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Multispin Clifford codes for angular momentum errors in spin systems
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The physical symmetries of a system play a central role in quantum error correction. In this work we encode
a qubit in a collection of systems with angular momentum symmetry (spins), extending the tools developed
by Gross [J. A. Gross, Phys. Rev. Lett. 127, 010504 (2021)] for single large spins. By considering large spins
present in atomic systems and focusing on their collective symmetric subspace, we develop codes with octahedral
symmetry capable of correcting errors up to second order in angular momentum operators. These errors include
the most physically relevant noise sources such as microwave control errors and optical pumping. We additionally
explore qubit codes that exhibit distance scaling commensurate with the surface code while permitting transversal
single-qubit Clifford operations.
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I. INTRODUCTION

Quantum error correction (QEC) is an essential ingre-
dient for implementing quantum computation reliably. Put
simply, QEC uses a large Hilbert space to encode a smaller-
dimensional system to overcome the detrimental effects of
decoherence and recover the ideal state of an encoded system.
One standard strategy for QEC, analogous to classical error
correction, where the major error is the bit flip, is to encode
a qubit of information in multiple qubits. However, due to the
fact that for QEC one needs to account for both bit-flip and
phase-flip errors, the number of physical qubits required to
encode a logical qubit is very large. In spite of this difficulty,
these techniques are widely considered for QEC and have
found a great deal of success including recent experimental
implementation using the surface codes and color codes [1–3].

Another approach for QEC is to encode a qubit in a single
system with a large Hilbert space, for example, the standard
Gottesman-Kitaev-Preskill (GKP) code where a qubit is en-
coded in a simple harmonic oscillator, whose large Hilbert
space provides natural protection from many errors native to
this system [4,5]. This approach in general reduces the over-
head and thus makes the scaling easier. There have been many
recent ideas about quantum computation using GKP states
[6–9] and a recent experiment where real-time quantum er-
ror correction beyond the break-even point was demonstrated
[10].

In [11], quantum error-correcting codes native to spin sys-
tems with spin larger than 1

2 were developed using the special
symmetries associated with these systems. In particular, the
binary octahedral symmetry was used; however, one needs a
very large spin ( j � 13

2 ) to build a fully error-correcting code
for this symmetry. In this work we find a way to obviate this
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need for big spins by using the tensor product of multiple spins
for spin larger than j = 1

2 and using the irreducible SU(2)
representations in the symmetric subspace of these tensor
products. Since these codes exist in multiple spins and have
transversal Clifford gates, we call them multispin Clifford
codes. These systems could generally have great potential as
they are easier to scale and systems with an order of 100
spins have been used for quantum simulation experiments
with neutral atoms [12,13]. In spin systems, the main source
of decoherence are random rotations, which contribute to the
first-order errors in angular momentum, and optical pump-
ing, which is a second-order effect in angular momentum
involving vector and tensor light shifts [14,15]. Accordingly,
designing codes in these composite spin systems that correct
for first- and second-order angular momentum errors could
reduce the overhead required to achieve fault-tolerant regimes
of quantum computation and thus accelerate the path to useful
quantum computation.

Similarly, we also consider the case of the tensor product of
qubit systems. We encode a qubit in the symmetric subspace
of multiple qubits to find codes that have transversal Clifford
gates and correct arbitrarily large errors. Using the binary oc-
tahedral symmetry, we demonstrate explicit code words with
distance 3 and distance 5 and generally find that the minimum
number of qubits required for a given distance scales similarly
to the surface code while allowing full single-qubit transversal
Clifford operations.

The remainder of this article is organized as follows. In
Sec. II we give a brief introduction to the binary octahe-
dral code and the natural symmetry associated with these
quantum error-correcting codes. In Sec. III we study the Knill-
Laflamme condition for a general spin system by using the
spherical tensor operators. In Sec. IV we find the relevant
SU(2) irreducible representations in the symmetric subspace
for the tensor product of spin systems by mapping the prob-
lem to bosons. We use these approaches to find useful codes
that correct for first-order angular momentum [small random
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SU(2)] errors in Sec. V and the second-order (light shift)
errors in Sec. VI. In Sec. VII we study how one can apply
these approaches to the tensor product of multiple spin j = 1

2
(qubit) systems and create error-correcting codes in the sym-
metric subspace of this multipartite system, finding explicit
codes with distances 3 and 5. We provide a summary and
possible directions for future work in Sec. VIII.

II. INTRODUCTION TO BINARY OCTAHEDRAL CODE

We build upon work [11] done to encode information
against random SU(2) rotations in large single spins [irre-
ducible representations of SU(2)]. This task is simplified by
restricting ourselves to codespaces that are preserved un-
der the action of a finite subgroup of SU(2), such as the
single-qubit Clifford group (binary octahedral group). If the
finite subgroup is rich enough, the full set of Knill-Laflamme
conditions for first-order rotation errors reduces to a
single expectation value, which is simple to check. The single-
qubit Clifford group is one such rich subgroup, in that it can
map any of {Jx, Jy, Jz} to any other, with either sign. These
symmetries allow us to consolidate the conditions to

〈i|Jz| j〉 = C0zδi j, (1)

〈i|JxJy| j〉 = Cxyδi j, (2)

〈i|J2
z | j〉 = Czzδi j . (3)

The fact that a π rotation about Jz must put a relative phase
between logical 0 and 1 means that we must have odd support
on the Jz basis states and the other must have even support,
which further reduces the conditions to

〈0|Jz|0〉 = 0. (4)

It turns out the binary tetrahedral group (a subgroup of the
binary octahedral group) has enough symmetries for the above
argument to go through as well, so we will also consider codes
with that symmetry in this work. The binary octahedral group,
having additionally the S gate, a π/2 rotation about Jz, further
constrains the support of the code words in the Jz basis such
that the Jz eigenvalues included in logical 0 are either 4Z + 1

2
or 4Z − 3

2 , where Z indicates the set of all integers, depending
on the code, and the eigenvalues for logical 1 are the negatives.

