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Generalized eigenvalue problems (GEPs) play an important role in the variety of fields including engineering,
machine learning, and quantum chemistry. Especially, many problems in these fields can be reduced to finding the
minimum or maximum eigenvalue of GEPs. One of the key problems to handle GEPs is that the memory usage
and computational complexity explode as the size of the system of interest grows. This paper aims at extending
sequential quantum optimizers for GEPs. Sequential quantum optimizers are a family of algorithms that itera-
tively solve the analytical optimization of single-qubit gates in a coordinate descent manner. The contribution
of this paper is as follows. First, we formulate the GEP as the minimization or maximization problem of the
fractional form of the expectations of two Hermitians. We then show that the fractional objective function can be
analytically minimized or maximized with respect to a single-qubit gate by solving a GEP of a 4×4 matrix. Sec-
ond, we show that a system of linear equations characterized by a positive-definite Hermitian can be formulated
as a GEP and thus be attacked using the proposed method. Finally, we demonstrate two applications to important
engineering problems formulated with the finite-element method. Through the demonstration, we have the
following bonus finding; a problem having a real-valued solution can be solved more effectively using quantum
gates generating a complex-valued state vector, which demonstrates the effectiveness of the proposed method.

DOI: 10.1103/PhysRevA.108.022429

I. INTRODUCTION

Generalized eigenvalue problems (GEPs) are expressed as

Av = λBv, (1)

where A and B are Hermitian matrices; also λ and v are
the generalized eigenvalue and generalized eigenvector, re-
spectively. GEPs play an important role in the variety of
fields, including engineering [1], machine learning [2], and
quantum chemistry [3]. In the field of engineering, finding
the lowest eigenvalue of a symmetric generalized eigenvalue
problem often appears in the finite-element approximation of
mechanical structures to estimate their dynamical properties
[4]. Many problems in machine learning can be reduced to
finding the minimum or maximum eigenvalue of (generalized)
eigenvalue problems, such as for the principal component
analysis, canonical correlation analysis, and Fisher discrim-
inant analysis [2]. A key problem is that, as the size of the
system grows, memory usage and computational complexity
explode. Actually, many works have been performed using
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supercomputers to deal with the system with several tens of
billion degrees of freedom [5,6].

Quantum computing is a promising and attractive approach
to realize high-performance computing that is significantly
faster than classical computing thanks to the capability of han-
dling an exponentially large Hilbert space. For fault-tolerant
quantum computers, the quantum phase estimation algorithm,
which can be used to calculate the ground state of a system
Hamiltonian in quantum chemistry [7,8], has already been
applied to generalized eigenvalue problems [9]. Meanwhile,
for near-term quantum computers, the variational quantum
eigensolver (VQE) [10,11], which calculates the minimal
eigenvalue of a Hamiltonian based on a classical-quantum
hybrid scheme, has been extensively studied, especially for
quantum chemistry [12,13]. VQE is a kind of the variational
quantum algorithm (VQA) [14,15], where a certain func-
tion of expectation values of observables is minimized or
maximized through a parametrized quantum circuit (PQC)
or simply an ansatz. VQAs have been applied to various
problems, including ground-state calculations [10,11,13,16],
excited-state calculations [17–20], time-evolution simulations
[21,22] for chemical calculations, partial differential equa-
tion solvers [23–25], algebraic operations such as linear
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system solvers [26,27], and principal component analysis
[28,29]. VQAs have also been applied to generalized eigen-
value problems [30,31], where the cost function derived from
the generalized Rayleigh quotient is optimized based on the
gradient-based optimizer.

The sequential quantum optimizers are a family of algo-
rithms which iterate the analytical optimizations of single-
qubit gates in a coordinate descent manner. This concept was
first studied in Ref. [32], proposing the sequential optimizer
of single-qubit gates in the PQC, particularly their rotation
angles; we call this method the Nakanishi-Fujii-Todo (NFT)
algorithm. ROTOSOLVE [33], which was proposed indepen-
dently from NFT, also optimizes the angle of a single-qubits
gate, and ROTOSELECT [33], which was proposed together with
ROTOSOLVE, optimizes the rotational angles of single-qubit
gates selecting the optimal axes from a finite discrete set of
axes. These methods were extended to the continuous opti-
mization of rotational axes, which are called the “free-axis
selection” (FRAXIS) [34] and the maximum optimization of
a single-qubit gate termed “free-quaternion selection”(FQS)
[35]. The methods exhibited better convergences compared
with the gradient-based approaches [32,35] and a recent find-
ing suggested that their behaviors with regards to the so-called
barren plateaus are similar to their gradient-based counter-
parts [35]. These methods are applicable to several problems
such as general VQE and simulation for real- or imaginary-
time evolutions, but they are limited to the case where the
objective function is in the form of the expectation of a prob-
lem Hamiltonian. In our case focusing on the GEPs in Eq. (1),
unfortunately, A must be identity; that is, the GEPs could not
be solved in the same way as the aforementioned methods.

In this paper, we extend the VQA based on the sequential
quantum optimizers, in particular focusing on FQS [35], to
solve GEPs characterized by two symmetric (more generally
Hermitian) matrices.

The contributions of this paper are as follows. First, we
reformulate the GEPs by the minimization or maximization
problem of the generalized Rayleigh quotient, which is further
reformulated in the fractional form of the expectations of
two Hamiltonians as the objective function of the VQA. We
then show that the sequential quantum optimization method is
applicable; that is, the objective function can be analytically
minimized or maximized with respect to a single-qubit gate
by solving a GEP of a 4×4 matrix.

Second, we deal with the general problem of solving a
system of linear equations (SLE), where an efficient solver
is in great demand, e.g., for solving partial differential equa-
tions (PDE) [36], and in machine learning [37,38]. We show
that the SLE problem, which is characterized by a positive-
definite Hermitian, can be formulated in a form of GEP
and thus be attacked using the proposed variational approach
mentioned above. While several studies [23,24,39] have al-
ready applied VQAs to solving an SLE derived from PDEs,
the proposed method is advantageous with respect to less
controlled-unitary gates and auxiliary qubits required owing
to expressing an SLE as a GEP.

Finally, we demonstrate two applications to engineering
problems of importance formulated with the finite-element
method [4,40]. One of the problems is for solving an SLE
derived from a Poisson equation, and the other is eigenfre-

quency analysis of a beam structure. Based on these results,
we give an estimate that a few dozen of qubits are required to
solve practical problems. Through the demonstration, we have
the following bonus finding; a problem having a real-valued
solution can be solved more effectively using quantum gates
generating a complex-valued state vector.

The rest of this paper is organized as follows. In Sec. II,
we briefly discuss the GEP, which can be solved by mini-
mizing or maximizing the generalized Rayleigh quotient. We
also give an overview of sequential quantum optimizer, which
optimizes a PQC in a coordinate descent manner. In Sec. III,
we construct the method to fully minimize the generalized
Rayleigh quotient with respect to a single-qubit gate by ex-
tending the FQS. We also give a VQA for solving an SLE in
the GEP formulation. Section IV shows the two demonstra-
tions. Finally, we conclude this study in Sec. V.

II. PRELIMINARIES

A. Generalized eigenvalue problem

In this paper, we focus on the minimum eigenvalue of the
generalized eigenvalue problem (GEP) in Eq. (1), assuming
that B ∈ CN×N is a positive-definite Hermitian matrix and A ∈
CN×N is a Hermitian matrix. To this end, it is convenient to
introduce the generalized Rayleigh quotient R defined as

R(w; A, B) := w†Aw

w†Bw
, (2)

where w is an arbitrary unit vector in CN . The minimum
eigenvalue of the GEP (1) is identical to the minimum value
of the generalized Rayleigh quotient R. Also, the minimizer
w of R is identical to the eigenvector v corresponding to
the minimum eigenvalue as explained in Appendix A. When
one is interested in the maximum eigenvalue, it is enough to
replace the minimum with the maximum over the following
discussion.

B. Overview of sequential quantum optimizers

As an optimizer of PQC, this study employs a coordinate
descent sequential optimizer which sequentially optimizes
single-qubit gates in a PQC. The reasons to employ the
sequential optimizers, in addition to their analytically com-
putable solutions, are their better convergences [15,32,34,35]
and a recent finding that their behaviors with regards to the
so-called barren plateau are similar to their gradient-based
counterparts [35]. Here, we give an overview of sequential
quantum optimizers, especially FQS [35].

Let ρ denote a quantum state prepared through a PQC from
an initial state ρ0 as follows:

ρ = UD . . .Ud . . .U1ρ0U
†
1 . . .U †

d . . .U †
D, (3)

where D is the number of parametrized single-qubit gates
and Ud (d = 1, . . . , D) is the dth parametrized single-qubit
gate. We herein omit representing fixed unitary gates that in-
clude nonlocal gates. Now, we represent the dth parametrized
single-qubit gate Ud as

Ud := qd · �ς, (4)
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where

qd =

⎛
⎜⎜⎜⎜⎜⎝

cos
(

θd
2

)
sin

(
θd
2

)
ndx

sin
(

θd
2

)
ndy

sin
(

θd
2

)
ndz

⎞
⎟⎟⎟⎟⎟⎠, (5)

and �ς = (I,−ιX,−ιY,−ιZ ) with ι the imaginary unit and X ,
Y , and Z the Pauli matrix. θd and nd = (ndx, ndy, ndz ) are the
rotational angle and axis of the dth gate, respectively. That
is, Ud is parametrized by the unit quaternion qd . Accordingly,
the quantum state is parametrized with the set of {qd}D

d=1 as
ρ = ρ({qd}D

d=1). The strategy of sequential optimization is to
repeat the exact optimization of qd for all d = 1, . . . , D. Ac-
tually, the expectation 〈H〉 can be expressed as the quadratic
form of the unit quaternion qd as follows:

〈H〉 (qd ) = q�
d S(ρ ′, H ′)qd , (6)

where

ρ ′ = Ud−1 . . .U1ρ0U
†
1 . . .U †

d−1, (7)

H ′ = U †
d+1 . . .U †

DHUD . . .Ud+1, (8)

and S(ρ ′, H ′) is a 4×4 real symmetric matrix whose (i, j)
component is defined as

(S)i j := 1
2 tr[ρ ′(ς†

i H ′ς j + ς
†
j H ′ςi )], (9)

and can be constructed from expectation values of H cal-
culated using 10 parameter sets, which we call parameter
configuration [41]. The minimizer of 〈H〉 (qd ) is the eigenvec-
tor corresponding to the minimum eigenvalue of the following
eigenvalue problem of the 4×4 matrix S(ρ ′, H ′):

S(ρ ′, H ′)qd = λqd , (10)

where λ is an eigenvalue. Thus, FQS gives the exact minimizer
of the objective function 〈H〉 with respect to qd , by solving
the above eigenvalue problem.

