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Minimization of the estimation error for entanglement distribution networks with arbitrary noise
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Fidelity estimation is essential for the quality control of entanglement distribution networks. Because mea-
surements collapse quantum states, we consider a setup in which nodes randomly sample a subset of the
entangled qubit pairs to measure and then estimate the average fidelity of the unsampled pairs conditioned on
the measurement outcome. The proposed estimation protocol achieves the lowest mean-square estimation error
in a difficult scenario with arbitrary noise and no prior information. Moreover, this protocol is implementation
friendly because it only performs local Pauli operators according to a predefined sequence. Numerical studies
show that compared to existing fidelity estimation protocols, the proposed protocol reduces the estimation error
in both scenarios with independent and identically distributed noise and correlated noise.
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I. INTRODUCTION

Entanglement distribution networks [1] are an important
developmental stage on the way to a full-blown quantum
Internet [2–4]. Such networks enable device-independent pro-
tocols [5–9], thereby achieving the highest level of quantum
security [10]. Entanglement distribution networks do not re-
quire nodes to have local quantum memory. Since efficient
communication-compatible quantum memories are still under
development [11], entanglement distribution networks serve
as a cornerstone for realizing trustworthy quantum applica-
tions with state-of-the-art quantum technology [12–15].

Entanglement quality assessment is a key building block
for entanglement distribution networks. To this end, fidelity
estimation for entangled states is a promising candidate.
Fidelity is a metric that indicates the quality of quantum
states [16–19] and can be estimated with separable quantum
measurements and classical postprocessing. Several fidelity
estimation protocols have been proposed [20–23], and fidelity
estimation protocols of entangled states have been imple-
mented in several recent experiments [12–14,24]. However,
there are still two challenges that need to be addressed.

(i) Excessive estimation error due to arbitrary noise.
Quantum networks often face heterogeneous and correlated
noise. When distributing quantum keys and estimating chan-
nel capacities, this noise leads to excessive estimation errors
[25,26]. Therefore, designing low-error fidelity estimation
protocols in the presence of arbitrary noise is an interesting
area of research.

(ii) Efficiency loss due to separable operations. In the ab-
sence of quantum memory, nodes in entanglement distribution
networks perform operations that are separable between all
qubits. Such operations result in significantly lower estima-
tion efficiency [27] compared to joint operations. Minimizing
the loss of efficiency due to separable operations is a major
challenge for fidelity estimation.

This work focuses on fidelity estimation for entanglement
distribution networks. Since measurements collapse quantum

states, we consider a network in which nodes randomly sam-
ple a subset of qubit pairs to measure and estimate the average
fidelity of unsampled pairs conditioned on the measurement
outcome.

We prove that the protocol proposed in this paper achieves
the lowest estimation error in the difficult scenario with arbi-
trary noise and no prior information, thereby overcoming the
challenges listed above. Moreover, the proposed protocol is
implementation friendly. This protocol uses only local Pauli
measurements, standard operations that can be implemented
on a variety of quantum platforms [12,24,28,29], and deter-
mines the basis of each Pauli measurement according to a
predefined sequence so that no adaptive operation is required.

The remainder of the paper is organized as follows. Sec-
tion II formulates the problem of minimizing the estimation
error of fidelity in a scenario with arbitrary noise and no
prior information. Sections III and IV solve the formulated
problem and present a protocol that minimizes the estimation
error of fidelity. Section V evaluates the proposed protocol by
comparing it with existing ones. Section VI presents a brief
summary.

Regarding the notation in this paper, random variables and
their realizations are represented in uppercase and lowercase
letters, respectively, e.g., F and f . Vectors and matrices are
denoted by bold letters, e.g., ρ and M. The symbols E[·] and
V [·] denote the expectation and variance of a random variable,
respectively, In denotes an n × n identity matrix, Pr(·) denotes
the probability of an event, Tr(·) denotes the trace of a matrix,
and Trn(·) denotes the partial trace of the nth subsystem.

II. SYSTEM SETUP AND PROBLEM FORMULATION

Consider a scenario in which two nodes share N noisy
qubit pairs and have no prior information on the noise. The
nodes tend to estimate the fidelity of the qubit pairs with re-
spect to the target maximally entangled state. Since maximally
entangled states are mutually convertible via local operations,
we set the target state to |�−〉 without loss of generality,
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where |�±〉 = |01〉±|10〉√
2

and |�±〉 = |00〉±|11〉√
2

are the four Bell
states. We denote the set of all qubit pairs by N . The nodes
randomly sample a number M (<N) of qubit pairs to measure.
The set of sampled pairs M is drawn from all M subsets of N
with equal probability.