III. DERIVATION OF KNILL-LAFLAMME CONDITIONS

In this section we extend the Knill-Laflamme condition
derived for small random SU(2) rotations in large single
spins in [11] to general errors which are powers of angular
momentum operators. Since products of angular momentum
operators up to a given order are not linearly independent (due
to equivalence relations such as the commutation relations), it
can be convenient to use spherical tensors [16–18] as an error
basis

T k
q ( j) =

√
2k + 1

2 j + 1

∑
m

〈 j, m + q|k, q; j, m〉| j, m + q〉〈 j, m|,
(5)

which are basically the sums of powers of the angular momen-
tum operators and are related to spherical harmonics. Using
this as our basis of errors, the Knill-Laflamme conditions [19]
require that

〈i|E†
a Eb| j〉 = δi jCab, (6)

Ea, Eb ∈ {
T k

q

}
0�k�N (7)

if we want to be able to correct angular momentum errors of
orders up to N . Because products of spherical tensors are sums
of spherical tensors

T k
q T k′

q′ =
√

(2k + 1)(2k′ + 1)
∑

k̃

ck̃
q̃T k̃

q̃ , (8)

where q̃ = q + q′, the sum over k̃ is restricted over |k − k′| �
k̃ � k + k′, and ck̃

q̃ is defined in terms of 6- j symbols and
Clebsch-Gordon coefficients [17]

ck̃
q̃ = (−1)2 j+k̃

{
k k′ k̃
j j j

}
Ck̃q̃

k,q,k′q′ , (9)

we can equivalently consider the conditions

〈 j|T k̃
q̃ |k〉 = δ jkC

k̃
q̃ , (10)

0 � k̃ � 2N. (11)

Consider the unitary UX = exp(−iπJx ) the octahedral
symmetry of the states gives us, an overall global phase that is
irrelevant,

UX |0〉 =|1〉,
UX |1〉 =|0〉, (12)

and we can find that

UX T k
q U †

X = (−1)kT k
−q. (13)

The details of this calculation are given in Appendix A. Using
this, we see that for the code words

〈0|T k
q |0〉 = (−1)k〈1|T k

−q|1〉. (14)

For the case of the code words with octahedral symmetry,
the code words are real in the angular momentum basis (see
Appendix B) and so is T k

q ; thus when we have two states |ψ〉
and |φ〉 which are real linear combinations of the code words
that respect the binary octahedral symmetry,

〈ψ |T k
−q|φ〉 = (−1)q〈φ|T k

q |ψ〉, (15)

which we prove in Appendix B. Thus we get

〈0|T k
q |0〉 = (−1)k〈1|T k

−q|1〉 = (−1)k−q〈1|T k
q |1〉, (16)

and from this equation the error condition is trivially satisfied
unless

(k − q)mod 2 = 1. (17)

However, the code words have support on the Jz eigenstates
that are separated by q mod 4 = 0, as described in Sec. II and
given in Fig. 1, and hence the expression is identically zero
unless q is even and thus the only diagonal conditions we need
to check are those when k is odd: {T 1

0 , T 3
0 , T 5

0 , T 5
4 , . . .}.
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FIG. 1. Code words |0〉 and |1〉 for the �4 irreducible represen-
tation of the binary octahedral symmetry for j = 7

2 in the angular
momentum basis. The colored boxes indicate the states occupied
whereas the blank ones indicate those states are not occupied for the
code word. The states in the code word are spaced by four units of
angular momentum mz = ±4, a standard property of the octahedral
symmetry, and contribute to the error-correction condition. The code
words |0〉 and |1〉 are separated a single unit of angular momentum
and hence overlap at 〈0|T k

1 |1〉 = (−1)k〈1|T k
−1|0〉 �= 0 for odd values

of k and at 〈0|T k
−1|1〉 = (−1)k〈1|T k

1 |0〉 = 0 for even values of k. This
contributes to the off-diagonal terms to consider for error correction
in Eq. (21).

Now thinking about the next error-correction condition, we
get

〈0|T k
q |1〉 = (−1)k〈1|T k

−q|0〉
(18)

= (−1)k−q〈0|T k
q |1〉.

Equation (17) states that when (k − q)mod 2 = 1 we automat-
ically get

〈0|T k
q |1〉 = 0. (19)

Now again the support of the different code words is sepa-
rated by odd shifts in angular momentum and hence we also
automatically get that

〈0|T k
q |1〉 = 0 (20)

when q mod4 = 1, which can be seen from Fig. 1. Thus the
only off-diagonal conditions we need to check are when both
k and q are odd: {T 1

1 , T 3
1 , T 3

−3, T 5
5 , T 5

1 , T 5
−3, . . .}. Hence the

error-correction conditions can be written as

〈0|T (k)
q |0〉 = (−1)(k−q)〈1|T (k)

q |1〉
⇒ consider only (k ∈ odd and q ≡ 0 mod4),

〈0|T (k)
q |1〉 = (−1)(k−q)〈0|T (k)

q |1〉
⇒ consider only (k ∈ odd and q ≡ 1 mod 4).

(21)

This gives the general error-correction conditions we need
to check for the binary octahedral codes. We can easily see
that a large number of conditions are trivially satisfied ac-
counting for the symmetry of the code words. In the following
sections we will see how these correction conditions will help
us obtain useful quantum error-correction codes.

IV. THE SU(2) IRREDUCIBLE REPRESENTATIONS IN
THE SYMMETRIC SUBSPACE OF THE TENSOR

PRODUCT OF n SPIN- j SYSTEMS

Now consider the tensor product of n spin- j systems. This
forms a Hilbert space H of dimension dn where d = 2 j + 1.
We focus on the symmetric subspace [20] where expectation
values are unchanged by permuting the subsystems, so for any
arbitrary operators A1, A2, . . . , An we have

〈A1 ⊗ A2 ⊗ · · · ⊗ An〉 = 〈Aπ (1) ⊗ Aπ (2) ⊗ · · · ⊗ Aπ (n)〉 (22)

for any permutation π . Restricting our attention to the sym-
metric subspace simplifies the Knill-Laflamme conditions, as
many of the error terms E†

a Eb that arise are permutations of
each other and need only be verified once within the symmet-
ric subspace. The dimension of the symmetric subspace for
the tensor product of n spin- j systems is

dim[Sn(d )] = d (d + 1) · · · (d + n − 1)

n!
. (23)

Since we are interested in encoding qubits in the symmetric
subspace, we need to identify how the symmetric subspace
decomposes into SU(2) irreducible representations. For j = 1

2
the decomposition is simple, as the symmetric subspace is
itself a spin-(n + 1)/2 irreducible representation. For larger
spins, we must work harder, as the symmetric subspace de-
composes into multiple SU(2) irreducible representations.

One way to see that we must get multiple SU(2) irreducible
representations in the symmetric subspace is to notice that
the operator Jz gains some degeneracies for j > 1

2 . For ex-
ample, | + 1,−1〉 + | − 1,+1〉 and |0, 0〉 are both symmetric
states that are also eigenstates of Jz with eigenvalue mz = 0.
Since Jz is nondegenerate within any SU(2) irreducible repre-
sentation, this means the symmetric subspace of two spin-1
systems must decompose into multiple SU(2) irreducible
representations.