Because the FQS formulation gives a unified form of se-
quential quantum optimizer of PQCs [35], other sequential
quantum optimizers can also be reduced to an eigenvalue
problem. In NFT [32] (also in ROTOSOLVE [33]), the angle
around a fixed axis n of a single-qubit gate serves as the
parameter. That is, the parametrized single-qubit gate Ud is
represented as

Ud = qd · �ς = cos

(
θd

2

)
I − ι sin

(
θd

2

)
n · �σ , (11)

where �σ = (X,Y, Z ), and the quaternion qd is now restricted
to ( cos(θd/2), sin(θd/2)n�)�. Then, the expectation 〈H〉
can be written as the quadratic form of the vector cd :=
( cos(θd/2), sin(θd/2))�, as follows [35]:

〈H〉 (cd ) = c�
d

[
S00 �S0 · n

�S0 · n n�S̃n

]
cd , (12)

where �S := (S01, S02, S03) and S̃ is the 3×3 matrix consisting
of the lower right components of S. NFT minimizes the ob-
jective function 〈H〉 with respect to the angle of a single-qubit
gate, through the eigenvalue problem of the matrix in Eq. (12).

In ROTOSELECT [33], a finite discrete set of axes is prepared
and the angle of the single-qubit gate is tried to be updated
with respect to each axis in the set by using NFT. Then, the
angle and axis that give the minimum objective function are
selected. Thus, ROTOSELECT adjusts the axis of the single-
qubit gates in a discrete way. In FRAXIS [34], the axis of a
single-qubit gate is to be optimized under the condition that
its angle is fixed to a constant (typically, π ). That is, the
parametrized single-qubit gate Ud is represented as

Ud = qd · �ς = −ιnd · �σ . (13)

The quaterinion qd is now restricted to (0, nd )�. Then, the
expectation 〈H〉 can be written as the quadratic form of the
vector nd , as follows [34]:

〈H〉 (nd ) = nd S̃nd . (14)

FRAXIS minimizes the objective function of the form 〈H〉
with respect to the axis of a single-qubit gate through the
eigenvalue problem of the 3×3 matrix S̃.

To solve the eigenvalue problem, the FQS formulation re-
quires solving a quartic equation to obtain the (local) optimal
gate, while the FRAXIS and NFT require, respectively, solving a
cubic and a quadratic equation. All of these equations for FQS,
FRAXIS, and NFT can be solved analytically [42].

III. METHOD

A. Extension of FQS to fractional objective function

The problem of finding the minimum eigenvalue of Eq. (1)
is reduced to minimization of the generalized Rayleigh
quotient (2). Here we take the approach using a quantum
computer to solve this problem; then w ∈ CN in Eq. (2) is
replaced with a quantum state vector |ψ〉 of n-qubit system,
and the generalized Rayleigh quotient is expressed as

F (ρ) := tr(Aρ)

tr(Bρ)
, (15)

where ρ = |ψ ({qd}D
i=d )〉〈ψ ({qd}D

d=1)|. Note that the required
number of qubits is O(log2 N ), which is thus the advantage
of using quantum computation. If log2 N is not an integer,
the matrices A and B can be modified so that their dimen-
sions become 2n×2n where n = �log2 N	 as discussed in
Appendix B.

In the formulation of sequential quantum optimization to
repeatedly optimize qd , the expectations can be expressed as
Eq. (6), and thus Eq. (15) is rewritten as

F (qd ) = q�
d S(ρ ′, A′)qd

q�
d S(ρ ′, B′)qd

, (16)

where qd is the single-parameter vector (5). Also S(ρ ′, A′) and
S(ρ ′, B′) are the matrices whose components are calculated
by Eq. (9) for A and B, respectively. Because Eq. (16) takes
the same form as the Rayleigh quotient (2), argminqd

F (qd )
is identical to the eigenvector corresponding to the minimum
eigenvalue of the following four-dimensional GEP:

S(ρ ′, A′)pi = λiS(ρ ′, B′)pi, (17)
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Algorithm 1 Sequential optimizer for fractional objective
function.

Input: PQC structure, Hermitians A and B, tolerance εtol.
Output: Optimized parameters {q∗

d}D
d=1.

1: Set initial parameters {qd}D
d=1 randomly.

2: Set Fcurr ← 0, Fprev ← 0, ε ← 1
3: while ε > εtol do
4: for d in [1, D] do
5: Construct the matrix S(ρ ′, A′) and S(ρ ′, B′).
6: Update qd by solving Eq. (17).
7: Set Fprev ← Fcurr

8: Set Fcurr ← λ

� λ is the minimum or maximum eigenvalue.
9: Set ε ← ‖Fcurr − Fprev‖/‖Fprev‖
10: return {qd}D

d=1

where λi is the ith eigenvalue and pi is the ith unit eigenvector.
Assuming that the eigenvalues are indexed in the ascending
order, minqd

F (qd ) = λ1 and argminqd
F (qd ) = p1.

The entire procedure of the proposed method is shown in
Algorithm 1. The parameters of the single-qubit gates in a
PQC are sequentially updated by solving the GEP (17) until
the value of the objective function becomes less than a given
tolerance value εtol. In this study, the order of optimizing the
single-qubit gates in line 4 in Algorithm 1 is simply chosen as
the ascending order, i.e., from top left to bottom right in the
circuit diagram of PQC. We call the procedure from line 3 to
9 in Algorithm 1 an iteration, which updates all single-qubit
gates once.

Since the matrices S(ρ ′, A′) and S(ρ ′, B′) are constructed
by expectation values of A and B, they will include the sam-
pling errors, i.e., shot noises. Due to sampling errors, the
matrix S(ρ ′, B′) can be no longer positive definite when the
number of sampling is relatively small. This will cause the nu-
merical instability in solving Eq. (17). Thus, if the minimum
eigenvalue of S(ρ ′, B′), βmin, is negative, we add (ε − βmin)I
to S(ρ ′, B′) where ε is a small positive constant. This ensures
that Eq. (17) is well posed although the update direction of
parameters is slightly changed.

Let us assume that, through this sequential optimization,
we find the set of parameters {q∗

d}D
d=1 that exactly minimizes

F (ρ); this gives us the solution of GEP in the form of quantum
state as |v〉 = |ψ ({q∗

d}D
i=d )〉. Note that O(N ) measurements are

required to retrieve all the components from the quantum state
|v〉. Hence, as discussed in [43], the proposed method should
be used in the case where only some characteristic quantities
about the solution are of interest; typically, such quantity is
represented by 〈v|M|v〉 with M a Hermitian matrix, which
can thus be efficiently computed on a quantum computer.
Actually, in Sec. IV, we provide two examples where this
assumption makes sense from an engineering point of view.

Lastly, note that, because the FQS formulation gives a uni-
fied form of sequential optimizer of PQCs [35], other sequen-
tial approaches, such as NFT [32], ROTOSOLVE/ROTOSELECT

[33], and FRAXIS [34], can also be applied to solve the GEP
problem in the similar approach. We indeed use them to com-
pare with FQS in the experiments.

B. Asymptotic behavior of a parameter update
under sampling errors

We solve Eq. (17) to update parameters of a single-qubit
gate. Since the matrix S(ρ ′, A′) and S(ρ ′, B′) include sampling
errors under a finite number of shots, the resulting eigenvalues
and eigenvectors will also include fluctuation. Here, we sum-
marize the asymptotic behavior of eigenvalues of Eq. (17). We
provide the detailed analysis in Appendix C. In the following,
we consider the minimization of the objective function, i.e.,
the minimum eigenvalue of Eq. (17).

Let ns be the number of shots per individual quantum
circuit. Since S(ρ ′, A′) and S(ρ ′, B′) are, respectively, con-
structed by the linear combination of expectation values of A
and B calculated by several parameter sets, their perturbations
can be represented as

S(ρ ′, A′) = S(ρ ′, A′)(0) + εS(ρ ′, A′)(1), (18)

S(ρ ′, B′) = S(ρ ′, B′)(0) + εS(ρ ′, B′)(1), (19)

where ε is O(1/
√

ns), the superscript (0) represents a quantity
without any perturbation and (1) represents one with pertur-
bation. By considering the second-order asymptotic expansion
of eigenvalues λi and eigenvectors pi, we obtain

E[λi] = λ
(0)
i + ε2λ

(0)
i E

[(
p(0)�

i S(ρ ′, B′)(1) p(0)
i

)2]
− ε2E

[
p(1)�

i

(
S(ρ ′, A′)(0) − λ

(0)
i S(ρ ′, B′)(0)

)
p(1)

i

]
.

(20)

Therefore, the estimation of the objective function value F by
the minimum eigenvalue λi has the bias that vanishes asymp-
totically no slower than or equal to ε2, i.e., O(1/ns ). Similarly,
we can estimate the objective function value after update of
parameters using the perturbed eigenvector, as follows:

E[F (p1)]

≈ λ
(0)
1 + ε2E

[
p(1)�

1

(
S(ρ ′, A′)(0) − λ

(0)
1 S(ρ ′, B′)(0)

)
p(1)

1

]
� λ

(0)
1 + ε2(λ(0)

max − λ
(0)
1

)
E

[
p(1)�

1 S(ρ ′, B′)(0) p(1)
1

]
, (21)

where λmax is the maximum eigenvalue. The second term is
related to the magnitude of the imperfect parameter update
due to sampling errors and vanishes asymptotically no slower
than or equal to ε2. This equation indicates that the magnitude
of the imperfection depends on the difference between the
maximum and minimum eigenvalues of Eq. (17), i.e., the
maximum and minimum objective function values reachable
by changing parameters of the single-qubit gate to be updated.
Therefore, when the difference is large, the objective function
after parameter update can become large, and vice versa.