Entanglement distribution networks do not require nodes
to have local quantum memory [1]. Consequently, the nodes
execute operators that are separable between all qubits. We
define the separable operators as

Mr =
∑

k

⊗n∈M(
M (A)

r,n,k ⊗ M (B)
r,n,k

)
, (1)

where the node index X ∈ {A, B}, the qubit pair index n ∈ M,
and the operator index r ∈ R, with R denoting the set of all
possible measurement outcomes. As positive-operator-valued
measure operators

M (X )
r,n,k � 0,

∑
r

Mr = I4M , (2)

where � denotes the matrix inequality. The measurement
operation performed on all qubit pairs can be defined as

O = {Mr, r ∈ R}. (3)

We denote by ρall the joint state of all qubit pairs before
the measurements and by ρ

(r)
all the joint state of the qubit pairs

conditioned on the measurement outcome r. In this case, the
state of the nth pair is

ρ(r)
n = Tri∈N \{n}ρ

(r)
all . (4)

Because measurements collapse quantum states, the nodes
estimate the average fidelity of unsampled pairs conditioned
on the measurement outcome r, i.e.,

f̄ = 1

N − M

∑
n∈N \M

〈�−|ρ(r)
n |�−〉. (5)

The imperfection of the measurements is considered as part of
the noise. Based on the measurement outcome, the estimator
D is used to estimate the average fidelity of the unsampled
qubit pairs f̄ , i.e.,

f̌ = D(r). (6)

The nodes target at minimizing the mean-square error of
the estimated fidelity. Because the set of sampled qubit pairs
M is drawn from all M subsets of N with equal probability,

each M subset is selected with probability
(N

M

)−1
. Therefore,

the mean-square estimation error is given by(
N

M

)−1 ∑
M

ER[(F̌ − F̄ )2], (7)

where ER is the expectation averaged over all possible values

of R. Since the factor
(N

M

)−1
does not affect the optimization

of the measurement protocol {O,D}, it is omitted in the fol-
lowing problem formulation for clarity.

To ensure the robustness of the fidelity estimation protocol,
we consider the scenario with arbitrary noise and no prior
information. Since there is arbitrary noise, the state of all qubit
pairs ρall ∈ Sarb, where Sarb is the set of all N qubit-pair states.
Since there is no prior information, the state ρall that leads

to the largest error must be considered. This optimization
problem is formulated as follows.

Problem 1. This problem regards the error minimization
for arbitrary states,

minimize
O,D

max
ρall∈Sarb

(
N

M

)−1∑
M

ER[(F̌ − F̄ )2] (8a)

subject to
∑
M

ER[F̌ − F̄ ] = 0 ∀ ρall ∈ Sarb, (8b)

where F̌ , F̄ , and R are the random variable forms of the esti-
mated fidelity f̌ , the average fidelity f̄ , and the measurement
outcome r, respectively, and (8b) is the unbiased constraint of
the estimate.

The following two sections elaborate the key procedures
and ideas for solving Problem 1, which involves two main
steps, namely, problem transformation and operation con-
struction.

III. PROBLEM TRANSFORMATION

This step shows that Problem 1 can be transformed into
an equivalent problem with independent noise. It consists
of three substeps, i.e., steps A1, A2, and A3. The detailed
derivations of these three substeps are in Appendixes A 1–A 3,
respectively.

Step A1. This substep simplifies Problem 1 to an equiva-
lent one with classical correlated noise.

Problem 2. This is a special case of Problem 1, with Sarb

replaced by Ssp, i.e., the set of ρall that are separable among
all qubit pairs.

The key concept is to construct an operation T that re-
moves the entanglement among different qubit pairs without
changing the fidelity. Specifically, the probabilistic rotation T
is defined below.

Definition 1 (probabilistic bilateral rotation). The opera-
tion T acts independently on each qubit pair. For each pair,
T rotates both qubits first along the x axis for 180◦ with prob-
ability 0.5 and then along the y axis for 180◦ with probability
0.5. The Kraus operators of the first and second probabilistic
rotations are

T x,1 = I4√
2
, T x,2 = −σx ⊗ σx√

2
, (9a)

T y,1 = I4√
2
, T y,2 = −σy ⊗ σy√

2
, (9b)

respectively.
For a Bell state |φ〉 ∈ {|�±〉, |�±〉},

σx ⊗ σx|φ〉 =
{|φ〉 if |φ〉 ∈ {|�+〉, |�+〉}
−|φ〉 if |φ〉 ∈ {|�−〉, |�−〉}, (10a)

σy ⊗ σy|φ〉 =
{|φ〉 if |φ〉 ∈ {|�−〉, |�+〉}
−|φ〉 if |φ〉 ∈ {|�+〉, |�−〉}. (10b)

According to (9) and (10), it can be shown that

T (|φ〉〈ψ |) =
{

|φ〉〈ψ | if |φ〉 = |ψ〉
0 if |φ〉 	= |ψ〉

(11a)

(11b)

Equation (11a) ensures that T does not change the fidelity
of the qubit pairs. Equation (11b) shows that T removes the
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off-diagonal terms of a density matrix expressed in the Bell
basis. Such a diagonal density matrix corresponds to states
separable among all qubit pairs. Therefore, operation T trans-
forms the states in Sarb to those in Ssp. Then the transformed
state can be estimated by the optimal solution of Problem 2.
This approach ensures that the minimum estimation error for
states in Sarb is no higher than that for states in Ssp. Moreover,
because Sarb ⊃ Ssp, the minimum estimation errors must be
the same for the two cases. This result shows the equivalence
of Problems 1 and 2. Lemma 1 provides the formal statement
of the above analysis.