A useful perspective on the decomposition is to consider
the symmetric subspace as n bosonic modes with at most 2 j
bosons in each mode [21]. Each mode is associated with one
of the spins, and the number of bosons in a mode corresponds
to the Jz eigenvalue of the associated spin (adding j to the
eigenvalue so the number of bosons ranges from 0 to 2 j). The
total Jz eigenvalue is then given by the total number of bosons,
and the degeneracy of that eigenvalue in the symmetric sub-
space is given by the number of partitions of those bosons into
n distinct modes, restricted to putting no more than 2 j bosons
in a single mode. These can be counted using restricted Young
diagrams, where the number of columns must not exceed 2 j
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FIG. 2. Restricted Young diagram showing a basis for the three-
dimensional subspace of the totally symmetric subspace of three
spin-2 systems for which Jz = 2. The associated states are obtained
by converting the number of boxes in each row to a Jz eigenvalue by
subtracting j = −2. Once symmetrized over the three subsystems,
these states form a basis for the Jz = 2 symmetric subspace.

and the number of rows must not exceed n. An example of
such restricted Young diagrams and their associated states is
given in Fig. 2.

For example, consider the symmetric subspace of two spin-
1
2 particles, where the symmetric subspace is spanned by the
triplet states and has a total spin J = 1 (the largest possible
angular momentum under the tensor product). Mapping this
to the two bosonic modes with at most 2 j = 1 boson each,
we enumerate all partitions of N bosons among these modes
for N ∈ {0, 1, 2}. The possible partitions are given in Table I.
Each total photon number N corresponds only to a single
restricted partition, consistent with our previous statement
that the symmetric subspace is a single SU(2) irreducible
representation.

As a first nontrivial example consider the case of spin j = 1
and n = 2. The restricted partitions of bosons into two modes
are given in Table II. As we can see from the table, there are
two partitions of N = 2 bosons into two modes, revealing a
degeneracy of the Jz operator for eigenvalue mz = 0. Since a
one-dimensional subspace of this degenerate subspace must
belong to the spin-2 irreducible representation and there are
no degeneracies for larger mz, we see that the symmetric
subspace decomposes into one copy of spin 2 and one copy
of spin 0.

Using this same approach, we can numerically find that for
the case of the tensor product of any two spins j,

j ⊗ j
SS= 2 j ⊕ (2 j − 2) ⊕ (2 j − 4) ⊕ · · · , (24)

where SS denotes symmetric subspace. Simple counting of
the total dimensions verifies this and is given in detail in
Appendix C.

TABLE I. Symmetric subspace of two spin j = 1
2 systems for

n = 2 as two bosonic modes. Here n1 and n2 are the numbers of
bosons in each of the modes (symmetrized combinations as they
are bosons) and N = n1 + n2. There is only one possible partition
for each of the values of N and accordingly there exists only a
single SU(2) irreducible representation in the symmetric subspace.
(Note that our restriction on the number of bosons allowed per mode
disallows the partition of 2 into 2,0.)

N n1 n2

0 0 0
1 1 0
2 1 1

TABLE II. Symmetric subspace of n = 2 spin j = 1 systems.
We find we need two columns to account for the distinct partitions
of N = 2 bosons. Filling in the columns from left to right for each
N , we can identify the SU(2) irreducible representations present by
the number of occupied rows in each column. Here the first column
has five occupied rows, corresponding to the five-dimensional spin-2
irreducible representation, and the second column has one occupied
entry, corresponding to the spin-0 irreducible representation. The
particular partition of N appearing in each column here has no special
meaning, as the actual basis states of the irreducible representations
are generally superpositions of these partitions.

N n1 n2 n1 n2

0 0 0
1 1 0
2 1 1 2 0
3 2 1
4 2 2

Similarly, we can use the same approach for more complex
cases. For example, consider the case of n = 3 and j = 1;
the possible restricted partitions are given in Table III. As
we can see from the table, we have two occupied columns
with d = 7 and d = 3, which yields the two SU(2) irreducible
representations for spin 3 and spin 1.

Since the specific symmetries we are interested in are
present only for half-integer spins [11], the tensor product of
two spins will not give us valid codespaces as it produces only
integer spins. Hence the first nontrivial cases of interest are
three copies of a half-integer spin. The decompositions into
SU(2) irreducible representations for the cases of j = 3

2 , 5
2 , 7

2 ,
and 9

2 are given by

3

2
⊗ 3

2
⊗ 3

2
SS= 9

2
⊕ 5

2
⊕ 3

2
,

5

2
⊗ 5

2
⊗ 5

2
SS= 15

2
⊕ 11

2
⊕ 9

2
⊕ 7

2
⊕ 5

2
⊕ 3

2
,

7

2
⊗ 7

2
⊗ 7

2
SS= 21

2
⊕ 17

2
⊕ 15

2
⊕ 13

2
⊕ 11

2
⊕ 9

2

(2)

⊕ 7

2
⊕ 5

2
⊕ 3

2
, (25)

TABLE III. Symmetric subspace of n = 3 spin j = 1 systems.
Three values of N have multiple partitions, resulting in the second
column having three occupied rows and giving us a decomposition
of the symmetric subspace into one copy of spin 3 and one copy of
spin 1.

N n1 n2 n3 n1 n2 n3

0 0 0 0
1 1 0 0
2 1 1 0 2 0 0
3 1 1 1 2 1 0
4 2 1 1 2 2 0
5 2 2 1
6 2 2 2

022424-4



MULTISPIN CLIFFORD CODES FOR ANGULAR MOMENTUM … PHYSICAL REVIEW A 108, 022424 (2023)

9

2
⊗ 9

2
⊗ 9

2
SS= 27

2
⊕ 23

2
⊕ 21

2
⊕ 19

2
⊕ 17

2
⊕ 15

2

(2)

⊕ 13

2
⊕ 11

2

(2)

⊕ 9

2

(2)

⊕ 7

2
⊕ 3

2
,

where the superscript to the spins represents the multiplicity.

V. CORRECTING SMALL RANDOM SU(2) ERRORS

In the case of errors that are small random SU(2) rotations,
the error operators to first order in the rotation angle will
be linear in the angular momentum operators {Jx, Jy, Jz} or
equivalently first-rank tensor operators T (1)

q with −1 � q � 1.
Tensor products of these errors to first order are permutations
of

E = A ⊗ 1 ⊗ 1, (26)

where A ∈ {Jx, Jy, Jz} or T (1)
q . Thus the Knill-Laflamme con-

ditions we need to check are

〈i|T 1
q ⊗ T 1

q′ ⊗ 1| j〉,
〈i|T 1

q T 1
q′ ⊗ 1 ⊗ 1| j〉,

〈i|T 1
q ⊗ 1 ⊗ 1| j〉,

(27)

where i, j = {0, 1} and −1 � q, q′ � 1. However, using the
unitary operator

U tot
X = ⊗iUX , (28)

where UX = exp(−iπJx ), for two states |ψ〉 and |φ〉 which are
real linear combinations of the states that respect the binary
octahedral symmetry, we get

〈ψ | ⊗i T ki−qi
|φ〉 = (−1)

∑
i qi〈φ| ⊗i T ki

qi
|ψ〉, (29)

which leaves us with the error-correction conditions

〈0| ⊗i T ki
qi

|0〉 = (−1)
∑

i ki−
∑

i qi〈1| ⊗i T ki
qi

|1〉 ⇒ consider only

×
(∑

i

ki ∈ odd and
∑

i

qi ≡ 0 mod4

)
,

〈0| ⊗i T ki
qi

|1〉 = (−1)
∑

i ki−
∑

i qi〈0| ⊗i T ki
qi

|1〉 ⇒ consider only

×
(∑

i

ki ∈ odd and
∑

i

qi ≡ 1 mod4

)
.