C. Generalized eigenvalue problem for a system
of linear equations

Here we consider a system of linear equations (SLE)

Ku = f , (22)

where K ∈ CN×N is a given positive-definite matrix, u ∈ CN

is an unknown vector, and f ∈ CN is a given vector. Without
loss of generality, we assume that ‖ f‖ = 1. Such SLE arises
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in a variety of applications including partial differential equa-
tion [36] and machine learning [37,38].

The problem of solving the SLE can be formulated as a
GEP as follows:

f f †v = λKv, (23)

where v ∈ CN is an eigenvector and λ ∈ R is the correspond-
ing eigenvalue. Here, f f † corresponds to A in Eq. (15). Since
f f † is a rank-1 matrix, this GEP has only one nonzero and
nondegenerate eigenvalue; the other N − 1 eigenvalues are all
zeros. Using the nonzero eigenvalue λ̂ and the corresponding
eigenvector v̂, the GEP reads as

K

(
λ̂v̂

f †v̂

)
= f . (24)

Since λ̂ is the nonzero eigenvalue, it is ensured that f †v̂ �= 0
from Eq. (23). Substituting Eq. (24) into (22), we obtain

K

(
u − λ̂v̂

f †v̂

)
= 0. (25)

Since K is positive definite, i.e., invertible, we obtain

u = λ̂v̂

f †v̂
, (26)

meaning that the solution of the SLE is given by the nonzero
(maximal) eigenvalue and its corresponding eigenvector of the
GEP (23).

Therefore, we can employ a quantum computer to solve
the SLE (22), by formulating it as the GEP (23) and using
the method described in Sec. III A. That is, we represent
f by a quantum state vector | f 〉 of �log2 N	-qubit system,
which leads to a GEP (1) with A = | f 〉〈 f | and B = K . Note
that the expectation tr(Aρ) = tr(| f 〉〈 f |ρ) can be evaluated as
the fidelity of ρ and | f 〉. Let us assume that the algorithm
described in Sec. III A yields the optimal {qd} and accord-
ingly the optimal |ψ ({qd})〉 = |v̂〉, which is the quantum-state
representation of the optimal v̂. This gives us the optimal
|u〉 = u as well, if we are just interested in the solution up
to the constant. Otherwise, to have the exact solution u, we
additionally need to calculate the value of f †v̂ = 〈 f |ψ ({qd})〉.

Note that, in contrast to the variational quantum algorithms
for solving an SLE [23,26], the proposed method does not
require any auxiliary qubit during the optimizing process of
the PQC. A brief explanation is as follows. In Ref. [26],
the auxiliary qubit is required to perform the Hadamard test
and Hadamard-overlap test to update the parameters; also
Ref. [23] needs to prepare the entangled state (|0〉| f 〉 +
|1〉|ψ〉)/

√
2, with |ψ〉 the state generated by a PQC, in order

to evaluate the inner product 〈 f |ψ〉 and accordingly the cost
for updating the parameters. On the other hand, as described
above, the proposed method generates v̂ = |v̂〉 without any
auxiliary qubit. If one needs u = |u〉, the proposed method
also requires an auxiliary qubit to calculate the inner product
f †v̂ = 〈 f |ψ〉 on the quantum device, but this operation is
necessary only once after the entire optimization process.

D. Complexity and resource

Let us assume that A and B are band matrices with the
bandwidth of kA and kB, respectively, which typically appear
in the problem of finite-element method (FEM). The pro-
posed method calculates the expectation values of A and B,
which requires O(nk) kinds of quantum circuits using the
extended Bell measurement (XBM) technique [44], where
n = �log2 N	 and k := max(kA, kB). An overview of XBM
is given in Appendix D. Suppose the number of shots per
quantum circuit is s. Then, the total number of shots required
to calculate expectation values of A and B is O(nks).

Also, as mentioned below Eq. (15), the proposed method
has a quantum advantage that it uses only �log2 N	 qubits to
represent a vector in CN . Thus, even for practical problems
using the FEM with tens or hundreds of thousands of degrees
of freedom [45–47], it requires only less than 20 qubits.

To encode the right-hand side vector f into a quantum
state | f 〉, we have to design the so-called oracle Uf that
prepares | f 〉 = Uf |0〉⊗n. When f corresponds to a relatively
simple input representing such as a point source or uniform
input, the oracle can be intuitively designed using Pauli-X
and Hadamard gates, as we describe in Sec. IV A 2. In general
cases, on the other hand, some amplitude encoding techniques
[48,49] are required.

IV. NUMERICAL EXPERIMENTS

In the following, we provide numerical experiments. Un-
less otherwise stated, we used the state-vector simulator of
QISKIT [50].

A. Solving the Poisson equation

1. Problem statement

We apply the proposed method to the problem of solving
a partial differential equation (PDE). Among PDEs, we here
focus on the Poisson equation, which appears in versatile
applications including steady-state heat transfer, electrostatics
[51], and computational fluid dynamics [52,53]. Before pro-
ceeding, recall that the proposed method obtains the solution
vector as a quantum state |ψ{qd}〉, meaning that practically
we can retrieve only a few characteristic quantities from it.
For the case of PDE problem, such partial information is for
instance the surface temperature of a material, which indeed
can be calculated from a few components of the entire solution
vector of the Poisson equation.

Let  ⊂ Rm denote an open bounded set where m is the
number of spatial dimensions. The Poisson equation governs
the state field u(x) ∈ C at the spatial coordinate x ∈ , which
behaves as

−∇2u(x) = f (x) for x ∈ , (27)

where ∇ is the gradient operator with respect to x and f (x) :
 → C is a given function. We impose the Dirichlet boundary
condition on ∂ as

u(x) = 0 on x ∈ ∂. (28)
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Discretizing the Poisson equation by FEM [4,40] yields an
SLE written as follows:

KU = F, (29)

where K ∈ RN×N is a positive-definite matrix called the stiff-
ness matrix; also, U ∈ CN and F ∈ CN are the discretized
vectors of u(x) and f (x), respectively. N is the number of
nodes of the finite-element mesh. The discretization procedure
by FEM is detailed in Appendix E 1.

The SLE (29) has the form of Eq. (22) and, thus, it can be
formulated as a GEP and solved using a quantum computer.
The procedure is summarized in Algorithm 1; in our case,
A = FF† and B = K . In particular, because K is a band ma-
trix, the expectation value tr(Bρ) = tr(Kρ) can be efficiently
calculated by XBM [44]. Also, due to the linearity of Eq. (29),
we can set ‖F‖ = 1 to well define the quantum state |F〉.
Then, assuming that |F〉 is efficiently prepared by a unitary
UF , i.e., |F〉 = UF |0〉⊗n, we can use the inversion test [54] to
calculate tr(Aρ) = tr(|F〉〈F|ρ).

Here, we focus on the one-dimensional Poisson equa-
tion discretized by the first-order elements whose lengths are
uniformly 1. We use 32 = 25 nodes for discretization, which
requires 5 qubits. As a test case, we herein set the right-hand
side of the Poisson equation, f (x), to a step function given in
the form of quantum state as

|F〉 = 1

2n/2

N−1∑
j=0

(−1) jn−1 | j〉, (30)

where jn−1 is the value of the most significant bit (MSB) of
the unsigned binary representation of j. This quantum state
|F〉 can be efficiently prepared by the the following unitary
UF :

UF = H⊗n(X ⊗ I⊗(n−1)). (31)

Note that, since |F〉 is a real vector in R2n
and K is a real

matrix, the solution of this problem also lies in the real space.

2. Results and discussion

(a) Dependency of results on initial parameters. This part
shows the dependency of results on the initial parameters.

We applied the proposed method with FQS, FRAXIS, RO-
TOSELECT, and NFT to solving the above-described Poisson
equation. For NFT, we use the Ry gate Ry(θ ) = e−iθY with Y
the Pauli-Y matrix, for all parametrized single-qubit gates,
where the angles of these gates are randomly initialized. For
FRAXIS, the rotational axes of all single-qubit gates were set
randomly on the unit spherical surface. For FQS and ROTOS-
ELECT, we employed two initialization strategies termed the
real-space initialization and the complex-space initialization.
In the real-space initialization, the rotational axes of all single-
qubit gates were set to y axis in the beginning of VQA,
while their initial angles were randomly generated both for
ROTOSELECT and FQS. In the complex space initialization for
ROTOSELECT, the initial rotational axis of single-qubit gates
was randomly selected from x, y, or z axes and the angles of
the gates also randomly initialized. The complex-space initial-
ization for FQS randomly set initial unit quaternions; that is, a
quaternion is sampled uniformly from the three-dimensional

FIG. 1. Alternating layered PQC for five qubits.

unit hyper-sphere. We employed the alternating layered PQC
[55] shown in Fig. 1 and set the number of layers to L = 2.
The 30 independent trials with both initializations were per-
formed to examine the statistical behaviors of the proposed
method.

Figure 2 shows box plots of the relative errors of the re-
sulting objective function value after optimization, compared
to the exact minimum value F∗. FQS with the complex-space
initialization clearly exhibits better capability of obtaining
lower objective function values, which implies that the use
of complex space is effective even for problems involving the
solution lying in the real space.

