control Toffoli gates that act on no more than k
qubits together with single-qubit Z-rotation gates [4], leading
to more types of circuit constructions and potential applica-
tions. A detailed investigation of these interesting topics is left
for future work.
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