(30)

Here we used the fact that the tensor product of spherical
tensors shifts the total angular momentum by the sum of the
individual shifts

⊗i T ki
qi

| jz = m1, jz = m2, . . . , jz = mN 〉
∝ | jz = m1 + q1, jz = m2 + q2, . . . , jz = mN + qN 〉,

(31)

and hence the spacing arguments we used to get the mod4 are
still valid for a code respecting the binary octahedral group.

Returning our attention to the case of the Knill-Laflamme
conditions for the first-order errors in the angular momentum
operators in Eq. (27), the condition 〈i|T 1

q ⊗ T 1
q′ ⊗ 1| j〉 is triv-

ially satisfied when
∑

i ki is even. Now using the fact that
when we multiply two spherical tensors of ranks k1 and k2, the
decomposition consists of all the spherical tensors with rank k,

where |k1 − k2| � k � k1 + k2; the condition 〈i|T 1
q T 1

q′ ⊗ 1 ⊗
1| j〉 leaves us with spherical tensors with ranks 0, 1, and 2.
However, from Eq. (27) the rank 0 and 2 cases are trivially
satisfied, and hence the only term to check is 〈i|T 1

q ⊗ 1 ⊗ 1| j〉.
We recall that when correcting for total angular momentum
errors on binary octahedral codes, it is sufficient to check

〈0|Jz,total|0〉 = 0. (32)

Since we are considering codes in the symmetric subspace,
we have

1
3 〈0|Jz,total|0〉 = 〈0|Jz ⊗ 1 ⊗ 1|0〉 (33)

= 〈0|1 ⊗ Jz ⊗ 1|0〉 (34)

= 〈0|1 ⊗ 1 ⊗ Jz|0〉, (35)

so correcting first-order single-system angular momentum er-
rors in a binary octahedral code is equivalent to correcting
first-order global angular momentum errors.

A. Case of three j = 3
2 systems

According to Eq. (25), the symmetric subspace of three
spin- 3

2 systems decomposes into three SU(2) irreducible
representations. Faithful two-dimensional binary octahedral
irreducible representations are present in both the j = 9

2 and
the j = 5

2 SU(2) irreducible representations. However, these
irreducible representations are incompatible with each other.
Using the �i notation of [11] to designate irreducible represen-
tations of the binary octahedral group, j = 9

2 has a single copy
of �4 while j = 5

2 has a single copy of �5. While this prevents
us from engineering a code with binary octahedral symmetry,
we obtain more freedom by relaxing to binary tetrahedral
symmetry [11].

For the binary tetrahedral symmetry, the error condition
becomes

〈0| ⊗i T ki
qi

|0〉 = (−1)
∑

i ki−
∑

i qi〈1| ⊗i T ki
qi

|1〉 ⇒ consider only

×
(∑

i

ki ∈ odd and
∑

i

qi ≡ 0 mod 2

)
,

〈0| ⊗i T Ki
qi

|1〉 = (−1)
∑

i ki−
∑

i qi〈0| ⊗i T ki
qi

|1〉 ⇒ consider only

×
(∑

i

ki ∈ odd and
∑

i

qi ≡ 1 mod 2

)
.

(36)

The factor of mod 2 appears as the spacing of the binary
tetrahedral code words is 2 instead of the 4 for the binary
octahedral code words. However, for the case of first-order
errors in the angular momentum, the only nontrivial condition
we need to satisfy is 〈i|T 1

q ⊗ 1 ⊗ 1| j〉.
Making this relaxation, we find that j = 9

2 and j = 5
2 each

have a copy of the faithful two-dimensional binary tetrahedral
irreducible representation �4 (again in the notation of the
Appendix of [11]). The expectation values of Jz for the log-
ical 0′s of these two irreducible representations have opposite
signs, so we engineer a combined code word with vanishing
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Jz expectation value to satisfy the error-correction conditions

|0〉 = 1√
16

(
√

5|0〉9/2 +
√

11|0〉5/2), (37)

where

|0〉9/2 =
√

6

4

∣∣∣∣9

2
,

9

2

〉
+

√
21

6

∣∣∣∣9

2
,

1

2

〉
+

√
6

12

∣∣∣∣9

2
,
−7

2

〉
,

|0〉5/2 = −
√

6

6

∣∣∣∣5

2
,

5

2

〉
+

√
30

6

∣∣∣∣5

2
,
−3

2

〉
. (38)

The projectors onto the irreducible representations in j = 9
2

and j = 5
2 can be constructed from the character for �4 along

with the representatives for the binary tetrahedral group el-
ements provided by the SU(2) irreducible representations as
discussed in [11].

B. Case of three j = 5
2 systems

Next consider the case of three spin- 5
2 systems whose

symmetric-subspace decomposition is also given in Eq. (25).
Again we are looking for multiple copies of one of the faith-
ful two-dimensional irreducible representations of the binary
octahedral group. For this case, we have multiple options
and for simplicity we choose the irreducible representation
�4 appearing in j = 9

2 and j = 11
2 . The corresponding logical

zero states are

|0〉11/2 =
√

21

12

∣∣∣∣11

2
;

9

2

〉
−

√
2

4

∣∣∣∣11

2
;

1

2

〉
+

√
105

12

∣∣∣∣11

2
;
−7

2

〉
,

|0〉9/2 =
√

6

4

∣∣∣∣9

2
;

9

2

〉
+

√
21

6

∣∣∣∣9

2
;

1

2

〉
+

√
6

12

∣∣∣∣7

2
;

1

2

〉
.

(39)
These code words have equal and opposite expectation values

〈0|Jz ⊗ 1 ⊗ 1|0〉11/2 = − 11
18 ,

〈0|Jz ⊗ 1 ⊗ 1|0〉9/2 = 11
18 ,

(40)

meaning we get a code word that corrects for first-order errors
by simply taking a uniform superposition:

|0〉L = 1√
2

(|0〉11/2 + |0〉9/2). (41)

VI. CORRECTING OPTICAL PUMPING

In the case of the error that is similar to optical pump-
ing [14], the error operators are of the form Jl

i Jm
j , where

{i, j = x, y, z} and l + m � 2. However, we find it convenient
again to express these errors in terms of the spherical tensors
{T k

q ; −k � q � k} as they form an orthogonal basis for errors
and can be written in terms of angular momentum operators
as given in Appendix A. Errors of this type acting on a single
spin are permutations of

E = A ⊗ 1 ⊗ 1, (42)

where A ∈ {T k
q ; 1 � k � 2,−k � q � k}. We see the Knill-

Laflamme conditions in Eq. (30) are trivially satisfied except
the ones given in Table IV. The errors with total

∑
k mod 2 =

0 are trivially satisfied by Eq. (30).