To comprehend the behaviors of searching in the complex
space more clearly, we analyzed the distance of the state
vector during the optimization process from the real space. Let
ri and ci denote the real and imaginary parts of the ith complex
amplitude of the state vector, respectively. When the state
vector lies in the real space up to a global phase, all the points
{(ri, ci )}2n−1

i=0 on the complex plane lie in a straight line. Thus,
the distance from the state vector to the real space can be eval-
uated by the distance from the point set {(ri, ci )}2n−1

i=0 to a line.
Let X be a matrix in R2n×2 whose first and the second columns
are (r0, . . . , r2n−1)� and (c0, . . . , c2n−1)�, respectively. Then,
the distance from the point set {(ri, ci )}2n−1

i=0 to a line in the
complex plane can be calculated as the minimum eigenvalue
of X �X based on the principal component analysis (PCA).
Using the two eigenvalues denoted by μ1 > μ2, we define the

FIG. 2. Box plots of the relative error of the resulting objec-
tive function with respect to the exact minimum value F∗. VQA
were conducted on the alternating layered PQC of L = 2. The 30
independent trials were performed for each of the real- and the
complex-space initialization methods.
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FIG. 3. The distance from the state vector to the real space for the result of (a) FQS with real-space initialization, (b) FQS with complex-space
initialization, and (c) FRAXIS. The blue plots are the median values of the top 30% solutions among the 30 independent trials and the blue shaded
ranges illustrate the 25th and 75th percentiles. The red plots are the median values of the worst 30% solutions among the trials and the red
shaded regions represent the 25th and 75th percentiles.

metric of the distance from the state vector to the real space as

L := μ2

μ1 + μ2
. (32)

Figure 3 shows the histories of the distance L of the state
vector during the optimization by FQS and FRAXIS for the top
30% and the worst 30% trials among 30 trials in terms of
the resulting objective function values. Note that the number
of iterations until convergence is not necessarily consistent
among 30 trials. Hence, we completed the shorter trajectories
by the final value at the last iteration such that the lengths
of the trajectories were equalized. As shown in Fig. 3(a),
the top 30% trials starting from the real-space initialization
used the complex space in optimization process, while the
states of the worst 30% trials stayed in the real space. This
result implies that the complex space may provide a bypass
between the initial and the optimal states even though they are
both in the real space. On the other hand, Fig. 3(b) indicates
that the worst 30% trials with the complex-space initialization
had the slightly larger distance to the real space than the top
30% trials, which deteriorated the optimization. Figure 3(c)
shows that the top 30% trials by FRAXIS converged in the real
space while the worst 30% trials by FRAXIS got stuck with the
significantly large distance to the real space. Compared to FQS

and FRAXIS, we also observed that the distances to the real
space were hardly changed during optimization by ROTOSE-
LECT. Thus, the complex space did not bring benefits to the
ROTOSELECT optimization, which implies that the continuous
adjustment of the rotational axis, rather than the discrete one,
is important to make use of the complex space for enhancing
the trainability of PQC.

(b) Dependency of results on the number of layers. Next,
we examined the dependency on the number of layers of
PQCs. Here, we employed two kinds of PQCs: one is the
alternating layered PQC in Fig. 1 and the other is the cas-
cading block PQC in Fig. 4. The 30 independent trials for
NFT, ROTOSELECT, FRAXIS, and FQS were performed for each
condition. For ROTOSELECT and FQS, the complex-space ini-
tialization was used.

Figure 5 shows box plots of the relative errors of the ob-
jective function with respect to the exact minimum value for
alternating layered and cascading block PQCs. As shown in
Fig. 5(a), the benefits to use the complex search space were

conspicuous when the number of layers is relatively small
while the converged objective function values obtained by
FQS and NFT becomes closer as the number of layers becomes
larger. This is because the expressibility of PQCs become high
enough to express the solution even in the real space. Com-
pared with FRAXIS, FQS led to better solutions, which implies
that the simultaneous optimization of angles and axes of gates
contributes to the efficient shortcut between the initial and
the target states using the complex space. On the other hand,
Fig. 5(b) shows that the objective function values converged
by FQS, FRAXIS, and NFT exhibit no significant differences,
which means that the effectiveness of the use of the complex
space depends on PQCs. Therefore, we conclude that the
continuously controllable angle and axis promotes the effec-
tive use of the complex space, which leads to higher-quality
solutions especially with the shallow depth for a certain PQC
structure. The feature of the PQC that can effectively bring
out the benefits to use the complex space should be identified
in the future research.

(c) Evaluation by the QASM simulator. Here, we examined
the proposed method under finite-shot settings to study the ef-
fect of sampling errors by the QASM simulator in QISKIT [50].
To construct the matrices S(ρ ′, A′) and S(ρ ′, B′) in Eq. (17),
we used the optimal parameter configuration, which can mit-
igate the sampling errors due to the geometrical symmetry of
parameter configurations [41]. Although Ref. [41] obtained
the optimal parameter configuration for eigenvalue problems,
we confirmed that it is also applicable for generalized eigen-
value problems, as stated in Appendix F. We employed the
alternating layered PQC in Fig. 1 with two layers. We used

FIG. 4. Cascading-block PQC for 5 qubits.
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FIG. 5. Box plots of the relative error between the resulting ob-
jective function and the exact minimum value F∗ for (a) alternating
layered PQC and (b) Cascading block PQC. The 30 independent
trials were performed for each setting of the number of layers.

the complex-space initialization for ROTOSELECT and FQS. We
set the maximum number of iterations of the proposed method
to 200 and performed the 10 independent trials for NFT, ROTO-
SELECT, FRAXIS, and FQS.

Figure 6 shows the history of the moving average of the
maximum eigenvalue of Eq. (17) with the window length of
10. We observe the history became smoother as ns increased.
This history indicated that the result of FQS reaches larger
eigenvalues than those of the other optimizers, which again
demonstrated the benefits to use the complex search space.

We also observe that the maximum eigenvalues exceeded
the exact optimal value shown by dashed-line several times.
This would be because the eigenvalue whose matrix compo-
nents are estimated by finite measurement outcomes includes
the bias as discussed in Sec. III B. Figure 7 shows the history
of the objective function value F , which is reevaluated by the

state-vector simulator for the parameter history of each 10 in-
dependent trials in Fig. 6. As ns increased, the errors between
the estimated objective function value, i.e., the maximum
eigenvalue in Fig. 6 and the actual objective function value
in Fig. 7 became small. We also observed that the advantage
of FQS over NFT was not distinct for ns = 104. This would be
because the effect of sampling errors on the objective function
after parameter update in FQS is larger than that in NFT due
to the larger difference between the maximum and minimum
eigenvalues in FQS compared to NFT in Eq (21), which comes
from that fact that the variational space of FQS includes that of
NFT. That is, FQS has more potential to improve the objective
function, but also has a susceptibility to sampling errors. In
this study, we set the same number of shots to measure all
quantum circuits for simplicity. We hope to conduct our future
work to allocate the optimal number of shots for each quantum
circuit to mitigate the sampling errors.

B. Eigenfrequency problem of a linear elastic solid

1. Problem statement

Next, let us consider the problem of finding the lowest
eigenfrequency of a linear elastic solid, which is important
in engineering to design mechanical structures for maximally
improving their dynamic behaviors [56]. Because this appli-
cation focuses on finding the lowest eigenfrequency that is
obtained as the minimum of the objective function by the
proposed method, one does not have to retrieve all the com-
ponents of the optimized quantum state |ψ ({qd})〉.

Let  ⊂ Rm denote an open bounded set where m is
the number of spatial dimensions. The eigenvalue problem
of a linear elastic solid occupying  ⊂ Rm consists of the
stress equilibrium equation, the constitutive law, and the
displacement-strain relationship, which are respectively given
as

∇ · σ(x) = −�ω2u(x),

σ(x) = C : ε(x),

ε(x) = 1
2 (∇u + ∇u�). (33)

Here, x ∈  is the spatial coordinate, � is the density of the
solid, ω is the eigenfrequency, u ∈ Rm is the displacement
field, σ is the stress tensor, C is the elastic tensor, and ε is the
strain tensor. The operator : represents the double-dot product,
which acts as C : ε = Ci jklεkl with the Einstein’s summation

FQS

FRAXIS

ROTOSELECT

NFT

FIG. 6. Histories of the moving average of the maximum eigenvalue of Eq. (17) with the window length of 10 for (a) ns = 104 and
(b) ns = 105. ns is the number of shots for individual quantum circuit. Plots represent the median value and shaded ranges represent ranges
from 25- to 75-percentiles of the 10 independent trials. Dashed-line represents the exact optimal value of the objective function.
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FQS

FRAXIS

ROTOSELECT

NFT

FIG. 7. Histories of the moving average of the objective function value F with the window length of 10, which is reevaluated by the
state-vector simulator for the parameter history of each 10 independent trials in Figs. 6(a) and 6(b). Plots represent the median value and
shaded ranges represent ranges from 25th to 75th percentiles of the 10 independent trials. Dashed line represents the exact optimal value of the
objective function.

convention. Assuming that the solid is an isotropic material,
the elastic tensor can be represented using the Young’s modu-
lus E and the Poisson ratio ν as

Ci jkl = Eν

(1 + ν)(1 − 2ν)
δi jδkl + E

2(1 + ν)
(δikδ jl + δilδ jk ),

(34)

where δi j is the Kronecker’s delta. The Young’s modulus
represents the modulus of elasticity in tension or compression
of a solid material. The Poisson ratio, which is in the range of
−1 < ν < 0.5, represents a measure of the deformation of a
material in directions perpendicular to the specific direction of
loading. These equations compose the governing equation of
the displacement field u. We consider that the Dirichlet bound-
ary condition is imposed on the boundary �D ⊂ ∂ as

u(x) = 0 on x ∈ �D. (35)

Discretizing this governing equation by FEM [4,40] yields a
GEP as follows:

KU = λMU , (36)

where K ∈ R(Nm)×(Nm) is the stiffness matrix, M ∈
R(Nm)×(Nm) is the mass matrix, U ∈ RNm is the displacement
field vector, and λ = ω2 is the eigenvalue. The discretization
procedure by FEM is detailed in Appendix E 2. Both K and
M are positive definite. Hence, the proposed method can be
applied to analyzing the eigenfrequency of a linear elastic
solid. In particular, tr(Bρ) = tr(Mρ) and tr(Aρ) = tr(Kρ)
can be evaluated by XBM [44] as described before.

