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We examine the effectiveness and resilience of achieving quantum gates employing three approaches stem-
ming from quantum control methods: counterdiabatic driving, Floquet engineering, and inverse engineering. We
critically analyze their performance in terms of the gate infidelity, the associated resource overhead based on
energetic cost, the susceptibility to timekeeping errors, and the degradation under environmental noise. Despite
significant differences in the dynamical path taken, we find a broadly consistent behavior across the three
approaches in terms of the efficacy of implementing the target gate and the resource overhead. Furthermore,
we establish that the functional form of the control fields plays a crucial role in determining how faithfully a gate
operation is achieved. Our results are demonstrated for single-qubit gates, with particular focus on the Hadamard

gate, and we discuss the extension to N-qubit operations.

DOLI: 10.1103/PhysRevA.108.022423

I. INTRODUCTION

Prompted by Feynman [1], the idea of using quantum
properties of matter and light to process information has given
rise to an extensive research effort. Beyond the implications
for basic science, quantum information technologies would
entail a significant computational speedup for particular
applications, allowing for solutions to problems that are
intractable with current technologies based on classical
systems [2-4]. These quantum advantages have been
theoretically predicted for a variety of information processing
tasks, such as search and factoring algorithms, and quantum
cryptography [5]. Experimentally, it is now possible to
implement them in systems such as superconducting qubits
[6,7], trapped ions [8], and photons [9].

Several approaches for universal quantum computation
have been developed, chief among them being measurement-
based [10-13], gate-based [1,14], and adiabatic [15,16]
models. The relative benefits and drawbacks of each ap-
proach notwithstanding [2—4], gate-based quantum compu-
tation presents an attractive method. Any computation can
be implemented by a relativity small set of gates on a qubit
register [14,17]. Indeed, small-scale quantum devices are pro-
viding remarkable platforms for the simulation of quantum
systems [18-21], insights from which can be greatly enhanced
by improving the implementation of the basic building blocks,
i.e., the quantum gates.

Achievement of this aim necessitates the coherent control
of quantum systems [22-28]. Beyond the basic requirement of
enacting the desired gate operation, we must consider several
additional factors to ensure the scalability and reliability of
these operations. Among these are the resources necessary for
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their fast and accurate implementation [29-42], understanding
the spoiling impact of the environment [43-45], and the
impact of operational errors [46,47]. The assessment of
the energetic efficiency of these devices is crucial in their
design [32] and may enforce practical constraints for their
implementation. The interplay between the performance of
a quantum computing machine and its energetic efficiency
determines a fundamental connection between quantum
information processing and thermodynamics [48,49].
Following this edict, in this work, we consider three
approaches to implement gate operations on quantum sys-
tems through controlled Hamiltonian dynamics. In particular,
we consider the auxiliary evolution approach introduced in
Refs. [50,51], where a driven auxiliary system is coupled to
the computational register upon which the operation is faith-
fully induced, provided the evolution is adiabatic. We augment
this approach with techniques from shortcuts-to-adiabaticity
[22,23], specifically, counterdiabatic driving (CD) [52-55]
and Floquet engineering (FE) [56], that allow one to ar-
bitrarily speed up the implementation. In addition to these
techniques, we consider an inverse engineering (IE) approach
[57], where the computational register is directly driven by
external control fields. We examine these approaches, both
in terms of their resource overhead and their resilience to
systematic errors stemming from imperfect timekeeping and
environmental effects. We find that all are effective in achiev-
ing the target gate operation and we highlight the importance
that the choice of control pulse plays in all cases. How-
ever, more significant differences emerge when considering
other performance metrics and, therefore, we find that the
optimal choice of how to realize such controlled quantum
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FIG. 1. (a) The auxiliary control setting based on the protocol
from Ref. [51]. Here an auxiliary qubit is coupled to the compu-
tational register, with control fields acting only on this auxiliary
system. We assume the driven qubit can also experience environ-
mental effects, while the computational qubit is completely isolated.
(b) The setup for the inverse engineering setting. The Hamiltonian
is designed without any additional resources, and thus the compu-
tational qubit is driven directly and can be subject to environmental
noise.

gates will ultimately be dictated by the constraints of a given
architecture.

II. PRELIMINARIES

A. Control protocols

Here we outline the three control techniques that are the
focus of the present work. As shown in Fig. 1 for the auxiliary
evolution approach, we consider two approaches to speed up
the dynamics, i.e., (i) counterdiabatic driving (CD) and (ii)
Floquet engineering (FE); we also consider a third controlled
implementation where the computational register is directly
driven via (iii) inverse engineering (IE).