Step A2. This substep shows that to solve Problem 2, it is
sufficient to consider the special case with independent noise,
i.e., the following problem.

Problem 3. This is a special case of Problem 2, with Ssp re-
placed by Sid, i.e., the set of ρall that are products of entangled
bipartite states.

We denote by f̌ (r) the estimated fidelity given the mea-
surement outcome r and by f̄ (ρall,M, r) the average fidelity
given the state ρall, the sample set M, and the measurement
outcome r. Separable states ρall ∈ Ssp are ensembles of prod-
uct states, i.e., ρall = ∑

k pkρ
(k)
all , where ρ

(k)
all ∈ Sid, ensemble

probabilities pk satisfy pk � 0, and
∑

k pk = 1. Consequently,
for each set M, the estimation error with a separable state ρall

and that with product states {ρ(k)
all } are related by the inequality

ER[(F̌ − F̄ )2|ρall,M]

=
∑

r

Pr(r|M)[ f̌ (r) − f̄ (ρall,M, r)]2 (12a)

=
∑

r

Pr(r|M)

(
f̌ (r) −

∑
k

Pr
(
ρ

(k)
all

∣∣M, r
)

f̄
(
ρ

(k)
all ,M, r

))2

(12b)

�
∑
r,k

Pr(r|M)Pr
(
ρ

(k)
all

∣∣M, r
)[

f̌ (r) − f̄
(
ρ

(k)
all ,M, r

)]2

(12c)

=
∑

k

pk

∑
r

Pr
(
r|ρ(k)

all ,M
)[

f̌ (r) − f̄
(
ρ

(k)
all ,M, r

)]2
(12d)

=
∑

k

pkER
[
(F̌ − f̄ )2|ρ(k)

all ,M
]
, (12e)

where Pr(·) denotes the probability; Eq. (12c) is true because
(
∑

k wkxk )2 � ∑
k wkx2

k ∀ xk ∈ R, wk � 0, and
∑

k wk = 1;
Eq. (12d) holds because according to Bayes’ theorem

Pr(r|M)Pr
(
ρ

(k)
all

∣∣M, r
) = Pr

(
ρ

(k)
all

∣∣M)
Pr

(
r
∣∣ρ(k)

all ,M
)

= Pr
(
ρ

(k)
all

)
Pr

(
r
∣∣ρ(k)

all ,M
)

= pkPr
(
r
∣∣ρ(k)

all ,M
)
; (13)

and the lowercase letter f̄ is used in (12e) to represent the
average fidelity of the unsampled qubit pairs because f̄ is
deterministic given the product state ρ

(k)
all and the sample

set M.
Because ρall ∈ Ssp and ρ

(k)
all ∈ Sid ∀ k, Eq. (12) shows that

the minimum estimation error of Problem 2 is upper bounded
by that of Problem 3. Moreover, because Ssp ⊃ Sid, the min-
imum estimation errors must be the same for the two cases.

This result shows the equivalence of Problems 2 and 3.
Lemma 2 provides the formal statement of the above analysis.

Remark 1 (limit the effect of correlation via postselection).
In previous studies that made estimates with correlated noise,
the estimation targets, e.g., the length of the quantum secret
keys [25] and the capacity of the quantum channels [26], were
evaluated conditioned on the error rates of the measurements
being below certain thresholds. Such conditional evaluation is
important because it postselects the quantum states according
to the measurement outcome, which increases the effective-
ness of the measurements and limits the negative effects of
correlation.

The result of step A2 is consistent with the above studies.
By evaluating the average fidelity conditioned on the exact
value of the measurements outcome r, we bound the estima-
tion errors in scenarios with correlated noise by those with
independent noise. Specifically, the conditional distribution
Pr(ρ(k)

all |M, r) in (12c) represents the postselection effect. This
conditional probability enables the application of Bayes’ the-
orem in (13), thereby bounding the estimation error with the
states in Ssp by that with the states in Sid.

Step A3. This substep shows that to solve Problem 3 it
is sufficient to minimize the estimation error of the sampled
pairs, i.e., the following problem.