In this paper, we focus on the eigenvalue problem of a
two-dimensional beam structure in the plain stress shown in
Fig. 8. This beam structure is discretized using the first-order
quadrilateral elements with Nx × Ny nodes where Nx is the
number of nodes along the x axis and Ny is the number

FIG. 8. Simulation model of a linear elastic solid. Both sides are
fixed.

of nodes along the y axis. Since both sides are fixed, the
number of degrees of freedom is 2(Nx − 2)Ny, which results
in the required number of qubits n = �log2 (2(Nx − 2)Ny)	 =
1 + �log2 ((Nx − 2)Ny)	. Here, we set W = 1, H = 3/17,
Nx = 18, and Ny = 4, which leads to n = 7. The nodes of the
finite elements are numbered from bottom left to top right in
Fig. 9, and the binary representation of the node number is
mapped to the computational basis of qubits. Note that the
order of numbering and its mapping into qubits affect on the
feasible solution generated by a PQC; this design problem is
open for future work.

The Young’s modulus and the Poisson ratio were, respec-
tively, set to 200 GPa and 0.3. The material density � was set
to 7850 kg/m3. These settings are typical for iron. Figure 9
illustrates the deformation mode corresponding to the ground
state whose eigenvalue λ is 2.55×107 1/s2 and the eigenfre-
quency ω/(2π ) = √

λ/(2π ) is 8.04×102 Hz. Note that the
solution, i.e., the displacement vector u of this problem, takes
real values.

2. Results and discussion

Here, we employed the alternating layered PQC in Fig. 1
and used FQS, FRAXIS, and NFT. The 30 independent trials were
performed for each method, and the complex-space initializa-
tion was used for FQS.

Figure 10 shows histories of the relative error of the objec-
tive function value F to the exact minimum value F∗, which
were obtained from independent 30 optimizations. To calcu-
late the median and percentiles, we took the same statistical
treatment as described in Sec. IV A 2. This figure indicates
that half of trials of FQS and all trials of NFT and FRAXIS got
stuck in poor local optima where the relative errors are larger

FIG. 9. Deformation mode corresponding to the ground state.
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FQS

FRAXIS

NFT

FIG. 10. History of the relative error of the objective function
value F to the exact minimum value F∗. Plots represent the me-
dian value and shaded ranges represent ranges from 25th to 75th
percentiles.

than 1. Nonetheless, the figure shows that the quarter of trials
of FQS obtained much lower objective function values with
the relative error of around 0.1. Thus, we again conclude that
simultaneous and continuous optimization of angles and axes
of gates is essential to fully exploiting the advantage to use
the complex space. However, we actually observed that the
many trials got stuck in poor local minima even when using
this method (i.e., FQS with complex-valued initialization). We
hope to address to construct a PQC structure which is suitable
for such engineering problems in our future research.

V. CONCLUSIONS

This paper proposed a VQA for calculating the minimum
or maximum eigenvalue of a GEP characterized by Hermitian
matrices, based on sequential quantum optimization tech-
niques. First, we formulated the GEP as the minimization
problem of the generalized Rayleigh quotient, which is re-
formulated in the fractional form of the expectations of two
Hermitians as the objective function of the VQA. We then
showed that the objective function can be analytically mini-
mized with respect to a single-qubit gate by solving GEP of a
4×4 matrix. Second, we showed that an SLE characterized by
a positive-definite matrix can be formulated as a GEP and thus
be attacked using the proposed method. Finally, we demon-
strated applications to two important engineering problems
formulated with FEM; one is for solving an SLE derived from
a Poisson equation, and the other is eigenfrequency analysis
of a linear elastic solid. Through the demonstration, we found
that a problem having a real-valued solution can be solved
more effectively using quantum gates generating a complex-
valued state vector. There are several open problems including
how to appropriately assign the ordering of optimization of
single-qubit gates in PQC; to solve the eigenfrequency prob-
lem of a general elastic solid, how to suitably make numbering
and mapping of finite-element nodes into qubits; how to con-
struct a PQC suitable for exploiting the complex Hilbert space
to efficiently solve real-valued engineering problems. Also, as

a future work we plan to determine an optimal number of shots
for each quantum circuit for mitigating the sampling errors.
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APPENDIX A: MINIMUM AND MAXIMUM
OF RAYLEIGH QUOTIENT

Here, we consider to find w that minimizes or maximizes
the generalized Rayleigh quotient R(w; A, B) in Eq. (2). The
following theorem generalizes the previously known fact that
holds when A and B are real-valued positive-definite matrices,
e.g., see [2].

Theorem 1. Let A ∈ CN×N and B ∈ CN×N be a Her-
mitian and a positive-definite Hermitian, respectively, and
let (λmin, vmin) and (λmax, vmax) denote the minimum and
maximum eigenvalue-eigenvector pairs of the generalized
eigenvalue problem Av = λBv, respectively. Then, it holds
that

λminw
†Bw � w†Aw � λmaxw

†Bw ∀ w ∈ CN , (A1)

λmin = min
w

R(w; A, B) s.t. w �= 0, (A2)

λmax = max
w

R(w; A, B) s.t. w �= 0, (A3)

where R(A, B; w) is the generalized Rayleigh quotient defined
as

R(w; A, B) := w†Aw

w†Bw
. (A4)

Proof. We first prove that Eq. (A1) holds by contradiction.
Let us assume that w†Aw < λminw

†Bw. Then, it holds that

w′†(B−1/2AB−1/2 − λminI )w′ < 0, (A5)

where w′ = B1/2w, and it is ensured that B1/2 and B−1/2 exist
because B is positive definite. Equation (A5) implies that
the minimal eigenvalue of B−1/2AB−1/2 is lower than λmin.
However, this contradicts that λmin is the minimal eigenvalue
because the eigenvalues of B−1/2AB−1/2 correspond to those
of Av = λBv, and consequently λminw

†Bw � w†Aw. Simi-
larly, we obtain w†Aw � λmaxw

†Bw, which proves Eq. (A1).
Suppose w �= 0. Since B is positive definite, w†Bw is pos-

itive. Dividing Eq. (A1) by w†Bw, we obtain

λmin � R(w; A, B) � λmax. (A6)

That is, the generalized Rayleigh quotient is bounded by λmin

and λmax. Furthermore, it holds that λmin = R(vmin; A, B) and
λmax = R(vmax; A, B), which proved Eqs. (A2) and (A3). �

APPENDIX B: ENLARGEMENT OF MATRICES A
AND B FOR THE n-QUBIT SYSTEM

Recall that we focus on a generalized eigenvalue problem
(GEP) in Eq. (1) assuming A ∈ CN×N is a Hermitian matrix
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and B ∈ CN×N is a positive-definite Hermitian matrix. The
proposed method deals with the state vector of n-qubit system
to represent the eigenvectors v ∈ CN of a GEP. When log2 N
is not an integer, we introduce enlarged matrices Ã ∈ C2n×2n

and B̃ ∈ C2n×2n
to solve a GEP with the n-qubit system. In the

following, we consider two cases depending on the eigenvalue
of interest.

(a) When λmin < 0 or λmax > 0 is the eigenvalue of in-
terest. We introduce the enlarged matrices Ã ∈ C2n×2n

and
B̃ ∈ C2n×2n

defined as

Ã :=
[

A ON×(2n−N )

O†
N×(2n−N ) O(2n−N )×(2n−N )

]
, (B1)

B̃ :=
[

B ON×(2n−N )

O†
N×(2n−N ) I(2n−N )×(2n−N )

]
, (B2)

where I(2n−N )×(2n−N ) represents (2n − N )×(2n − N ) identity
matrix, and O(2n−N )×(2n−N ) and ON×(2n−N ) represents (2n −
N )×(2n − N ) and N×(2n − N ) zero matrices, respectively.
Considering the GEP expressed as

Ãṽ = λB̃ṽ, (B3)

we obtain

Av = λBv,
(B4)

0 = λv′,

where ṽ = (v�, v′�)�. Equation (B4) means that the eigen-
values of the original GEP in Eq. (1) are also eigenvalues of
Eq. (B3) with the corresponding eigenvectors ṽ = (v�, 0�)�.
Additionally, λ = 0 is also an eigenvalue of Eq. (B3) where
the corresponding eigenvector is ṽ = (0�, v′�)�. When we
are interested in the minimum eigenvalue λmin < 0 (the max-
imum eigenvalue λmax > 0) of the original GEP in Eq. (1),
it is still the minimum (maximum) eigenvalue of the GEP in
Eq. (B3). Therefore, we can minimize (maximize) the gen-
eralized Rayleigh quotient R(w̃; Ã, B̃) where w̃ ∈ C2n

can be
represented by a state vector of n-qubit system.

(b) When λmin > 0 or λmax < 0 is the eigenvalue of in-
terest.. We introduce the enlarged matrices Ã ∈ C2n×2n

and
B̃ ∈ C2n×2n

defined as

Ã :=
[

A ON×(2n−N )

O†
N×(2n−N ) I(2n−N )×(2n−N )

]
, (B5)

B̃ :=
[

B ON×(2n−N )

O†
N×(2n−N ) εI(2n−N )×(2n−N )

]
, (B6)

where ε is a constant. Considering the GEP in Eq. (B3), we
obtain

Av = λBv,
(B7)

v′ = λεv′,

where ṽ = (v�, v′�)�. Equation (B7) means that the eigen-
values of the original GEP in Eq. (1) are also eigenvalues of
Eq. (B7) with the corresponding eigenvectors ṽ = (v�, 0�)�.
Additionally, λ = 1/ε is also an eigenvalue of Eq. (B3)
where the corresponding eigenvector is ṽ = (0�, v′�)�. When
we are interested in the minimum eigenvalue λmin > 0, a
sufficiently small constant ε > 0 keeps λmin to be the min-
imum eigenvalue of GEP in Eq. (B3). In contrast, when
we are interested in the maximum eigenvalue λmax < 0, a

negative constant ε < 0 with a sufficiently small absolute
value keeps λmax to be the maximum eigenvalue of GEP in
Eq. (B3). Therefore, we can minimize (maximize) the gen-
eralized Rayleigh quotient R(w̃; Ã, B̃) where w̃ ∈ C2n

can be
represented by a state vector of n-qubit system.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF
EIGENVALUES UNDER SAMPLING ERRORS

The proposed method solves a small size GEP in Eq. (17)
to update parameters in a PQC. Since the matrices S(ρ ′, A′)
and S(ρ ′, B′) are constructed by expectation values of A and
B calculated using several parameter sets, they will include
the sampling errors, i.e., shot noises. Here, we analyze the
asymptotic behavior of eigenvalues of Eq. (17).