1. Auxiliary evolution with control

The first method we consider for implementing unitary
gates is the adiabatic approach [50], where an auxiliary qubit
is coupled to a computational register upon which we wish
to perform the gate operation. By driving this auxiliary qubit
adiabatically, the desired gate operation can be effected on the
computational register. To that end, we consider the general
total Hamiltonian (for the register and auxiliary qubit)

H(t) =) P ® Hy, (1), ()
k

where P, are projectors derived from the rotation axis of the
desired unitary acting on the computational register, while
Hy, (¢) is the angle-dependent driving Hamiltonian acting on
the auxiliary qubit, given by

Hy, (t) = —{cos(0yA)o; + sin(0;1)[cos (¢ )0+ sin (¢y )oy ]},
2)

where A = A(?) is the time-dependent control parameter. The
angles ¢, are dictated by the specific gate being implemented
and we will examine an exemplary choice in the proceeding
section.

This approach necessitates that the auxiliary qubit is driven
adiabatically, which, in general, requires long timescales,

leaving the system open to errors from environmental effects.
Counterdiabatic driving [52,55] allows us to arbitrarily
speed up the evolution while still achieving perfect adiabatic
dynamics by introducing additional term(s) to the system
Hamiltonian. The CD term is equivalent to the addition
of an adiabatic gauge potential to the system Hamiltonian
[26]. In general, the CD term for a Hamiltonian Hj is
given by

|m) {m|Holn) (n|

, 3
E _E, 3)

HP =jA, =iy
m#n

where |k) and E; are the Hamiltonian’s instantaneous
eigenstates and eigenvalues. Evolving the system with
the total Hamiltonian H = Hy + HP gives rise to a
transitionless dynamics in finite time. The exact evaluation
of Eq. (3) requires the complete knowledge of the spectrum
of the system Hamiltonian at all times, often limiting its
applicability. However, Refs. [26,56] propose to approximate
the exact adiabatic gauge potential given in Eq. (3) with a
nested commutator expansion,

!
AP =i oy [HIH, ..[H, ,H]]]. “)
k=1 2k—1

where [ denotes the order of the expansion and, for an
arbitrary system in the limit of / — oo, one obtains the
exact expression given in Eq. (3). The coefficients oy are
determined by minimizing the action,

S =T[G}], G =0H—i[H A]. (5)
This approach is particularly effective when dealing with
many-body systems as it allows one to truncate the complexity
of the control fields [56]. For a single two-level system, as
will be the focus of the present work, we find that Eq. (4)
is already identical to the full counterdiabatic term, given
by Eq. (3), for [ =1, i.e., only the first term in the sum
is required to achieve perfect control. However, our main
interest in employing Eq. (4) is because it provides a means to
engineer a Floquet Hamiltonian which approximately mimics
the action of an adiabatic gauge potential [56] and therefore
opens up possibilities in terms of feasible experimental
implementations [58].

Floquet theory allows one to design an effective Hamil-
tonian that stroboscopically mimics the dynamics of an-
other, potentially more complex or experimentally unfeasible
Hamiltonian. In order to achieve this, we need only to oscil-
late the original driven Hamiltonian and its derivative with
respect to the driving parameter. Such a Floquet Hamiltonian
can stroboscopically recreate the dynamics of the full CD
Hamiltonian H = Hy + Xﬂy) with a comparatively reduced
operator set. The explicit form of the Hamiltonian that imple-
ments this is

HyF = [1 + 2 cos(wt):|H¢(k)
wo

+ X{Z Bi sin[(2k — Dot ] } HHyL),  (6)

k=1
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where f; are Fourier coefficients of the expansion of the
Floquet Hamiltonian that are chosen to match the terms of
the adiabatic gauge potential expansion, wy = 27 /7 is a ref-
erence frequency, and we take @ to be much greater than
wp, whose ratio defines the number of driving cycles for the
evolution.