TABLE IV. Relevant errors we need to satisfy for the error
correction up to the second order for the tensor product of three
spins. The table is constructed using Eq. (21) and the tensor product
structure.

Diagonal errors Off-diagonal errors

〈0|T 1
0 ⊗ 1 ⊗ 1|0〉L 〈0|T 1

1 ⊗ 1 ⊗ 1|1〉L

〈0|T 2
0 T 1

0 ⊗ 1 ⊗ 1|0〉L 〈0|T 1
−1 ⊗ T 2

2 ⊗ 1|1〉L

〈0|T 1
−1 ⊗ T 2

1 ⊗ 1|0〉L 〈0|T 1
1 ⊗ T 2

0 ⊗ 1|1〉L

〈0|T 1
1 ⊗ T 2

−1 ⊗ 1|0〉L 〈0|T 1
0 ⊗ T 2

1 ⊗ 1|1〉L

〈0|T 1
0 ⊗ T 2

0 ⊗ 1|0〉L 〈0|T 1
−1 ⊗ T 2

−2 ⊗ 1|1〉L

〈0|T 1
−1T 2

−2 ⊗ 1 ⊗ 1|1〉L

In our numerical simulations, we observed that we need to
satisfy either the diagonal or the off-diagonal condition for the
codes respecting the binary octahedral symmetry. Thus if we
find a code satisfying the diagonal conditions, the off-diagonal
conditions will be trivially satisfied and vice versa, which is
also true for the error operators that are linear in the angular
momentum operators. Unlike the case of linear angular mo-
mentum errors, finding the code word analytically is hard and
we need to rely on numerical methods to find the code words;
the method is described in detail in Appendix D. Also, as we
are interested in the local rather than global errors we need to
transform the basis from | jtot, jtot

z 〉 → | j1, m1; j2, m2; j3, m3〉
using the Clebsch-Gordan coefficients, where { ji, mi} refers
to the angular momentum basis of the individual spins.

From Eq. (25) there are multiple SU(2) irreducible rep-
resentations within the symmetric subspace of the threefold
tensor product of spin- j systems. Decomposing these fur-
ther into binary octahedral irreducible representations gives
us high multiplicities for the two faithful two-dimensional
irreducible representations and therefore many degrees of
freedom with which to satisfy the error-correction conditions.
For example, consider the case of spin j = 7

2 . A possible code
word obtained numerically for the �4 irreducible representa-
tion [11] is

|0〉 ∝
√

70

849
|0〉21/2 +

√
1

4468
|0〉1

17/2 +
√

338

1251
|0〉2

17/2

(43)

+
√

112

479
|0〉15/2 +

√
515

1246
|0〉13/2,

where |0〉1
17/2 and |0〉2

17/2 are orthogonal choices for |0〉 within
the multiplicity-2 �4 irreducible representation of the binary
octahedral representation derived from j = 17

2 , where the
degeneracy is broken by diagonalizing Jz in the subspace
spanned by the logical |0〉′s.

Similarly for the case of j = 9
2 , we can use the SU(2)

irreducible representations given in Eq. (25) and find a code
numerically as

|0〉 ∝ −
√

2

439
|0〉1

27/2 +
√

55

739
|0〉2

27/2 −
√

216

349
|0〉1

23/2

+
√

133

1090
|0〉2

23/2 −
√

237

1316
|0〉21/2,

(44)

where again we have used the �4 irreducible representation,
the superscripts in the code word represent the multiplicities
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for j = 27
2 and j = 23

2 , and degeneracy is broken by diagonal-
izing Jz in the subspace spanned by the logical |0〉′s.

Thus using the tensor-product structure of a minimum of
three spins with individual spins j > 1

2 , we can encode a
qubit correcting the most significant error in these physical
platforms, which are rotation errors and optical pumping. This
in turn provides an alternate approach for error correction
with very low overhead, the number of physical systems to
encode a logical qubit, by caring about the most significant
error mechanisms.

VII. CORRECTING MULTIBODY ERRORS
WITH SPIN j = 1

2

Now we turn our attention to the case of the N-fold tensor
product of j = 1

2 . Here the only irreducible representation in
the symmetric subspace is spin N/2. Hence we shift away
from the paradigm of local (one-body) first- and second-order
angular momentum errors and consider nonlocal (multibody)
errors in this section. For this case, we can work with collec-
tive spin operators

Jk = 1

2

N∑
i=1

σk,i, (45)

where σk,i is the Pauli matrix acting on the ith location and
k ∈ {x, y, z}.

Using the property of the symmetric subspace in Eq. (22),
we get

〈Jk〉 = N

2
〈σk,1〉 = N

2
〈σk,2〉 = · · · = N

2
〈σk,N 〉. (46)

Thus making the expectation value of the collective spin op-
erator vanish makes all the local expectation values vanish,
which is the condition we studied for small random SU(2)
errors in Sec. V.

Now looking for codes for the qubit with the capacity to
correct individual qubit errors, we can think of the same in
terms of the collective spin operators. For example, consider
the case of the code corrects for all single-body Pauli errors,
i.e., a code with distance 3. The Knill-Laflamme conditions
we need to consider are 〈i|σk,p| j〉 and 〈i|σk,pσl,p′ | j〉, where we
use the fact that (σk,i )2 = 1; p, p′ = {1, 2, . . . , N}; and k, l =
{x, y, z}. However, if we restrict ourselves to the case of the
codes respecting the binary octahedral symmetry and using
the error-correction condition derived in Eq. (30) where we
have all the operators with rank ki = 1, the only conditions
remaining to check are

〈i|σk,p| j〉= 2

N
〈i|Jk| j〉. (47)

However, for the binary octahedral symmetry for the col-
lective spin operators the only condition we need to satisfy is
[11] 〈0|Jz|0〉. For example, we can think of a code with param-
eter [[n, k, d] = [13, 1, 3]] in the �5 irreducible representation
for the octahedral symmetry and the code word is

|0〉 =
√

105

14
|0〉0 +

√
91

14
|0〉1, (48)

where the states in the basis |J, Jz〉 are

|0〉0 =
√

910

56

∣∣∣∣13

2
,

13

2

〉
− 3

√
154

56

∣∣∣∣13

2
,

5

2

〉

−
√

770

56

∣∣∣∣13

2
,−3

2

〉
+

√
70

56

∣∣∣∣13

2
,−11

2

〉
,

|0〉1 =
√

231

84

∣∣∣∣13

2
,

13

2

〉
− 3

√
1365

84

∣∣∣∣13

2
,

5

2

〉

−
√

273

84

∣∣∣∣13

2
,−3

2

〉
+

√
3003

84

∣∣∣∣13

2
,−11

2

〉
. (49)