Let SA and SB denote S(ρ ′, A′) and S(ρ ′, B′), respectively,
for simple notations. Let ns be the number of shots per indi-
vidual quantum circuit for evaluating expectations of A and
B. Since SA and SB are, respectively, constructed by the linear
combination of expectation values of A and B calculated by
several parameter sets, i.e., parameter configuration, the per-
turbations can be represented as

SA = S(0)
A + εS(1)

A , (C1)

SB = S(0)
B + εS(1)

B , (C2)

where ε is O(1/
√

ns), the superscript (0) represents a quantity
without any perturbation and (1) represents the first-order per-
turbation. Assuming that the expectation values of observable
can be estimated unbiasedly, i.e., E[SA] = S(0)

A and E[SB] =
S(0)

B , we can suppose E[S(1)
A ] = E[S(1)

B ] = O hold where O is
a zero matrix. We now consider the asymptotic expansions of
λi and pi are, respectively, given as

λi = λ
(0)
i + ελ

(1)
i + ε2λ

(2)
i + o(ε2), (C3)

pi = p(0)
i + εp(1)

i + ε2 p(2)
i + o(ε2), (C4)

where the superscript (2) represents the second-order pertur-
bation. Substituting Eqs. (C1)–(C4) into Eq. (17), we obtain
the following equations for each order of ε.

(a) O(1) terms. These terms correspond to the GEP with-
out any sampling errors and satisfy the equation given as

S(0)
A p(0)

i = λ
(0)
i S(0)

B p(0)
i . (C5)

(b) O(ε) terms. We obtain the equation given as

S(0)
A p(1)

i + S(1)
A p(0)

i = λ
(0)
i S(0)

B p(1)
i + λ

(0)
i S(1)

B p(0)
i + λ

(1)
i S(0)

B p(0)
i .

(C6)

Multiplying the above equation on the left by p(0)�
i and using

Eq. (C5) and the normalized condition p(0)�
i S(0)

B p(0)
i = 1, we

obtain

λ
(1)
i = p(0)�

i

(
S(1)

A − λ
(0)
i S(1)

B

)
p(0)

i . (C7)

Since E[S(1)
A ] = E[S(1)

B ] = O, the mean value of λ
(1)
i is

E
[
λ

(1)
i

] = 0. (C8)
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(c) O(ε2) terms. We obtain the equation as follows:

S(0)
A p(2)

i + S(1)
A p(1)

i = λ
(0)
i S(0)

B p(2)
i + λ

(0)
i S(1)

B p(1)
i + λ

(1)
i S(0)

B p(1)
i

+ λ
(1)
i S(1)

B p(0)
i + λ

(2)
i S(0)

B p(0)
i . (C9)

Multiplying the above equation on the left by p(0)�
i and re-

arranging the equations using Eqs. (C5) and (C6), and the
normalized condition p(0)�

i S(0)
B p(0)

i = 1, we obtain

λ
(2)
i = −λ

(1)
i p(0)�

i S(1)
B p(0)

i − p(1)�
i

(
S(0)

A − λ
(0)
i S(0)

B

)
p(1)

i .

(C10)

Substituting Eq. (C7), we obtain the mean value of λ
(2)
i as

E
[
λ

(2)
i

] = λ
(0)
i E

[(
p(0)�

i S(1)
B p(0)

i

)2]
− E

[
p(1)�

i

(
S(0)

A − λ
(0)
i S(0)

B

)
p(1)

i

]
. (C11)

These two terms in the right-hand side are not zero in general,
and thus these appear as a bias of eigenvalues in Eq. (17), as
follows:

E[λi] = λ
(0)
i + ε2λ

(0)
i E

[(
p(0)�

i S(1)
B p(0)

i

)2]
− ε2E

[
p(1)�

i

(
S(0)

A − λ
(0)
i S(0)

B

)
p(1)

i

]
. (C12)

Therefore, the minimum (maximum) eigenvalue of Eq. (17)
obtained with sampling errors is not an unbiased estimator of
the optimal objective function value in Eq. (16) achievable by
updating one single-qubit gate of interest. However, this bias
vanishes asymptotically no slower than or equal to ε2, i.e.,
O(1/ns ).

Next, we estimate the actual objective function value after
update of parameters using the perturbed eigenvector. Here,
we consider the minimization of the objective function, but the
maximization is straightforward. Substituting the perturbed
eigenvector p1 into the objective function in Eq. (16), we
obtain

F (p1) = p�
1 S(0)

A p1

p�
1 S(0)

B p1

≈ p(0)�
1 S(0)

A p(0)
1 + 2εp(0)�

1 S(0)
A p(1)

1 + ε2
(
2p(0)�

1 S(0)
A p(2)

1 + p(1)�
1 S(0)

A p(1)
1

)
p(0)�

1 S(0)
B p(0)

1 + 2εp(0)�
1 S(0)

B p(1)
1 + ε2

(
2p(0)�

1 S(0)
B p(2)

1 + p(1)�
1 S(0)

B p(1)
1

)
≈ λ

(0)
1 + ε2 p(1)�

1

(
S(0)

A − λ
(0)
1 S(0)

B

)
p(1)

1 . (C13)

From the second to the third lines, we used the Taylor ex-
pansion with respect to ε up to the second order. Let p(1) be
expanded using the {p(0)

i } as basis, as follows:

p(1)
1 =

∑
j

c j p(0)
j , (C14)

where c j is a coefficient. Substituting this into Eq. (C13) and
considering the normalization condition p(0)

i S(0)
B p(0)

j = δi j , we
obtain

F (p1) ≈ λ
(0)
1 + ε2 p(1)�

1

(
S(0)

A − λ
(0)
1 S(0)

B

)
p(1)

1

= λ
(0)
1 + ε2

∑
j

‖c j‖2
(
λ

(0)
j − λ

(0)
1

)

� λ
(0)
1 + ε2

(
λ(0)

max − λ
(0)
1

)∑
j

‖c j‖2

= λ
(0)
1 + ε2

(
λ(0)

max − λ
(0)
1

)
p(1)�

1 S(0)
B p(1)

1 , (C15)

where λmax is the maximum eigenvalue. Therefore, the mean
value of the objective function after parameter update is given
as

E[F (p1)] ≈ λ
(0)
1 + ε2E

[
p(1)�

1

(
S(0)

A − λ
(0)
1 S(0)

B

)
p(1)

1

]
� λ

(0)
1 + ε2(λ(0)

max − λ
(0)
1

)
E

[
p(1)�

1 S(0)
B p(1)

1

]
, (C16)

The second term is the gap between the ideal optimal value
F (p(0)

1 ) = λ
(0)
1 and the mean value of the actual value F (p1),

and vanishes asymptotically no slower than or equal to ε2.

APPENDIX D: OVERVIEW OF XBM

To evaluate the expectation value of an Hermitian H , i.e.,
〈H〉 = tr(Hρ), this study employs the extended Bell measure-
ment (XBM) [44]. Here, we briefly summarize the XBM. Let
A ∈ C2n×2n

be the arbitrary matrix and Ai j the (i, j) compo-
nent of A. In the XBM, the expectation value of A with the
quantum state vector |ψ〉 ∈ C2n

is written as

〈ψ |A|ψ〉 =
2n−1∑
i=0

Aii|〈i|ψ〉|2 +
∑

l∈{i⊕ j|Ai j �=0}\{0}

2n−1∑
i=0

× (
aRe(A, l, i)

∣∣〈i|M (l )
Re |ψ〉∣∣2 + aIm(A, l, i)

× ∣∣〈i|M (l )
Im |ψ〉∣∣2)

, (D1)

where aRe(A, l, i) and aIm(A, l, i) are the function of
(A, l, i), and M (l )

Re and M (l )
Im are the measurement operators

defined as

(
M (i⊕ j)

Re

)†|i〉 = |i〉 + | j〉√
2

,

(
M (i⊕ j)

Im

)†|i〉 = |i〉 + ι| j〉√
2

,

(D2)

respectively. Both measurement operators M (l )
Re and M (l )

Im
can be expressed using at most one Hadamard gate, one
phase gate, and n − 1 CNOT gates. It is known that when
the bandwidth of A is k = O(nc) with a constant c, the
number of groups for simultaneous measurement is O(nk)
[44].
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APPENDIX E: MATRIX ASSEMBLY IN THE
FINITE-ELEMENT METHOD [4,40]

Here, we briefly explain the matrix assembly in the finite-
element method [4,40] to construct the stiffness matrix K for
both the Poisson equation and the linear elastic solid, and the
mass matrix M for the linear elastic solid. The main procedure
is (1) deriving the weak form of the PDE to be solved, and (2)
discretizing the weak form by introducing the shape function.

1. Assembly for the Poisson equation

First, let us derive the weak form of the Poisson equation in
Eq. (27). Let ũ ∈ H1

0 () be an arbitrary function in the space
H1

0 () defined as

H1
0 () := {ũ ∈ H1() | ũ(x) = 0 on ∂}, (E1)

where H1() is the Sobolev space. Multiplying Eq. (27) by
the test function ũ(x), and integrating both sides over the
domain , we obtain

−
∫



ũ(x)∇2u(x)d =
∫



ũ(x) f (x)d. (E2)

Applying the integration by parts and the Gauss’s theorem to
Eq. (E2), we derive the weak form of the Poisson equation as

find u ∈ H1
0 ()

s.t.
∫



∇ũ(x) · ∇u(x)d

=
∫



ũ(x) f (x)d ∀ ũ ∈ H1
0 (). (E3)

Next, we approximate the solution of the weak form by
introducing the set of shape functions {φ j}N

j=1 as u(x) ≈∑
j φ j (x)u j and we set U := [u1, . . . uN ]�. Substituting

u(x) ≈ ∑
j φ j (x)u j into the weak form in Eq. (E3) and taking

ũ = φi, we obtain

N∑
j=1

u j

∫


∇φi(x) · ∇φ j (x)d =
∫



φi(x) f (x)d. (E4)

Considering this equation in i = 1, . . . , N yields a linear sys-
tem of the form

KU = F, (E5)

where

(K )i j :=
∫



∇φi(x) · ∇φ j (x)d, (E6)

(F )i :=
∫



φi(x) f (x)d. (E7)

Focusing on the case of one dimension, we consider
the domain  = (0, 1) and introduce the uniform mesh

with nodes 0 < h = x1 < x2 < · · · < xN = 1 − h < 1 where
x j+1 − x j = h for all j = 1, . . . N − 1. The first-order element
we used employs the shape function φ j defined as

φ j (x) =
{

1 − |x−x j |
h if |x − x j | � h,

0 if |x − x j | > h.
(E8)

Substituting Eq. (E8) into (E6) followed by a simple calcu-
lation shows that the stiffness matrix K is tridiagonal matrix
written as

(K )i j = 1

h

⎡
⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 · · ·

. . .
. . .