2. Inverse engineering

As an alternative approach to auxiliary control, we consider
directly driving the computational register. The evolution
of a closed quantum system obeys the time-dependent
Schrodinger equation and an arbitrary initial state is connected
to a designated final state by a unitary operator, | (¢)) =
U )|y (0)). The Hamiltonian that generates such a unitary
time evolution is determined by the well-known relation

H@) =iUOUT@). (7)

It is possible to follow several approaches to inverse engineer
the desired unitary [23,57,59,60], and hence the correspond-
ing Hamiltonian. In this work, we adopt the approach taken in
Ref. [57] and express U (¢) in the following form:

Uy =Y_ ™ Olm()) (m()], ®)

where the set {|m(¢))} forms a complete orthonormal basis,
and A(¢) has the initial condition A,(0) = 2[, where [ € Z
to ensure U(0) = 1. By taking suitable choices for the free
parameters that define the orthonormal basis and local phase
information, we can construct a Hamiltonian that implements
the desired unitary behavior in such a way that is not depen-
dent on a particular initial state. In what follows, we construct
the IE Hamiltonian such that A(¢) is the driving parameter.
The motivation for choosing IE is to showcase another con-
trol technique. However, it is important to remark that the
IE approach prescribed above and “typical” counterdiabatic
control methods are intrinsically related [61]. Thus, the results
reported for the IE case would be qualitatively similar if
instead CD driving were applied to the computational qubit
directly. What does differ is that with the IE approach, we do
not start with a reference Hamiltonian a priori for which the
transitions need to be suppressed. Instead, one can separate
out the adiabatic gauge potential term from the resultant IE
Hamiltonian after transforming the basis. Nevertheless, we
remind the reader that, as depicted in Fig. 1, the key difference
in our analysis is embodied by the two distinct settings where
either an auxiliary system is employed to achieve the gate or
the computational system is directly driven.

B. Figures of merit
1. Gate infidelity
To characterize how faithfully a gate has been imple-
mented, we adopt the average infidelity measure [44],

3
w; .
Jr=1-) ————=Re{tr[Upi(O)U p;(0)]}, (9)
B )
and consider the average of the Hilbert-Schmidt norm of the
ideal evolution of three specific initial states with the obtained
state, weighted by w; with Z?:l w; = 1. Three initial states

satisfying particular conditions have been shown to be the
minimum amount needed to address all the possible errors and
characterize a general unitary operation for an open system
evolution [44,62]. For a single qubit, the following set satisfies
the necessary conditions [44]:

2/3 0 1/2 1/2
p1(0) = ( ! 1/3), p2(0) = (1?2 1;2)’

1/2 0
p3(0) = (é 1/2>.

The first state p; checks errors in the fixed basis states and
therefore does not signal any possible errors that are diagonal
in this basis. The second state p, addresses this and indicates
the off-diagonal errors in the fixed basis. The third state p3
is chosen to ensure that populations are conserved, which is
important for an open system setting. Depending on the choice
of the weights in Eq. (9), it is possible to highlight the effect
of a source of an error on the infidelity over the others. For
simplicity and without loss of generality, throughout this work
we choose these weights to be equal, i.e., w; = 1/3.

2. Cost of control

The addition of control terms to the Hamiltonian implies an
overall increase in resources needed to evolve the system. The
analysis of this cost has been the focus of several recent works
[63-71], where different quantifiers have been introduced de-
pending on the physical motivation. In this work, we adopt the
cost measure introduced in Refs. [54,63,72],

1 T
C= —f IH |ldt, (10)
T Jo

where | - || denotes the norm of the Hamiltonian of interest
and, for simplicity, we consider the trace norm. It is important
to emphasize that following the approach taken in [36], we
take H to be the full Hamiltonian that generates the driven
dynamics implementing the gate operation, not just the ex-
ternal control term. In fact, notice that it is only for the case
of CD control where an explicit additional Hamiltonian term
is added to the bare Hamiltonian. For both the FE and IE
approaches, control is embedded into the same operators that
appear in the bare Hamiltonian. Therefore, it is necessary to
consider the cost of the full Hamiltonian generating the time
evolution. This measure is well motivated by the functional
form of the physical driving fields [63,71] and has been shown
to have connections to a Landauer-type limit for the change in
information encoded computational states [31].

C. Systematic errors
1. Timekeeping errors

The controlled dynamics require that the drives are im-
plemented for a specific length of time, which we denote
by 7. Since the control protocols are designed to be ef-
fective regardless of the specific functional form of the
drive, this provides a useful additional degree of freedom
for control protocols [36,73]. We consider the following
ramp profiles that satisfy the boundary conditions A(0) = 0
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and AM(t) = 1:
t
A(t) = —, linear
T
1062 15t* 611 .
Mt)= —- — —+ —, polynomial (11)
T T T

. [Tt . .
A(t) = sin (—), sinusoidal.
27

We look to characterize the impact of timing errors in the
drive, i.e., where the duration of the driving field over- or
undershoots the intended target time t, by assessing the re-
sulting impact on the gate infidelity, given by Eq. (9). We note
that these pulses are chosen to capture and compare certain
pulse characteristics. Indeed, much work has been done in
designing more complex ramp profiles via optimal control
and machine learning methods [74-76] seeking to optimize
to a variety of relevant cost functionals. Our analysis can
therefore provide useful information for the seed pulses to
ensure robustness to, e.g., timekeeping errors, while exploit-
ing more advance techniques to explore a greater optimization
landscape.