Next we can consider the case of the error-correcting code
that corrects two Pauli errors, otherwise known as a distance-
5 code. We start by considering correcting global angular
momentum errors up to the second order. The octahedral
symmetry of the codes reduces the Knill-Laflamme conditions
(21) we need to satisfy to

〈i|Jz| j〉 = Czδi j, (50)

〈i|J3
z | j〉 = Czzδi j, (51)

〈i|JzJ
2
x | j〉 = Cxzδi j, (52)

〈i|JxJyJz| j〉 = Cxyzδi j, (53)

where i, j = {0, 1}. Now, as we have seen in Sec. II, the
condition 〈i|Jz| j〉 is equivalent to just satisfying 〈0|Jz|0〉 = 0.
Again invoking the support structure of octahedral codes in
Sec. II and the operator UX defined in Eq. (12) yields

〈0|J3
z |1〉 = 〈1|J3

z |0〉 = 0,

〈0|J3
z |0〉 = −〈1|J3

z |1〉. (54)

Thus the condition needed to satisfy Eq. (51) reduces to
〈0|J3

z |0〉 = 0.
Now using the fact that J± = Jx ± iJy, we get

J2
x = 1

4

[
J2
+ + J2

− + 2 j( j + 1)1 + 2J2
z

]
, (55)

and therefore JzJ2
x = 1

4 [JzJ2
+ + JzJ2

− + 2 j( j + 1)1 + J3
z ].

Again invoking the support property of the binary octahedral
symmetry yields

〈0|JzJ
2
±|1〉 = 〈1|JzJ

2
±|0〉 = 0,

〈0|JzJ
2
±|0〉 = 〈1|JzJ

2
±|1〉 = 0. (56)

Thus, to satisfy Eq. (52) it is sufficient to satisfy Eq. (51).
Now for Eq. (53) we can use

JxJy = −i

4
(J2

+ − J2
− − Jz ) (57)

to show JxJyJz = −i
4 (J2

+Jz − J2
−Jz − J2

z ). However, from
Eq. (56) and using

〈0|J2
z |1〉 = 〈1|J2

z |0〉 = 0,

〈0|J2
z |0〉 = 〈1|J2

z |1〉,
(58)

from [11], we see that Eq. (53) is trivially satisfied, and thus
to correct all the errors up to the second power in angular
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momentum we only need to satisfy

〈0|Jz|0〉 = 0,

〈0|J3
z |0〉 = 0. (59)

Armed with this result, we turn our attention to the local errors
that actually concern us. For a collection of spin- 1

2 systems

J2
z = 1

4

∑
i, j

σz,iσz, j

= 1

4

∑
i= j

1 + 1

4

∑
i �= j

σz,iσz, j . (60)

Again using the fact that (σz,i )2 = 1, we get

J3
z = 1

8

∑
i, j,k

σz,iσz, jσz,k

= 1

8

⎛
⎝4

∑
k

σz,k +
∑

i �= j �=k

σz,iσz, jσz,k

⎞
⎠. (61)

For a state in the symmetric subspace for N spins,

〈
J3

z

〉 = 1

8

⎛
⎝4

∑
k

〈σz,k〉 +
∑

i �= j �=k

〈σz,iσz, jσz,k〉
⎞
⎠

= 〈Jz〉 + N (N − 1)(N − 2)〈σz,1σz,2σz,3〉. (62)

Thus a code that follows Eq. (59) satisfies the Knill-Laflamme
conditions for the errors of the form σz,iσz, jσz,k .

Now consider a general Knill-Laflamme condition
〈i|σp,kσq,lσr,m| j〉, where p, q, r = {x, y, z} and k, l, m =
{1, 2, . . . , N} for N spin- 1

2 systems. We can again look at the
collective spin operators and the expansion of JxJyJz and JzJ2

x
in terms of Pauli operators. We have

JxJyJz = 1

8

∑
i, j,k

σx,iσy, jσz,k . (63)

Using the fact that σx = σ+ + σ− and σy = −i(σ+ − σ−), we
have

JxJyJz = − i

8

⎛
⎝∑

i, j,k

σ+,iσ+, jσz,k − σ−,iσ−, jσz,k

⎞
⎠

+ i

8

⎛
⎝∑

i, j,k

σ+,iσ−, jσz,k − σ−,iσ+, jσz,k

⎞
⎠. (64)

However, the Knill-Laflamme condition for the first two terms
is trivially satisfied using Eq. (30) and we need not consider
the case when i, j, or k is repeated as the total rank

∑
i ki is

even for that case and those cases are trivially satisfied again
by Eq. (30). Thus the only nontrivial terms to consider are

i

8

⎛
⎝∑

i, j,k

σ+,iσ−, jσz,k − σ−,iσ+, jσz,k

⎞
⎠ = i[J+, J−]Jz

= −J2
z . (65)

Thus the condition for σx,iσy, jσz,k is satisfied if the global
condition for J2

z is satisfied and for the binary octahedral
symmetry the condition for J2

z is trivially satisfied. Now we
can look at the expansion of JzJ2

x and we get

JzJ
2
x = 1

8

∑
i, j,k

σz,iσx, jσx,k . (66)

Again expanding the σx and ignoring the trivially satisfied
cases, we are left with the terms

1

8

⎛
⎝∑

i, j,k

σ+,iσ−, jσz,k + σ−,iσ+, jσz,k

⎞
⎠ = 2Jz

(
J2

x + J2
y

)

= 2J3
z + 2Jz[ j( j + 1)],

(67)

where j = N/2 is the spin of the totally symmetric subspace.
Thus if we satisfy the global condition of J3

z and Jz, the con-
dition for σz,iσx, jσx,k is satisfied, and hence the only condition
we need to check to satisfy all the errors up to distance 5 is to
check the global conditions given in Eq. (59).