. . .

−1 2 −1
0 · · · 0 −1 2

⎤
⎥⎥⎥⎥⎦. (E9)

To obtain the vector F, we can use a certain quadrature
formula to calculate the integration of the right-hand side of
Eq. (E7). In this study, we take (F ) j = f (x j ), for simplicity.

2. Assembly for the eigenvalue problem of a linear elastic solid

We proceed in a similar manner to the discretization of the
Poisson equation in Appendix E 1 to obtain the stiffness ma-
trix K and the mass matrix M for the eigenfrequency analysis
of a linear elastic solid by the finite-element method [4,40].
By a similar procedure to the case of the Poisson equation, we
obtain the weak form of Eq. (33) as

find u ∈ U

s.t.
∫



ε̃ : C : ε d

=
∫



�ω2ũ · u d ∀ ũ ∈ U , (E10)

where � is the density of the solid,

ε(x) = 1
2 (∇u + ∇u�), (E11)

ε̃(x) = 1
2 (∇ũ + ∇ũ�), (E12)

and U is the Sobolev space defined as

U := {u ∈ H1()m | u(x) = 0 on �D}. (E13)

�D ⊂ ∂ is the boundary on which the displacement u is
fixed.

We now consider to approximate the solution of the weak
form by using the shape functions, i.e., u(x) ≈ ∑

j φ j (x)u j

and we set U := [u�
1 , . . . , u�

N ]� which has the dimension of
Nm since the solution u is a vector-valued function that takes
values in Rm. That is, the [m( j − 1) + l]th component of U
represents the displacement at jth node along the lth axis,
i.e., (u j )l . Substituting u ≈ ∑

j φ j (x)u j and Eq. (34) into
Eq. (E10) and taking (ũ)k′ = δkk′φi, we obtain

∑
j,l

(u j )l

∫


(
Eν

(1 + ν)(1 − 2ν)
φi,k (x)φ j,l (x) + E

2(1 + ν)
δkl∇φi(x) · ∇φ j (x) + E

2(1 + ν)
φ j,kφi,l

)
d

= λ
∑

j,l

(u j )l

∫


�δklφi(x)φ j (x)d, (E14)
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where λ = ω2 and φα,β represents ∂φα/∂xβ . Considering Eq. (E14) in i = 1, . . . , N and k = 1 . . . , m yields a generalized
eigenvalue problem of the form

KU = λMU , (E15)

where

(K )i′ j′ :=
∫



(
Eν

(1 + ν)(1 − 2ν)
φi,k (x)φ j,l (x) + E

2(1 + ν)
δkl∇φi(x) · ∇φ j (x) + E

2(1 + ν)
φ j,kφi,l

)
d, (E16)

(M )i′ j′ :=
∫



�δklφi(x)φ j (x)d, (E17)

using the notation i′ := m(i − 1) + k and j′ := m( j − 1) + l .
Focusing on the case of two dimensions, we consider the domain  = (0,W ) × (0, H ) and introduce the grid mesh with nodes

(x jx , y jy ) defined by the equally spaced points along each axis, 0 = x1 < x2 < · · · < xNx = W and 0 = y1 < y2 < · · · < yNy = H
where x jx+1 − x jx = hx for all jx = 1, . . . Nx − 1 and y jy+1 − y jy = hy for all jy = 1, . . . Ny − 1, respectively. We used the first-
order element which employs the shape function φ j defined as

φ j (x, y) =
{(

1 − |x−x jx |
hx

)(
1 − |y−y jy |

hy

)
if |x − x jx | � hx and |y − y jy | � hy,

0 otherwise,
(E18)

associating j with jx and jy as j = Ny( jx − 1) + jy. We used
the Gauss quadrature rule for calculating the integration.

APPENDIX F: OPTIMAL PARAMETER CONFIGURATION
FOR GENERALIZED EIGENVALUE PROBLEM

In the following, we consider the minimization of the
objective function, the minimum eigenvalue of Eq. (17).
The analysis for the maximization problems is straightfor-
ward. Let P := {q̃i}r

i=1 be the parameter configuration, the
set of r parameters, and hA := (hA1, . . . , hAr )� and hB :=
(hB1, . . . , hBr )� be the expectation values of A and B through
the parameter in the configuration. Typically, r = 10 for FQS,
r = 6 for FRAXIS, and r = 3 for NFT. Let SA and SB de-
note S(ρ ′, A′) and S(ρ ′, B′), respectively, for simple notations.
Since SA and SB are, respectively, constructed by applying the
linear transformation depending on the parameter configura-
tion to hA and hB [41], SA and SB are represented as

SA = T (hA|P), (F1)

SB = T (hB|P), (F2)

where T is the linear transformation depending of the param-
eter configuration P. Now, we assume that the expectation
values are perturbed due to sampling errors around hA and
hB by uncorrelated Gaussian noises δA ∼ N (0, σ 2

A/nsI ) and
δB ∼ N (0, σ 2

B/nsI ), respectively, where σ 2
A and σ 2

B are the
variances of estimating each entry of hA and hB, respectively,
and I is the r×r identity matrix. Note that the variances of
each entry of hA and hB are not in general the same since
they depend on parameters of PQC. However, we herein as-

sume the variances are the same to discuss the parameter
configuration independent from particular parameter values
of PQC. The assumption of the uncorrelated Gaussian noises
correspond to the assumption that the estimation of the expec-
tation values of A and B is unbiased, i.e., E[δA] = E[δB] = 0
and that the measurement outcomes of quantum circuits are
independent, i.e., E[δAiδA j] = E[δBiδB j] = E[δAiδB j] = 0 for
i, j( �= i) ∈ {1, . . . , r}. Under sampling errors, SA and SB are
now represented as

SA = T (hA|P) + T (δA|P), (F3)

SB = T (hB|P) + T (δB|P). (F4)

That is, T (hA|P) and T (hB|P) correspond to S(ρ ′, A′)(0) and
S(ρ ′, B′)(0), respectively, and T (δA|P) and T (δB|P) corre-
spond to εS(ρ ′, A′)(1) and εS(ρ ′, B′)(1), respectively. To derive
the optimal parameter configuration, we focus on the variance
of the minimum eigenvalue in Eq. (17). The smaller the vari-
ance of the eigenvalue is, the more accurately the objective
function value is estimated under the sampling errors. Based
on the first-order perturbation, the variance of the minimum
eigenvalue is given as

Var[λ1] = Var
[
p(0)�

i T
(
δA − λ

(0)
1 δB|P)

p(0)
i

]
. (F5)

To minimize Var[λ1] with respect to P, we can use the same
analysis as that in Ref. [41], assuming that δA − λ

(0)
1 δB follows

the uncorrelated Gaussian distribution, which is actually satis-
fied from the assumption of δA and δB. Thus, we can evaluate
Eq. (9) using the optimal parameter configuration, which is the
set of parameters aligned in a symmetric manner, to mitigate
the sampling errors.

[1] D. Boffi, Finite element approximation of eigenvalue problems,
Acta Numerica 19, 1 (2010).

[2] S. Yu, L.-C. Tranchevent, B. De Moor, and Y. Moreau,
Kernel-based data fusion for machine learning, in Studies in
Computational Intelligence (Springer, Berlin, 2011).

[3] B. Ford and G. Hall, The generalized eigenvalue prob-
lem in quantum chemistry, Comput. Phys. Commun. 8, 337
(1974).

[4] T. J. Hughes, The Finite Element Method: Linear Static and
Dynamic Finite Element Analysis (Dover, New York, 2012).

022429-14

https://doi.org/10.1017/S0962492910000012
https://doi.org/10.1016/0010-4655(74)90011-3


VARIATIONAL QUANTUM ALGORITHM FOR GENERALIZED … PHYSICAL REVIEW A 108, 022429 (2023)

[5] A. Klawonn, M. Lanser, and O. Rheinbach, Toward extremely
scalable nonlinear domain decomposition methods for elliptic
partial differential equations, SIAM J. Sci. Comput. 37, C667
(2015).

[6] J. Toivanen, P. Avery, and C. Farhat, A multilevel FETI-DP
method and its performance for problems with billions of de-
grees of freedom, Int. J. Numer. Methods Eng. 116, 661 (2018).

[7] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon,
Simulated quantum computation of molecular energies, Science
309, 1704 (2005).

[8] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding
et al., Scalable Quantum Simulation of Molecular Energies,
Phys. Rev. X 6, 031007 (2016).

[9] J. B. Parker and I. Joseph, Quantum phase estimation for a class
of generalized eigenvalue problems, Phys. Rev. A 102, 022422
(2020).

[10] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor,
Nat. Commun. 5, 4213 (2014).

[11] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[12] Y. Li, J. Hu, X.-M. Zhang, Z. Song, and M.-H. Yung, Varia-
tional quantum simulation for quantum chemistry, Adv. Theory
Simul. 2, 1800182 (2019).

[13] F. Zhang, N. Gomes, N. F. Berthusen, P. P. Orth, C.-Z. Wang,
K.-M. Ho, and Y.-X. Yao, Shallow-circuit variational quantum
eigensolver based on symmetry-inspired hilbert space parti-
tioning for quantum chemical calculations, Phys. Rev. Res. 3,
013039 (2021).