2. Environmental errors

We are interested in considering how faithfully the gate
operation is implemented when the controlled system is not
completely isolated and therefore prone to environmental ef-
fects. To that end, we model the time evolution of the driven
system with a Markovian master equation,

p = —ilH, p]+ D(p), (12)
where D gives rise to a dephasing process,
D(p) =y (ol pol —p), (13)

where the superscript A symbolizes our assumption that the
environment only affects the driven part of the system, i.e.,
for the CD and FE cases we assume the environment acts only
on the auxiliary qubit, while for IE, it is applied directly to the
computational qubit(s).

II1. SINGLE-QUBIT GATE

We begin by assessing the controlled implementation of a
single-qubit gate which realizes the operation

alny) + Bln=) — alny) + € Bln_), (14)

where |ny) forms a basis in which the desired unitary gate
simply performs a rotation of ¢. For the case of the auxiliary
evolution outlined in Sec. II A 1, where the computational
qubit is coupled to an auxiliary system that is subject to
the controlled drive, the combined initial state is assumed to
be |V;) = («|ny) + Bln_)) ® |0), with |0) and |1) being the
eigenstates of o;. In this setting, Eq. (1) becomes

H(t) = |ny)(ni| @ Hy, (1) + In-)(n_| @ Hy_(t),  (15)

where the projectors are given by |ny)(ny| =1 +i-0)/2,
with 7 being the rotation axis of the unitary and Hy, (¢) is as
given in Eq. (2). For a single-qubit gate, ¢ is taken to be zero
and ¢_ is taken to be the angle of rotation corresponding to the

desired unitary. Adiabatically evolving under the Hamiltonian
above yields the following final state:

W) = aln) ® |5 )+ Bln) @) (16)

where |e§i) is the ground state of Eq. (2), given by

€t ) = cos (ef%) 10) + ¢ sin (%)m (17)

Choosing 6yA = 7 as the endpoint of the drive, we determin-
istically find that the desired gate has been implemented on
the computational qubit and the auxiliary system is left in its
excited state. Similarly, we explicitly show in Appendix A
that one can define a driving scheme for the auxiliary system
initiated in its excited state, therefore allowing a sequence of
gates to be implemented without necessitating the auxiliary
qubit to be reinitialized.

In what follows, we focus on the Hadamard gate as the tar-
get operation on the computational qubit, which corresponds
to choosing the projectors as |ny)(ny| = %[1 + \%(O’X + 0,)],
accompanied by the rotations on the auxiliary qubit with
phases ¢ = 0 and ¢_ = 7, respectively, although we remark
that our results are qualitatively consistent for other choices of
single-qubit gates.

To drive faster than adiabatic timescales, we compute the
CD term, given by Eq. (3), for Hamiltonian (2), giving

cDy\ ;T .
Hy () = )"E[O—y cos(¢p+) — oy sin(@)], (18)

where we have taken 6y = . Note that the CD term is
used in addition to the bare time-dependent Hamiltonian
in (15). It is straightforward see that the associated adi-
abatic gauge potential, given by Eq. (4), is identical to
Eq. (18), with the variational coefficient o; = —1/4 deter-
mined from minimizing the action, from which we readily de-
termine the Hamiltonian giving rise to the Floquet controlled
evolution,

AFE = |1+ 2 cos(wr) |Hy, (1)
o+ wo +
+ AMwoa; sin(2wt )18, Hy, (1), (19)

where wy = 27/t is the reference frequency and w = Nawy
with N € N > 1. The Floquet Hamiltonian replaces the time-
dependent bare Hamiltonians in (15).