The minimum spin we need to find conditions to correct for
Jz and J3

z is j = 25
2 in the �4 irreducible representation, i.e., we

need 25 qubits and to form a [[25,1,5]] code. The code word
is approximately

|0〉 ∝ −
√

267

1213
|0〉1 +

√
701

1457
|0〉2 +

√
337

1128
|0〉3, (68)

where

|0〉1 = −
√

1377

4132

∣∣∣∣25

2

25

2

〉
−

√
1

674

∣∣∣∣25

2

17

2

〉
−

√
109

1169

∣∣∣∣25

2
,

9

2

〉
−

√
803

1918

∣∣∣∣25

2
,

1

2

〉

−
√

103

690

∣∣∣∣25

2
,−7

2

〉
−

√
1

263

∣∣∣∣25

2
,−13

2

〉
−

√
1

3608

∣∣∣∣25

2
,−21

2

〉
,

|0〉2 =
√

1

4402

∣∣∣∣25

2

25

2

〉
−

√
2

839

∣∣∣∣25

2

17

2

〉
−

√
293

983

∣∣∣∣25

2
,

9

2

〉
−

√
11

1264

∣∣∣∣25

2
,

1

2

〉

×
√

913

2925

∣∣∣∣25

2
,−7

2

〉
+

√
21

412

∣∣∣∣25

2
,−13

2

〉
−

√
1069

3264

∣∣∣∣25

2
,−21

2

〉
,
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|0〉3 = −
√

1

61 408

∣∣∣∣25

2

25

2

〉
+

√
1750

2781

∣∣∣∣25

2

17

2

〉
−

√
325

3548

∣∣∣∣25

2
,

9

2

〉
+

√
43

763

∣∣∣∣25

2
,

1

2

〉

−
√

47

551

∣∣∣∣25

2
,−7

2

〉
+

√
183

1349

∣∣∣∣25

2
,−13

2

〉
+

√
2

1011

∣∣∣∣25

2
,−21

2

〉
. (69)

The distance-5 code for the binary octahedral code has the
same code parameters as the distance-5 surface code [1,22].
These codes have another interesting correspondence in that
they both belong to efficiently representable subsets of the full
Hilbert space. The codes we study in this article all belong
to the symmetric subspace, which is spanned by the Dicke
basis and has dimension N + 1, which is linear instead of
exponential in the number of qubits N . The code words for
the surface code are stabilizer states, which we can efficiently
represent by specifying a generating set of stabilizers of size
N − 1 [23]. One notable difference is that, unlike the surface
code, the binary octahedral codes have full transversal single-
qubit Clifford gates.

Using the same approach as we did for the distance-3 and
-5 codes, we can build codes that have larger distances. In
Fig. 3 the number of physical qubits as a function of distance
is given for both the binary octahedral (Clifford) codes and the
surface codes. Both scale quadratically in the distance, though
the Clifford codes have an improved constant factor.

We can use the binary tetrahedral symmetry to find code
words with even fewer qubits. For example, we can construct
a [[7,1,3]] code with code word

|0〉 =
√

7

16
|0〉0 +

√
16

16
|0〉1, (70)

where

|0〉0 = −
√

3

2

∣∣∣∣7

2
,

5

2

〉
+ 1

2

∣∣∣∣7

2
,−3

2

〉
,

|0〉1 =
√

7

12

∣∣∣∣7

2
,

1

2

〉
+

√
5

12

∣∣∣∣7

2
,−7

2

〉
. (71)

10 20 30 40

500

1000

1500

FIG. 3. Scaling of distance for binary octahedral codes. The plot
shows the number of physical qubits required for correcting errors
up to a distance d for the surface code (rotated) and the binary
octahedral code.

The smallest distance-3 stabilizer code that has transversal
Clifford gates is the Steane code [24] with code parameters
[7,1,3] and also with binary octahedral symmetry, as it has
transversal Clifford operators. The Steane code lies outside
our classification as it does not exist entirely within the sym-
metric subspace (being a superposition of spin 1

2 and spin
7
2 ), suggesting that more interesting codes might be found by
looking beyond the symmetric subspace.

VIII. CONCLUSION AND OUTLOOK

In this work we focused on using binary octahedral sym-
metry to construct useful quantum error-correcting codes
extending the ideas in [11]. In [11] the codes were designed to
protect against SU(2) errors in a single large spin. In this arti-
cle we developed a technique for designing codes for multiple
copies of spins. We leveraged the multiple SU(2) irreducible
representations within the symmetric subspace of the tensor
product of several large spins to correct for the additional
physically relevant error channel of tensor light shifts. This
resulted in numerically derived codes correcting tensor light
shifts in three copies of spin j = 7

2 and in three copies of spin
j = 9

2 . We derived general simplified error-correction condi-
tions for correcting errors at arbitrary order using the structure
of spherical tensors (21) and (30), which are polynomials of
the angular momentum operators and well studied in the spin
systems.

We additionally studied the case of qubits ( j = 1
2 ) and

extended the framework to multibody errors. Again we used
the symmetric subspace for a large number of spin- 1

2 systems
and used the symmetries to find codes with distance 3 for
n = 7 and distance 5 for n = 25. The distance-5 code con-
trasts interestingly with the distance-5 surface code, which has
the same code parameters but gives up the transversal Clifford
gates of the binary octahedral code in favor of its stabilizer
structure.

The techniques outlined in this work can easily be extended
to further develop codes with larger distances with octahedral
symmetry. An important open question is whether one can
develop fault-tolerant schemes for these kinds of codes, as
their highly non-Abelian nature makes applying existing fault-
tolerant strategies difficult. Finally, it would be interesting
to explore whether binary octahedral codes might have use
as nonstabilizer versions of the metrological codes discussed
in [25].
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APPENDIX A: SPHERICAL TENSORS

The spherical tensor operators for a spin j are defined in
terms of the commutator relations [16,17][

Jz, T k
q

] = qT k
q ,[

J±, T k
q

] =
√

k(k + 1) − q(q ± 1)T k
q±1. (A1)

Using these relations, the irreducible spherical tensors can be
explicitly written in terms of the angular momentum basis as
[16,18]

T k
q ( j) =

√
2k + 1

2 j + 1

∑
m

〈 j, m + q|k, q; j, m〉| j, m + q〉〈 j, m|,
(A2)

where 0 � k � 2 j and −k � q � k. The spherical tensor op-
erators of rank k can be expressed as order-k polynomials in
the angular momentum operators [18,26]. The spherical ten-
sor operators also form an orthonormal basis for the operators
on an SU(2) irreducible representation with respect to the
Hilbert-Schmidt inner product

Tr
(
T k1

q1
T k2

q2

) = δk1,k2δq1,q2 . (A3)

Now consider the unitary transformation given as UX =
exp(−iπJx ), which can also be written in terms of the angular
momentum basis as

UX = −i
j∑

m=− j

| j, m〉〈 j,−m|. (A4)

Thus the action of the unitary operator on the irreducible
spherical tensor gives

UX T k
q U †

X =
j∑

m=− j

〈 j, m + q|k, q; j, m〉| j,−m − q〉〈−m|.

(A5)
Using the transformation m → −m and the fact that

〈 j, m + q|k, q; j, m〉 = (−1)k〈 j,−m − q|k,−q; j,−m〉,
(A6)

we get

UX T k
q U †

X = (−1)k
∑

m

〈 j, m − q|k,−q; j, m〉| j, m − q〉〈 j, m|

= (−1)kT k
−q. (A7)

Thus the action of UX on the spherical tensor operators is to
flip the sign of q and to add a rank-dependent phase of ±1 to
the operator.