[14] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al.,
Variational quantum algorithms, Nat. Rev. Phys. 3, 625 (2021).

[15] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, The
variational quantum eigensolver: A review of methods and best
practices, Phys. Rep. 986, 1 (2022).

[16] N. Gomes, A. Mukherjee, F. Zhang, T. Iadecola, C.-Z. Wang,
K.-M. Ho, P. P. Orth, and Y.-X. Yao, Adaptive variational
quantum imaginary time evolution approach for ground state
preparation, Adv. Quantum Technol. 4, 2100114 (2021).

[17] O. Higgott, D. Wang, and S. Brierley, Variational quantum
computation of excited states, Quantum 3, 156 (2019).

[18] K. M. Nakanishi, K. Mitarai, and K. Fujii, Subspace-search
variational quantum eigensolver for excited states, Phys. Rev.
Res. 1, 033062 (2019).

[19] S. Gocho, H. Nakamura, S. Kanno, Q. Gao, T. Kobayashi, T.
Inagaki, and M. Hatanaka, Excited state calculations using vari-
ational quantum eigensolver with spin-restricted ansätze and
automatically-adjusted constraints, npj Comput. Mater. 9, 13
(2023).

[20] H. Hirai, Excited-state molecular dynamics simulation based on
variational quantum algorithms, Chem. Phys. Lett. 816, 140404
(2023).

[21] M. Benedetti, M. Fiorentini, and M. Lubasch, Hardware-
efficient variational quantum algorithms for time evolution,
Phys. Rev. Res. 3, 033083 (2021).

[22] K. Wada, R. Raymond, Yu-ya Ohnishi, E. Kaminishi, M.
Sugawara, N. Yamamoto, and H. C. Watanabe, Simulating
time evolution with fully optimized single-qubit gates on
parametrized quantum circuits, Phys. Rev. A 105, 062421
(2022).

[23] H.-L. Liu, Y.-S. Wu, L.-C. Wan, S.-J. Pan, S.-J. Qin, F. Gao,
and Q.-Y. Wen, Variational quantum algorithm for the poisson
equation, Phys. Rev. A 104, 022418 (2021).

[24] Y. Sato, R. Kondo, S. Koide, H. Takamatsu, and N. Imoto,
Variational quantum algorithm based on the minimum potential
energy for solving the poisson equation, Phys. Rev. A 104,
052409 (2021).

[25] R. Demirdjian, D. Gunlycke, C. A. Reynolds, J. D.
Doyle, and S. Tafur, Variational quantum solutions to the
advection–diffusion equation for applications in fluid dynamics,
Quantum Inf. Proc. 21, 322 (2022).

[26] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L.
Cincio, and P. J. Coles, Variational quantum linear solver,
arXiv:1909.05820.

[27] X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan,
Variational algorithms for linear algebra, Sci. Bull. 66, 2181
(2021).

[28] R. LaRose, A. Tikku, É. O’Neel-Judy, L. Cincio, and P. J. Coles,
Variational quantum state diagonalization, npj Quantum Inf. 5,
57 (2019).

[29] M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, Vari-
ational quantum state eigensolver, npj Quantum Inf. 8, 113
(2022).

[30] J.-M. Liang, S.-Q. Shen, M. Li, and L. Li, Variational quan-
tum algorithms for dimensionality reduction and classification,
Phys. Rev. A 101, 032323 (2020).

[31] J.-M. Liang, S.-Q. Shen, M. Li, and S.-M. Fei, Quantum algo-
rithms for the generalized eigenvalue problem, Quantum Inf.
Proc. 21, 23 (2022).

[32] K. M. Nakanishi, K. Fujii, and S. Todo, Sequential minimal op-
timization for quantum-classical hybrid algorithms, Phys. Rev.
Res. 2, 043158 (2020).

[33] M. Ostaszewski, E. Grant, and M. Benedetti, Structure opti-
mization for parameterized quantum circuits, Quantum 5, 391
(2021).

[34] H. C. Watanabe, R. Raymond, Yu-Ya Ohnishi, E. Kaminishi,
and M. Sugawara, Optimizing parameterized quantum circuits
with free-axis selection, in Proceedings of the 2021 IEEE Inter-
national Conference on Quantum Computing and Engineering
(QCE) (IEEE, Piscataway, NJ, 2021), pp 100–111.

[35] K. Wada, R. Raymond, Y. Sato, and H. C. Watanabe, Sequential
optimal selection of a single-qubit gate and its relation to barren
plateau in parameterized quantum circuits, arXiv:2209.08535.

[36] L. C. Evans, Partial Differential Equations (American Mathe-
matical Society, Providence, RI, 2010), Vol. 19.

[37] M. Peter Deisenroth, A. A. Faisal, and C. S. Ong, Mathe-
matics for Machine Learning (Cambridge University Press,
Cambridge, 2020).

[38] C. C. Aggarwal, L.-F. Aggarwal, and Lagerstrom-Fife, Linear
Algebra and Optimization for Machine Learning (Springer,
Berlin, 2020), Vol. 156.

[39] Y. Y. Liu, Z. Chen, C. Shu, S.-C. Chew, B. C. Khoo, X. Zhao,
and Y. D. Cui, Application of a variational hybrid quantum-
classical algorithm to heat conduction equation and analysis of
time complexity, Phys. Fluids 34, 117121 (2022).

022429-15

https://doi.org/10.1137/140997907
https://doi.org/10.1002/nme.5938
https://doi.org/10.1126/science.1113479
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevA.102.022422
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23879
https://doi.org/10.1002/adts.201800182
https://doi.org/10.1103/PhysRevResearch.3.013039
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1002/qute.202100114
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1038/s41524-023-00965-1
https://doi.org/10.1016/j.cplett.2023.140404
https://doi.org/10.1103/PhysRevResearch.3.033083
https://doi.org/10.1103/PhysRevA.105.062421
https://doi.org/10.1103/PhysRevA.104.022418
https://doi.org/10.1103/PhysRevA.104.052409
https://doi.org/10.1007/s11128-022-03667-7
http://arxiv.org/abs/arXiv:1909.05820
https://doi.org/10.1016/j.scib.2021.06.023
https://doi.org/10.1038/s41534-019-0167-6
https://doi.org/10.1038/s41534-022-00611-6
https://doi.org/10.1103/PhysRevA.101.032323
https://doi.org/10.1007/s11128-021-03370-z
https://doi.org/10.1103/PhysRevResearch.2.043158
https://doi.org/10.22331/q-2021-01-28-391
http://arxiv.org/abs/arXiv:2209.08535
https://doi.org/10.1063/5.0121778


YUKI SATO et al. PHYSICAL REVIEW A 108, 022429 (2023)

[40] G. Allaire, Numerical Analysis and Optimization: An Intro-
duction to Mathematical Modelling and Numerical Simulation
(Oxford University Press, Oxford, 2007).

[41] K. Endo, Y. Sato, R. Raymond, K. Wada, N. Yamamoto,
and H. C. Watanabe, Optimal parameter configurations for
sequential optimization of variational quantum eigensolver,
arXiv:2303.07082.

[42] G. Cardano, Ars Magna or The Rules of Algebra (Dover,
New York, 1993).

[43] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[44] R. Kondo, Y. Sato, S. Koide, S. Kajita, and H. Takamatsu,
Computationally efficient quantum expectation with extended
bell measurements, Quantum 6, 688 (2022).

[45] D. Ribeiro, R. Calçada, R. Delgado, M. Brehm, and V. Zabel,
Finite-element model calibration of a railway vehicle based on
experimental modal parameters, Vehicle Syst. Dynam. 51, 821
(2013).

[46] A. Muhammad, M. A. H. Ali, and I. H. Shanono, Finite element
analysis of a connecting rod in ANSYS: An overview, in IOP
Conference Series: Materials Science and Engineering, Volume
736, Engineering Science and Technology (IOP Publishing,
Bristol, 2020), p. 022119.

[47] A. Belhocine and O. Ibraheem Abdullah, Thermomechanical
model for the analysis of disc brake using the finite element
method in frictional contact, Multiscale Sci. Eng. 2, 27 (2020).

[48] X.-M. Zhang, M.-H. Yung, and X. Yuan, Low-depth quantum
state preparation, Phys. Rev. Res. 3, 043200 (2021).

[49] K. Nakaji, S. Uno, Y. Suzuki, R. Raymond, T. Onodera, T.
Tanaka, H. Tezuka, N. Mitsuda, and N. Yamamoto, Approx-
imate amplitude encoding in shallow parameterized quantum
circuits and its application to financial market indicators,
Phys. Rev. Res. 4, 023136 (2022).

[50] H. Abraham et al., Qiskit contributors, Qiskit: An Open-source
Framework for Quantum Computing (2023), https://qiskit.org/
documentation/faq.html.

[51] D. J. Griffiths, Introduction to Electrodynamics (Cambridge
University Press, Cambridge, 1999).

[52] T. J. Chung, Computational Fluid Dynamics (Cambridge Uni-
versity Press, Cambridge, 2010).

[53] J. Blazek, Computational Fluid Dynamics: Principles and Ap-
plications (Butterworth-Heinemann, Oxford, 2015).

[54] Y. Ruan, X. Xue, and Y. Shen, Quantum image processing:
opportunities and challenges, Math. Probl. Eng. 2021, 6671613
(2021).

[55] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J.
Coles, Cost function dependent barren plateaus in shal-
low parametrized quantum circuits, Nat. Commun. 12, 1791
(2021).

[56] Z.-D. Ma, H.-C. Cheng, and N. Kikuchi, Structural design
for obtaining desired eigenfrequencies by using the topology
and shape optimization method, Comput. Syst. Eng. 5, 77
(1994).

022429-16

http://arxiv.org/abs/arXiv:2303.07082
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.22331/q-2022-04-13-688
https://doi.org/10.1080/00423114.2013.778416
https://doi.org/10.1007/s42493-020-00033-6
https://doi.org/10.1103/PhysRevResearch.3.043200
https://doi.org/10.1103/PhysRevResearch.4.023136
https://qiskit.org/documentation/faq.html
https://doi.org/10.1155/2021/6671613
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1016/0956-0521(94)90039-6