The same gate operation can be captured by the inverse
engineering approach described in Sec. I A 2. We consider
the unitary operator

Ui(t) = Im () (my ()] + ™ Olm_(0)) (m_(1)|,  (20)
where the basis states are defined as

Im.y (1)) = cos[9(1)/2]10) 4 € sin[9(¢)/2]]1),

Im_ (1)) = ¥V cos[9(t)/2]|1) — sin[9(1)/2]10),  (21)

with parameters 9 (¢), ¢(¢), and A(¢) that can be tuned in
order to define the desired gate operation. For a single-qubit
gate, the driving Hamiltonian found from Eq. (7) takes the
form [57]

H(@t)=1a@) -5, (22)
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where the explicit form of the angular components is given in Appendix B. The action of this Hamiltonian is to transform the
input state | (0)) = a|0) + b|1) to the final state |u(¢)) = a(¢)|0) + B(¢)|1), where the populations are

a(t) =

B(1) =

a(e™ D 4 1) — (™0 — 1)[acos ¥ (t) + be~ D sin ¥ (1)]

2

(&™) 4 1) 4+ (™ — )[bcos (1) — ae D sin 9 (¢)]

One choice of parameters that gives the Hadamard gate is
o(t) =0, 9(t) = w /4, and ramping from A(0) = 0 to A(7) =
1, which in turn gives the populations of the final state
as a(t) = (a+ b)/+/2 and B(t) = (a — b)/~/2. The corre-
sponding Hamiltonian that drives our qubit is then given as

TA()
24/2

Figure 2 shows the trajectories for the various control ap-
proaches on the Bloch sphere in the absence of any errors.
While the IE qubit (rightmost, yellow) follows a path on
the Bloch sphere and therefore remains pure during the gate
operation, the auxiliary evolutions’ computational qubit cuts
through the Bloch sphere (straight, green line) connecting the
initial state (]4)) to the final one (|0)). The latter observation
shows that although the initial and final states of both the
control and register qubits are pure in the auxiliary evolu-
tion approach, during the dynamics they are mixed, which
indicates that they become entangled during the process. By
having a detailed look at the Bloch vectors of the driven
qubits for the auxiliary evolution and IE, it is possible to see
that their x and z components are equal to each other at all
times, and only y components differ (in fact, this component
remains identically zero for the auxiliary evolution’s qubit

Hiq(t) = (0 + 02). (23)

FIG. 2. We show the trajectories of the qubits for both the CD
and IE protocols of the Hadamard gate. We take the initial computa-
tional state to be |+). The yellow line corresponds to the path of the
qubit in the IE case. The green and orange lines correspond to the
computational and auxiliary qubits of the auxiliary evolution cases,
respectively, which begin and end with a separable global state of the
two qubits, while at intermediate times the reduced states of either
qubit are mixed.

2

(

for this particular gate operation). Thus, the path that this
computational qubit takes is restricted to the x-z plane and
the projection of the path of the IE qubit to the same plane
is identical; therefore, as we explicitly demonstrate below, the
performance in terms of the implementation (in)fidelity, given
by Eq. (9), is identical for the different processes despite their
dynamics being distinct.

Figure 3(a) shows the final target state infidelity for a
Hadamard gate operation implemented using the three control
strategies and, for comparison, we also show the uncontrolled
auxiliary evolution (black, dashed) for a linear ramp A(z) =
t/t. As expected, CD and IE both achieve perfect implemen-
tations regardless of the timescale of the drive (bottommost
dotted lines). The solid red curve corresponds to the FE
Hamiltonian, given by Eq. (19). We see that despite the ap-
proximate nature of the FE approach, provided that the chosen
parameters are within the relevant regime of applicability [56],
this approach is also highly effective in implementing the
controlled evolution, tracking the same dynamics as the CD
approach and maintaining an improvement of several orders
of magnitude over the uncontrolled implementation.

In Fig. 3(b), we fix T = 1 and examine the computational
qubit’s approach to the target state during the evolution. This
serves to demonstrate that despite the actual dynamics giving
rise to distinct paths, the effectiveness of all control protocols
in terms of gate infidelity is the same. The inset demonstrates
that the FE drive is a remarkably accurate approximation to
the exact drive, showing small oscillations around the de-
sired trajectory. While Figs. 3(a) and 3(b) demonstrate that at
the level of implementation, all control protocols are largely
equivalent insofar as they can faithfully achieve the desired
unitary, we will see in the following some qualitative dif-
ferences emerge when we consider alternative performance
metrics.