Problem 4. This problem regards the error minimization
for sampled qubit pairs,

minimize
O,D

max
ρall∈Sid ( f all )

(
N

M

)−1 ∑
M

ER[(F̌ − f̄M)2]

subject to ER[F̌ − f̄M] = 0 ∀ ρM,

where Sid ( f all ) is the set of products of N entangled bipartite
states with fidelity composition f all = { fn, n ∈ N }, in which
fn is the fidelity of the nth qubit pair, f̄M is the average fidelity
of the sampled qubit pairs, and ρM is the state of all sampled
qubit pairs.

In the case of independent noise, the measurement does not
affect the fidelity of the unsampled qubit pairs. Consequently,
the estimation error of Problem 3 can be decomposed into two
parts, namely, the estimation error of the sampled qubit pairs(

N

M

)−1∑
M

ER[(F̌ − f̄M)2] (14)

and the sampling error, i.e., the deviation between the average
fidelity of the sampled and the unsampled qubit pairs(

N

M

)−1∑
M

( f̄M − f̄ )2. (15)

The sampling error (15) is not affected by the estimation
protocol. Therefore, Problem 3 can be simplified to Prob-
lem 4, which minimizes (14). Lemma 3 provides the formal
statement of the above analysis and Theorem 1 summarizes
the results of this section.

IV. OPERATION CONSTRUCTION

The next step is to construct the optimal solution of Prob-
lem 1. This step consists of two substeps, i.e., steps B1 and
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B2. The detailed derivations of these two substeps are in
Appendixes B 1 and B 2, respectively.

Step B1. This substep characterizes the minimum estima-
tion error of Problem 4.

The characterization of the minimal estimation error has
been a subject of intense research. For Problem 4, the Cramér-
Rao bound [30,31] characterizes the lower bound of the
estimation error for a given measurement operation O, and
the quantum Fisher information [32,33] identifies this lower
bound under the condition that all measurement operations are
available.

However, Problem 4 aims to minimize the estimation er-
ror when all separable measurement operations are available.
Therefore, the Cramér-Rao bound alone does not provide the
lowest bound, while the quantum Fisher information provides
a lower bound that is infeasible. We will close this gap by
first further simplifying Problem 3 and then characterizing the
limit of separable operators.

The derivation of a Cramér-Rao bound [30,31] requires
knowledge of the distribution of a measurement outcome. In
Problem 4 this distribution is determined by the state of the
qubit pairs ρall and the measurement operation O. However,
even with independent noise, the state of each qubit pair ρn ∈
H4×4 has several parameters other than the fidelity. This fact
complicates the expression of the measurement outcome and
makes the analysis of the Cramér-Rao bound not feasible. To
overcome this challenge, we show that the minimum estima-
tion error of general independent states is bounded below by
that of independent Werner states, i.e., the following problem.

Problem 5. This is a special case of Problem 4, with
Sid( f all ) replaced by Sw( f all ) = {⊗n∈Nσn}, where

σn = fn|�−〉〈�−| + 1 − fn

3
(I4 − |�−〉〈�−|). (16)

Specifically, recall the bilateral rotation operation B in
[34], which transforms generic states of a qubit pair into the
Werner state with the same fidelity. Using logic similar to that
in step A1, one can see that because the states in Sid ( f all )
can be transformed into those in Sw( f all ) via the separable
operation B, the minimum estimation error of Problem 4 is no
higher than that of Problem 5. Moreover, because Sid ( f all ) ⊃
Sw( f all ), the minimum estimation errors must be the same for
the two cases. This result shows the equivalence of Problems 4
and 5. Lemma 4 provides the formal statement of the above
analysis. The states in Sw( f all ) are fully parametrized by the
fidelity composition f all, which allows the Cramér-Rao bound
analysis of Problem 5.

The other factor affecting the distribution of measurement
outcome is the separable measurement operation O. Since the
fidelity of each separable state with respect to a maximally
entangled state lies in the interval [0, 1

2 ] [35], we have that for
any separable operator M,

0 � Tr(|�−〉〈�−|M)

Tr(M)
� 1

2
. (17)

For all separable operators, Eq. (17) limits the sensitivity of
the measurement outcome to the changes in fidelity. Plugging
this result into the Cramér-Rao bound, we lower bound the

Protocol 1. Fidelity estimation.

1: Preprocessing. The nodes select the sample set M completely
at random, i.e., select M from all M subsets of N with equal
probability, and generate a number M of independent and
identically distributed random variables An ∈ {x, y, z}, n ∈ M,
with distribution Pr(An = u) = 1

3 , u ∈ {x, y, z}.
2: Perform measurements. For the qubit pair n ∈ M, both nodes
measure the qubit in the An basis. If the measurement results of the
two nodes match, record measurement outcome rn = 1; otherwise
record rn = 0.
3: Estimate fidelity. The number of errors and the quantum bit
error rate (QBER) are expressed as eM = ∑

n∈M rn and

εM = eM
M

, respectively. The estimated fidelity is

f̌ = 1 − 3
2 εM. (19)

estimation error of Problem 5 by∑
n∈N

(2 fn + 1)(1 − fn)

2MN
. (18)

Lemma 5 provides the formal statement about the limit of
separable operators and Lemma 6 characterizes the lower
bound of the estimation error.