APPENDIX B: ERROR CORRECTION CONDITION

The logical Pauli Z operator on an irreducible representa-
tion � of the binary octahedral group is given by [11]

σz = P�[i exp(−iπJz )]P�. (B1)

Logical |0〉 is taken to be a +1 eigenstate of the logical Pauli
Z operator. The projector for the binary octahedral group is
given as

P� = dim�

|2O|
∑
g∈2O

χ�(g)∗D(g), (B2)

where 2O is the single-qubit Clifford group [27], also called
the binary octahedral group. Now from [11], the χ�(g) for the
SU(2) irreducible representations of interest are real. For the
binary octahedral group, we also have that every representa-
tive D(g) is in the same conjugacy class as D(g)†, D(g)T , and
D(g)∗. Restricting the sum to a fixed conjugacy class [g] gives

1

4
χ�(g)∗

∑
h∈[g]

[D(h) + D(h)† + D(h)T + D(h)∗]. (B3)

The term for each conjugacy class is real symmetric since χρ

is real and D(g) + D(g)† + D(g)T + D(g)∗ is manifestly real
and symmetric. Thus we get P� to be a real symmetric matrix.
The term sandwiched by the projectors in Eq. (B1) is also real
and symmetric for half-integer spins

i exp(−iπJz ) = [i exp(−iπJz )]† = [i exp(−iπJz )]T ; (B4)

hence σz is a real-symmetric operator.
Now the eigenvector of a real symmetric matrix A can be

found by solving the eigenvalue equation

(A − λ1)|ψ〉 = 0. (B5)

Since the eigenvalue λ is real from A being Hermitian, when
solved by Gaussian elimination we get a real vector and hence
the eigenvectors of a real symmetric matrix are also real (up
to an overall constant which is not important).

Consider the expectation value for two states |ψ〉 =∑
i αi|i〉 and |φ〉 = ∑

i βi|i〉, where |i〉 is in the angular mo-
mentum basis,

〈ψ |T k
−q( j)|φ〉 = dk

j

∑
i,i′,m

α∗
i βi′C

k,−q
j,m, j,m−q〈i′| j, m − q〉〈 j, m|i〉,

(B6)

where dk
j = √

2k + 1/2 j + 1 and

C j3,m3
j1,m1, j2,m2

= 〈 j3, m3| j1, m1; j2, m2〉 (B7)

is the Clebsch-Gordan coefficient. Now using the property
that 〈i| j, m + q〉 = 〈 j, m + q|i〉, as they are both in the angular
momentum basis, we get

〈ψ |T k
−q|φ〉 = dk

j

∑
i,i′,m

α∗
i βi′C

k,−q
j,m, j,m−q〈 j, m − q|i′〉〈i| j, m〉.

(B8)

Also, by transforming this equation by m → m + q we get

〈ψ |T k
−q|φ〉 = dk

j

∑
i,i′,m

α∗
i βi′C

k,−q
j,m+q, j,m〈 j, m|i′〉〈i| j, m + q〉.

(B9)
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Using the property of the Clebsch-Gordan coefficients

C j3,m3
j1,m1, j2,m2

= (−1) j1+ j2+ j3C j3,m3
j2,m2, j1,m1

, (B10)

we get

〈ψ |T k
−q|φ〉 = (−1)kdk

j

∑
i,i′,m

α∗
i βi′C

k,−q
j,m, j,m+q〈J, m|i′〉

× 〈i|J, m + q〉. (B11)

Again using another property of Clebsch-Gordan coefficients

C j3,m3
j1,m1, j2,m2

=
√

2 j1 + 1

2 j2 + 1
(−1) j2+m2C j3,−m3

j1,m1, j2,m2
, (B12)

we get

〈ψ |T k
−q|φ〉 = (−1)qdk

j

∑
i,i′,m

α∗
i βi′C

k,q
j,m, j,m+q〈 j, m|i′〉

× 〈i| j, m + q〉. (B13)

Since the computational-basis code words for the binary oc-
tahedral case are real the amplitudes αi and βi are real when
|ψ〉 and |φ〉 are computational-basis code words, as when we
are checking error-correction conditions, and thus

〈ψ |T k
−q|φ〉 = (−1)q〈φ|T k

q |ψ〉. (B14)

APPENDIX C: SYMMETRIC SUBSPACE UNDER THE
TENSOR PRODUCT OF TWO SPINS

It is known that the SU(2) irreducible representations un-
der the addition of two spin- j systems is given as

j ⊗ j = 2 j ⊕ (2 j − 1) ⊕ (2 j − 1) ⊕ · · · . (C1)

Focusing our attention on the symmetric subspace, in Eq. (24),
we numerically find that the symmetric subspace of two spin- j
systems is composed of all SU(2) subspaces interleaving one
in between starting from the highest possible angular momen-
tum. To verify this we could do dimension counting of these
subspaces. First, consider the case of even multiple of spin 1

2
and thus the dimension of the alternate SU(2) subspaces is
given as

dim =
j∑

k=0

4 j + 1 − 4k

= 4 j( j + 1) + j + 1 − 2 j( j + 1)

= 2 j2 + 3 j + 1 = (2 j + 1)(2 j + 2)

2

= dim[S2(2 j + 1)]. (C2)

For the case of odd multiples of 1
2 we have

dim =
j−1/2∑
k=0

4 j + 1 − 4k

= 4 j

(
j + 1

2

)
+ j + 1

2
− 2

[(
j − 1

2

)(
j + 1

2

)]

= 4 j2 + 2 j + j + 1

2
− 2 j2 + 1

2

= 2 j2 + 3 j + 1

= (2 j + 1)(2 j + 2)

2

= dim[S2(2 j + 1)]. (C3)

Thus we get that for both even and odd multiple of spin 1
2

the dimension of the symmetric subspace is SU(2) subspaces
interleaving one in between starting from the highest possible
angular momentum.

APPENDIX D: ALGORITHM FOR FINDING THE CODE
WORD FOR THE CASE OF SECOND-ORDER ERRORS

The simple algorithm for finding the code word follows
three steps.

Step 1. Write the code words as

|0〉L =
n∑

i=1

ci|0〉i, |1〉L =
n∑

i=1

ci|1〉i, (D1)

where i corresponds to the two-dimensional qubit spaces one
has access to and ci ∈ R.

Step 2. Define the cost function

F[(c)] =
∑

constraints

| f (c)|, (D2)

where f (c) is the value we get for each constraint we need
to satisfy according to the Knill-Laflamme conditions in
Eq. (21).

Step 3. Minimize the cost function to obtain the right code
word where c ∈ Rn such that

copt = arg min
c∈R

F[(c)], (D3)

which in turn gives the code words as

|0〉L =
∑

i

copt
i |0〉i, |1〉L =

∑
i

copt
i |1〉i. (D4)
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