We show the total cost of implementing the controlled
gate operation, quantified using Eq. (10), in Fig. 3(c) and,
for simplicity, we consider a linear ramp for all protocols.
To begin with, for very fast driving times T — 0, we are in
the opposite limit of adiabatic evolution and the energetic
costs of all control techniques diverge. This observation is in
accordance with previous works [72,77], which establish that
the energetic resources necessary to drive a system arbitrarily
fast while keeping it in the adiabatic manifold requires one
to have access to arbitrarily large energetic resources. Natu-
rally, for longer quench durations, we asymptotically reach
the adiabatic limit of the time evolution and the cost decays
proportionally to 1/t. Specifically, in the long-time limit, the
CD cost asymptotically approaches 2+/2, which corresponds
to an unavoidable energy cost given by the energy change of
the bare Hamiltonian of the driven auxiliary qubit, while for
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FIG. 3. (a) Final gate infidelity, given by Eq. (9) as a function of total protocol duration, for the Hadamard gate. The auxiliary evolution with
counterdiabatic driving (CD) control is shown in the lowermost green dotted curve. Inverse engineering (IE) performs similarly, shown by the
blue dotted curve. The topmost, black dot-dashed curve corresponds to an uncontrolled auxiliary evolution where the performance is several
orders of magnitude worse. Floquet engineered (FE) auxiliary control is shown by the red solid curve and is shown to be highly effective.
(b) Dynamical gate infidelity for the Hadamard gate with 7 = 1 using the same styling as (a) to identify the different control protocols. The
inset captures the oscillations present in the FE driving around the dynamics of the CD approach. (c) We plot the cost, given by Eq. (10), of
implementing the Hadamard gate vs total protocol duration for IE, CD control, FE with w/wy = 200 with the same coloring as before. (d) Final
gate infidelity for the Hadamard gate vs timekeeping error, €, for over- or undershooting the intended ramp duration. The total (ideal) ramp
time is 7 = 1. We show the performance for the linear (orange), the polynomial (cyan), and the sinusoidal (purple) ramps. In all panels, we fix

wy =27 /t, w = 200w, for the FE case.

IE, the cost vanishes in the asymptotic limit. On the other
hand, for the FE case, the leading term for the cost in the
long-time limit is 2w/wy and proportional to the frequency
of the Floquet driving, i.e., how many times the FE dynamics
intersects with the true adiabatic dynamics. This requirement
for high-frequency driving manifests in a higher energetic cost
for achieving the control.

We now turn our attention to timekeeping errors. For
simplicity, we focus on the case of IE, but remark that the
conclusions are qualitatively similar for both the auxiliary
evolution cases as the dynamical overlap with the target states
for the protocols coincide. In Fig. 3(d), we (arbitrarily) fix
7 =1 and consider the performance of the different ramp
profiles given by Egs. (11), where we allow for the ramp to
over- or undershoot the target time by a factor proportional to
1 & €. A simple linear ramp is the most susceptible to this type
of error, with the infidelity rapidly growing as € increases.
Thus, while the linear ramp has some notable advantages,
e.g., resulting in a time-independent control term for IE [cf.
Eq. (23)], this comes at the expense of requiring potentially
costly accurate timekeeping [78]. In contrast, due to their
smooth start and end points, the polynomial and sinusoidal
protocols allow for more severe timekeeping errors while still
faithfully implementing the gate, with timing errors of up to
20% still achieving infidelities < 10~*. This can be understood
from the behavior of these functions at their endpoints where
the rate of change of the associated driving field remains
sufficiently small for € < 0.2. As a result, the amplitude of
obtaining the desired final state, which is given by sin(0 rA/2)
[see Egs. (16) and (17)], does not significantly deviate from
unity. These results are consistent with complementary studies
of different control problems [79] and demonstrates that the
flatness of the applied ramp around the target is an important
feature to have in terms of the robustness of the protocol.

The physical differences implied by the approaches be-
come most apparent when considering open system effects on
state evolution. Figure 4 presents our results on the infidelity
between the final state and the target state as a function of the
total gate implementation time, scaled with the decoherence
rate for a dephasing environment and the explicit trajectories

of the qubits. In Fig. 4(a), we plot the trajectories of each qubit
for the CD and IE Hadamard gate when the driven qubits are
exposed to a dephasing channel. For the CD case, not driv-
ing the computational register directly can allay much of the
spoiling effects of the environment. This can be understood
since the auxiliary evolution approaches necessitate that the
driven system ends in state |1); thus, while the dephasing will
leave the system in a mixed state, it nevertheless can have a
large overlap with the intended target state of the auxiliary
qubit which therefore still exhibits a good performance. Since
we assume the computational qubit in the CD case does not
directly feel the spoiling effects of the dephasing channel,
it simply stops along its ideal trajectory when the auxiliary
qubit falls short of its target state. In contrast, since we drive