Step B2. The second substep constructs an estimation pro-
tocol that is the optimal solution of Problem 1.

The analysis in step B1, particularly the proof of Lemma 6,
shows that to minimize the estimation error, each measure-
ment operator must balance either of the two inequalities in
(17). Therefore, a measurement operator M will either be best
aligned with the target state among all separable operators,
i.e.,

Tr(|�−〉〈�−|M)

Tr(M)
= 1

2
, (20)

or be orthogonal to the target state, i.e.,

Tr(|�−〉〈�−|M) = 0. (21)

The measurement operation O∗ of Protocol 1 is constructed
according to the above principle. For example, when nodes
measure in the z basis, the operators corresponding to r = 0
and r = 1 are, respectively,

Mz,0 = |01〉〈01| + |10〉〈10| = |�−〉〈�−| + |�+〉〈�+|,
Mz,1 = |00〉〈00| + |11〉〈11| = |�−〉〈�−| + |�+〉〈�+|. (22)

According to (22), Mz,0 and Mz,1 satisfy (20) and (21), re-
spectively. Moreover, the basis of measurement on each qubit
pair is chosen in an independent and identically distributed
manner. With these properties, we show that in scenarios
with independent noise, the measurement outcome Rn ∈ M
is independent random variables with variance

2(2 fn + 1)(1 − fn)

9
. (23)

Further noticing that the sample set M is selected from all M
subsets of N with equal probability, we substitute (23) into
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(19) and obtain that the operation O∗ achieves the minimum
estimation error given by (18) for states in Sid. Therefore,
O∗ is optimal for Problem 4. Lemmas 7 and 8 provide the
formal statement of the above analysis. Specifically, Lemma 7
shows that operation O∗ of Protocol 1 is a legitimate solution
of Problem 4 and Lemma 8 shows that O∗ is optimal for
Problem 4.

Since O∗ is optimal for Problem 4, the composite opera-
tion Ô∗ = O∗ ◦ T is optimal for Problem 1 according to the
results given in Sec. III. To further simplify the measurement
operation, we note that according to (11), the operation T on
each qubit pair can be expressed by the four Kraus operators

Tφ = |φ〉〈φ|, φ ∈ {�±, �±}. (24)

Substituting (24) into (22) shows that the operation T does
not change the operators of O∗, e.g.,

Mz,r =
∑

φ∈{�±,�±}
T †

φMz,rTφ, r ∈ {0, 1}, (25)

which shows that Ô∗ = O∗ ◦ T = O∗, i.e., Ô∗ and O∗ are
equivalent. Therefore, O∗ is optimal for Problem 1. Theo-
rem A2 provides the formal statement of the above analysis.

Remark 2 (the implementability of Protocol 1). It may
seem that using bilateral Pauli measurements as in Protocol 1
is a quite natural choice for estimating the fidelity of entangled
qubit pairs. In fact, using these standard measurements to
obtain optimal performance in scenarios with arbitrary noise
is a key advantage of Protocol 1.

To ensure implementability of Protocol 1, simpler op-
erations are chosen with priority. In fact, by using more
complicated operations, one can obtain optimal solutions of
Problem 1 other than Protocol 1. For example, consider a
protocol in which the nodes perform the operation T defined
in (11) before making the Pauli measurements in Protocol 1.
Then according to the paragraph after (22), this protocol is
also optimal for Problem 1. We have made additional efforts
to simplify the measurement operators while preserving the
optimality of the protocol.

To achieve optimal performance in scenarios with arbitrary
noise, the preprocessing step, i.e., step 1, is developed. The
complete randomness of the sampling set M and the inde-
pendent and identically distributed distribution of the bases of
the measurements are necessary for handling arbitrary noise.
For example, when the measurements in the x, y, or z basis are
made in a clustered manner, the estimated fidelity is biased or
has a higher estimation error for some non–independent and
identically distributed noises. The preprocessing in step 1 neu-
tralizes the effect of the arbitrary nose without compromising
the implementability of Protocol 1.

Remark 3 (the advantage of single intermediate observ-
able). Given the target state |�−〉, the expectation of the
observable |�−〉〈�−| is the fidelity. However, since the tar-
get state is entangled, the observable |�−〉〈�−| cannot be
realized with separable operators. To address this problem,
previous studies on fidelity estimation introduced interme-
diate observables. For example, to estimate the fidelity of
noisy Bell states, Ref. [21] used two observables |0〉〈0|⊗2 +
|1〉〈1|⊗2 and |0〉〈1|⊗2 + |1〉〈0|⊗2 and [22] used four Pauli
observables.