Pl e ———
L s

02 04

T

06 08 1.0

FIG. 4. (a) Qubit trajectories for the Hadamard gate under a
dephasing channel, given by Eq. (12), where the channel acts on
the driven qubit in each case with Ty = 2. Styling is the same as
in Fig. 2. As we dephase in the z basis, both the state of the qubit
in the IE case (yellow) and that of the auxiliary qubit in the CD
case (orange) are pulled towards the z axis. The computational qubit
of the CD case (green) is not directly affected by the channel and
does not deviate from the ideal path, instead stopping along that
trajectory once the auxiliary qubit driving the evolution has deco-
hered. (b) We show the final gate infidelity, given by Eq. (9), for
the dephasing channel for the Hadamard gate, with upper dotted red
and lower dashed blue curves corresponding to the IE and CD cases,
respectively.
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the computational qubit directly in the IE case while also
exposing it to the dephasing channel, we see that the IE qubit
(yellow) starts in the |+) state and is drawn towards the z axis,
away from its ideal unitary dynamics by the environment.
Figure 4(b) shows the final state infidelity for the Hadamard
gate as a function of the dephasing strength. The CD case
(blue) displays better final state infidelity than the IE case
(red) for all values of Ty . For larger gates, we expect that this
difference will further widen in favor of the CD case. Despite
the unfavorable cost scaling and relative complexity of the CD
Hamiltonian compared to IE methods, it represents a potential
attractive approach for robust gate implementation.

It is natural to consider extending the above framework to
the implementation of N-qubit gates. The preceding analysis
can readily be performed for two-qubit entangling gates, such
as the controlled-phase gate [50,57] (we provide the explicit
forms of the CD and IE Hamiltonians to implement such
a gate in Appendix C). A qualitatively similar behavior is
observed: once again, the overall performance in terms of
process infidelity is consistent across all control approaches.
Similarly, the effect of timekeeping errors is most significant
for ramps that do not have smooth end points. A notable differ-
ence emerges when considering the energetic cost. While the
auxiliary evolution approaches involve driving only a single
qubit, and therefore the cost is essentially bounded, they can
nevertheless facilitate a gate operation on an arbitrary sized
register. However, this comes at the price of a difficult to
realize Hamiltonian, given by Eq. (1). This is in contrast to
the IE approach where the register is controlled directly and,
as might be expected, the complexity and energy required to
implement IE control on multiple qubits scales poorly with
the register size.

IV. CONCLUSIONS

We have systematically analyzed the effectiveness CD,
IE, and FE methods in the Hamiltonian implementation of
unitary quantum gates. As the figures of merit for all consid-
ered methods, we have put the gate infidelity, the energetic
cost, susceptibility to imperfect timekeeping, and robustness
against the effects of environmental noise at the center of our
discussion. We have focused on the single-qubit Hadamard
gate and observed that all methods can faithfully achieve the
desired gate; however, they show some notable qualitative
differences when examining performance metrics beyond tar-
get fidelities. For example, the energetic overhead of FE is
the highest among the considered methods, due to the high-
frequency driving necessary to achieve a gate operation closer
to the ideal. As for the imperfect timekeeping errors of the
desired driving time, we have observed a subtle dependence
on how the Hamiltonian is driven. Smoother ramping of the
Hamiltonian results in a more successful gate implementation,
in case the desired driving time is over- or undershot. Finally,
we have assumed that the driven qubit in CD and IE methods
is in contact with a dephasing environment, and have seen
that the latter control technique is more adversely affected by
such environmental spoiling effects than the former due to the
fact that in this case, computational degrees of freedom are
affected by the noise. A qualitatively similar behavior can also
be observed for a finite-temperature dissipative environment.

We considered several commonly employed ramp profiles in
order to highlight the natural robustness that each approach
has under the same conditions and to provide insight into the
properties that robust pulses should contain, e.g., smooth end
points. This information can then be used to further enhance
performance through the tailoring of ramp profiles by, e.g.,
optimal control techniques. However, the cost functionals can
be optimized over multiple metrics, such as energetic cost,
pulse bandwidth, and robustness to noise, to name a few, and
thus this rapidly becomes a complex problem.

Finally, we offer some comments on the applicability of
these general Hamiltonians in light of recent experimental
work that has been done to implement transitionless (or
superadiabatic) gates on promising candidate architectures,
such as NV centers [80], superconducting qubits [81,82], and
rare-earth ions [83]. Indeed, the possible universal gate sets
generated by the inverse engineering case discussed in this
work present an attractive prospect for applicability, owing
to the relatively simple forms and interactions present and
the potential to drive them with time-independent control
fields. The counterdiabatic driving case represents a depar-
ture from the typical approach to implementing a gate as
it makes use of an additional auxiliary resource to mediate
the driving. One may view gates in this setting as controlled
gates; the Hadamard gate is perfectly implemented on the
register qubit if the auxiliary qubit is driven to |1) and the
identity is performed on it if the auxiliary is found in |0). This
implementation therefore requires a platform that can readily
achieve controlled gates, e.g., trapped-ion systems [8]. That
this method involves inducing a phase difference between
states for the computational qubit and is more robust to noise
than the direct driving approach is reminiscent of superadia-
batic geometric quantum gates [84]. Indeed, utilizing auxiliary
evolution to achieve the “superadiabatic” part of these pro-
cesses could lend further robustness to these proposals.
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APPENDIX A: EXCITED STATE DRIVING

For a single-qubit gate, we assume that the auxiliary qubit
is initially in the excited state, which implies that we initialize
the system in the state |\V;) = («¢|ny) + Bln-)) ® |1). Evolv-
ing adiabatically with the usual Hamiltonian gives the final
state

Wy) = alng) ® |e§) + Bln_) @ |€5 ). (A1)

where the excited state of the time-dependent Hamiltonian is

. 02 0n
|€) = —e sin <%>|o> + cos (%)m.

(A2)
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Though the eigenvector has a natural U(1) symmetry, a local
phase appears on |0) due to our specification of the initial state
of the dynamics at A = 0. The translation ¢ — —¢ allows us
to perform our gate with our auxiliary qubit initially in the
excited state, returning it to its ground state at the end of the
process, potentially to be reused.

APPENDIX B: EXPLICIT FORM OF THE SINGLE-QUBIT
IE HAMILTONIAN

The driving Hamiltonian can be identified in the following
way [57]:

H(@t) = 1a@)- 3, (B1)
where the vector components are given as
wy(t) =(cosmA — 1)p cos ¢ cos ¥ sin ¥
+ [@sin® sin A + (coswA — 1) ] sin ¢
+ (19 cos ¥ sin T A + A sin ¥)cos g,
wy(t) = (cos A — 1)@ sin ¢ sin ¥ cos &
+ [@sin¥ sinwA — (cosTA — l)z9]cosg0
+ (29 cos ¥ sin TA + A sin ¥) sin ¢,
w,(t) = — ¥ sin 9 sintA—(cosTtA — 1)g sin® ¥ + 7 cos ¥
(B2)

APPENDIX C: EXAMPLES OF A TWO-QUBIT GATE

One typical example of a two-qubit gate is the controlled-
phase gate where we have two computational qubits, namely,
control and target, and, depending on the state of the control
qubit, we apply a phase shift operation on the target qubit.
Explicitly, if we take the initial state of the computational
qubits as

h”l) :0[|Or n+> +IB|0’ n*) + )’|1:”+> +8|17n7>’

then performing the controlled-phase gate yields the following
output state:

1) = al0,ny) + Bl0, n) + y|1,ny) +€98]1,n_). (C2)

(ChH

We focus on the application of the controlled-Z gate for which
we have ¢ = m. Within the auxiliary evolution framework,
the gate operation can again be implemented by perform-
ing a drive on the additional ancilla qubit. This requires a
Hamiltonian that implements the local phase shift onto the
|1, n_) subspace while keeping the others fixed, which has the
following form [50]:

HEE (1) = (10)(0] ® 1+ [1)(1] ® [0)(0]) ® Ho(t)

+ D@ [1)(1] ® Hr (1),
where the time-dependent driving Hamiltonians Hy(¢) and
H (¢) applied on the ancilla qubit are given as in Eq. (2). As
before, both CD and Floquet control can be used to ensure

adiabatic dynamics.
Similarly, we can define the same gate with the IE method,

(C3)

Us(t) = Y Imi s (O)mi (0] + €™ Olmy () iy (1)].

k=1,2
(C4)
The evolution basis is similarly defined,
lmy +(2)) = cos[9(t)/2]lk — 1, 0)
+ e Osin[(r)/2]k — 1, 1),  (C5)
lmy, (1)) =D cos[9(t)/2]]k — 1, 1)
—sin[9(t)/2]k — 1, 0). (C6)

We now have six parameters, with the restriction that
Ax(0) = 0. All appear in the final state of the system under
the action of the unitary. Through a suitable choice of the
parameters, we can design the Hamiltonian to implement the
desired unitary dynamics. For example, adopting the general
formalism above, we obtain the desired IE Hamiltonian that
applies the controlled-Z operation as follows [57]:

At
HE (1) = %(1@)0Z +0,91—0,®0,).

(C7)
Note that the implementation of the above Hamiltonian
requires a dephasing (Z — Z)-type interaction between the
target and control qubits.
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