To estimate the value of multiple intermediate observables,
the measurements must be split into multiple clusters. In this
case, minimizing the estimation error involves both inter- and
intracluster designs, which makes it difficult to find an optimal
solution.

To overcome the above challenge, Protocol 1 uses only one
intermediate variable εM, which corresponds to the observ-
able

2
3 (|�+〉〈�+| + |�−〉〈�−| + |�+〉〈�+|). (26)

With one intermediate observable, the design of measurement
operators on multiple qubit pairs is simplified to that on one
pair. Moreover, it can be further simplified by the fact that the
measurement operators must satisfy either (20) or (21). In this
way, we have found the measurement operators that minimize
the estimation error.

V. PROTOCOL EVALUATION

In this section we evaluate the proposed protocol via a
demonstrative example.

A. Noise model

The noise is modeled as correlated and heterogeneous de-
polarizing channels. Specifically, the corresponding density
matrix of all qubit pairs is

ρall = 1
2 [(⊗N/4ρ(g) ) ⊗ (⊗3N/4ρ(b) )

+ (⊗3N/4ρ(g) ) ⊗ (⊗N/4ρ(b) )], (27)

where the state of each qubit pair

ρ(s) = p(s) I4

4
+ (1 − p(s) )|�−〉〈�−|, s ∈ {g, b} (28)

in which the error probabilities p(s), s ∈ {g, b}, of good and
bad channels satisfy 0 � p(g) � p(b) � 1 and N is a multiple
of 4.

The mean of the error probabilities of the bad and good
channels, i.e.,

p = p(b) + p(g)

2
∈ [0, 1], (29)

represents the noisy intensity, and the difference between the
two probabilities, i.e.,

d = p(b) − p(g) ∈ [0, 1], (30)

represents the degree of correlation and heterogeneity of the
noise. In particular, the noise is independent and identically
distributed when d = 0. �

B. Computation method

Given the noise model, the fidelity of a qubit pair with good
or bad channels is given by

f (s) = 1 − 3
4 p(s), s ∈ {g, b}. (31)

Defining the number of unsampled qubit pairs with good or
bad channels as

N (s) =
∑

n∈N \M
1(ρn = ρ(s) ), s ∈ {g, b}, (32)
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(a) (b)

FIG. 1. Variance of the estimated fidelity given by different pro-
tocols as a function of the noisy intensity p and the degree of
correlation and heterogeneity d for N = 1000, M = 500, and (a)
d = 0, i.e., the noise is independent and identically distributed, and
(b) p = 0.5.

then the average fidelity of the unsampled qubit pairs F̄ is
determined by F (s) and N (s), s ∈ {g, b}, as

F̄ = f (g)N (g) + f (b)N (b)

N − M
. (33)

Furthermore, according to (19), the estimated fidelity F̌ is
determined the QBER EM. Hence, given N (g), N (b), and EM,
the variables of interest, i.e., F̄ and F̌ , are determined.

Here N (g), N (b), and EM are discrete random variables
with finite support. Therefore, their exact joint distribution
can be computed in principle. To avoid excessive memory
requirements, we ignore realizations with probability less than
10−10 in the computation. The probabilities of the ignored
realizations have a sum no higher than 10−8, which upper
bounds the computational error.

Figure 1 shows the mean-square estimation error, i.e.,
Var(F̌ ), as a function of the noisy intensity p and the degree
of correlation and heterogeneity d . The proposed protocol is
compared with those proposed in [21,22]. This figure shows
that the estimation error is an increasing function of both p and
d . In all cases, the proposed protocol has the lowest estimation
error. This result is consistent with Remark 3, which explains
how Protocol 1 minimizes the estimation error. Because the
minimum estimation error is achieved, Protocol 1 performs
better than protocols that are not fully optimized.

VI. CONCLUSION

In this paper we proposed a protocol to estimate the fidelity
of entangled qubit pairs shared by remote nodes. The pro-
posed protocol used only Pauli measurements and achieved
the minimum mean-square error in a challenging scenario
with arbitrary noise and no prior information. Numerical tests

confirmed the efficiency and reliability of the proposed proto-
col.
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APPENDIX A: PROBLEM TRANSFORMATION

Recall the problem of minimizing the mean-square esti-
mation error of fidelity in scenarios with arbitrary noise, i.e.,
Problem 1, formulated in (8a) and (8b). In this Appendix we
prove that in order to solve Problem 1, it suffices to consider
the scenario with independent noise.

1. Sufficiency of considering classically correlated noise

We first show that to solve Problem 1, it is sufficient to
consider a problem with no entanglement among different
qubit pairs. This problem is given by Problem 2.

Problem 2 (error minimization for separable states). This
problem is to

minimize
O,D

max
ρall∈Ssp

∑
M

ER[(F̌ − F̄ )2] (A1a)

subject to
∑
M

ER[F̌ − F̄ ] = 0 ∀ ρall ∈ Ssp, (A1b)

where Ssp denotes the set of states ρall that are separable
among all qubit pairs.

We construct a probabilistic rotation operation as given by
Definition 1. By applying operation T , the following lemma
shows the equivalence of Problems 1 and 2.

Lemma 1 (equivalence of Problems 1 and 2). If a mea-
surement operation O∗ is optimal in Problem 2, the composite
operation Ô∗ = O∗ ◦ T is optimal in Problem 1.

Proof. The four Bell states {|�±〉, |�±〉} form a basis for
a qubit pair. Therefore, the state of each qubit pair n ∈ N can
be written as

ρn =
∑
k∈Kn

ck,n|φk〉〈ψk|, (A2)

where |φk〉 and |ψk〉 are Bell states, i.e., |�±〉 and |�±〉, and
Kn is the set of all terms with nonzero coefficient ck,n ∈ C.
Given (A2), the fidelity of qubit pair n is given by

fn =
∑
k∈Kn

[ck,n1(|φk〉 = |ψk〉 = |�−〉)], (A3)

where 1(·) is the indicator function.
According to (11), for Bell states |φ〉, |ψ〉 ∈ {|�±〉, |�±〉},

T (|φ〉〈ψ |) =
{|φ〉〈ψ | if |φ〉 = |ψ〉

0 if |φ〉 	= |ψ〉. (A4)
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By substituting (A4) into (A3), it is clear that the rotation T
does not change the fidelity of any qubit pair.

Consider a composite operation in which the rotation T
is performed on the sampled qubit pairs n ∈ M before the
measurement O. Subsequently, this rotation is performed on
the unsampled qubit pairs n ∈ N \M. According to the anal-
ysis described in the preceding paragraph, the rotation T on
the unsampled qubit pairs does not affect the measurement
outcome r or the average fidelity of the unsampled qubit
pairs f̄ . In this sense, the considered composite operation is
equivalent to the operation Ô = O ◦ T , i.e., both the rotation
and the measurement are performed only on the sampled qubit
pairs. Moreover, since the rotation T on the unsampled qubit
pairs is commutable with the measurement O, the operation
Ô is also equivalent to an operation in which the rotation
T is performed on all qubit pairs before the measurement
O. Given the above two equivalences, when analyzing the
performance of the operation Ô, we consider the operation
in which the rotation is performed on all qubit pairs before the
measurement.

An arbitrary state of all N qubit pairs can be expressed in
the Bell basis as

ρall =
∑
k∈K

ck ⊗n∈N |φk,n〉〈ψk,n|, (A5)

where |φk,n〉 and |ψk,n〉 are Bell states, i.e., |�±〉 and |�±〉,
and K is the set of all terms with nonzero coefficient ck ∈ C.
Substituting (A4) into (A5), we find that after performing the
rotation T on all qubit pairs, their joint state is

T (ρall ) =
∑
k∈K

ck ⊗n∈N 1(|φk,n〉 = |ψk,n〉)|φk,n〉〈ψk,n|. (A6)

Equation (A6) shows that after performing T on all qubit
pairs, the state of all qubit pairs is a composition of product
states and therefore separable.

We define the function e(S,O,D) as the worst-case-square
estimation error for states in the set S by using the measure-
ment operator O and the estimator D, i.e.,

e(S,O,D) = max
ρall∈S

∑
M

ER[(F̌ − F̄ )2|M,O,D]. (A7)

The objective functions of Problems 1 and 2 can be rewritten
as

minimize
O,D

e(Sarb,O,D), minimize
O,D

e(Ssp,O,D), (A8)

respectively.
We denote by D∗ the estimator used with the measurement

operation O∗ to achieve the minimum mean-square error.
The following inequalities involving the objective functions
of Problems 1 and 2 can be derived:

minimize
O,D

e(Sarb,O,D)

� e(Sarb, Ô∗,D∗) (A9a)

� e(Ssp,O∗,D∗) (A9b)

= minimize
O,D

e(Ssp,O,D). (A9c)

Equation (A9b) holds because rotation T converts an arbitrary
state to a separable state and (A9c) holds because (O∗,D∗) is
the optimal solution to Problem 2.

Moreover, because Sarb ⊃ Ssp,

minimize
O,D

e(Sarb,O,D) � minimize
O,D

e(Ssp,O,D). (A10)

According to (A9) and (A10), we can obtain

minimize
O,D

e(Sarb,O,D) = e(Sarb, Ô∗,D∗)

= minimize
O,D

e(Ssp,O,D). (A11)

The first equality in (A11) shows that Ô∗ is optimal for Prob-
lem 1. This completes the proof of Lemma 1. �

2. Sufficiency of considering independent noise

We next show that to solve Problem 2, it is sufficient to
consider a problem in which there is no correlation between
different qubit pairs. This problem is given by Problem 3.

Problem 3 (error minimization for independent states).
This problem is to

minimize
O,D

max
ρall∈Sid

∑
M

ER[(F̌ − f̄ )2] (A12a)

subject to
∑
M

ER[F̌ − f̄ ] = 0 ∀ ρall ∈ Sid, (A12b)

where Sid denotes the set of states ρall in which the state ρn
of every qubit pair n, n ∈ N , is independent, i.e., ρall can be
expressed as

ρall = ⊗n∈Nρn. (A13)

In the case of (A13), the average fidelity of the unsampled
pairs f̄ is deterministic for each sample set M. Thus, lower-
case letter f̄ is used in (A12).

The following lemma shows the sufficiency of considering
independent noise.

Lemma 2 (equivalence of Problems 2 and 3). If a mea-
surement operation O∗ is optimal in Problem 3, it is also
optimal in Problem 2.

Proof. A separable state ρall ∈ Ssp can be expressed as

ρall =
∑
k∈K

pk ⊗n∈N ρk,n, (A14)

where pk is the probability of the ensemble in case k, with
pk � 0,

∑
k∈K pk = 1, and ρk,n is the density matrix of qubit

pair n in case k. We define ρ
(k)
all = ⊗n∈Nρk,n and denote the

fidelity of ρk,n by fk,n. Then ρ
(k)
all ∈ Sid ∀ k ∈ K.

We denote by f̌ (r) the estimated fidelity given the mea-
surement outcome r and by f̄ (ρall,M, r) the average fidelity
of the unsampled qubit pairs given the state ρall, sample set
M, and measurement outcome r. With (A14), for every es-
timation protocol {O,D} and every state ρall ∈ Ssp, we have
that ∑

M
ER[F̌ − F̄ ]

=
∑
M

∑
r

Pr(r|M)[ f̌ (r) − f̄ (ρall,M, r)] (A15a)
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=
∑
M

∑
r

∑
k

Pr(r|M)Pr
(
ρ

(k)
all

∣∣M, r
)

× [
f̌ (r) − f̄

(
ρ

(k)
all ,M, r

)]
(A15b)

=
∑

k

pk

∑
M

∑
r

Pr
(
r
∣∣ρ(k)

all ,M
)

× [
f̌ (r) − f̄

(
ρ

(k)
all ,M, r

)]
(A15c)

=
∑

k

pk

∑
M

ER
[
F̌ − f̄

∣∣ρ(k)
all

]
(A15d)

and similarly∑
M

ER[(F̌ − F̄ )2]

=
∑
M

∑
r

Pr(r|M)

(
f̌ (r) −

∑
k

Pr

× (
ρ

(k)
all

∣∣M, r
)

f̄
(
ρ

(k)
all ,M, r

))2

(A16a)

�
∑
M

∑
r

∑
k

Pr(r|M)Pr
(
ρ

(k)
all

∣∣M, r
)

× [
f̌ (r) − f̄

(
ρ

(k)
all ,M, r

)]2
(A16b)

=
∑

k

Pr
(
ρ

(k)
all

∣∣M) ∑
M

∑
r

Pr
(
r
∣∣ρ(k)

all ,M
)

× [
f̌ (r) − f̄

(
ρ

(k)
all ,M, r

)]2
(A16c)

=
∑

k

pk

∑
M

ER
[
(F̌ − f̄ )2

∣∣ρ(k)
all

]
(A16d)

� max
ρall∈Sid

∑
M

ER[(F̌ − f̄ )2], (A16e)

where (A15b) and (A16b) hold because∑
k∈K

Pr
(
ρ

(k)
all

∣∣M, r
) = 1, (A17)

Pr
(
ρ

(k)
all

∣∣M, r
)
� 0 ∀ k ∈ K, (A18)

and the function x2 is convex; Eqs. (A15c) and (A16c) hold
because according to Bayes’ theorem

Pr(r|M)Pr
(
ρ

(k)
all

∣∣M, r
) = Pr

(
ρ

(k)
all

∣∣M)
Pr

(
r
∣∣ρ(k)

all ,M
)
; (A19)

and (A16e) holds because ρ
(k)
all ∈ Sid, pk � 0 ∀ k ∈ K, and∑

k pk = 1.
According to (A15), if the estimated fidelity F̌ satisfies

(A12b), it also satisfies (A1b). Therefore, an estimate that is
unbiased for independent states is also unbiased for separable
states.

Recall the worst-case-square estimation error function
e(S,O,D) defined in (A7) and denote by D∗ the estima-
tor used with the measurement operation O∗ to achieve the
minimum mean-square error. In this case, the following in-
equalities involving the objective functions of Problems 2

and 3 can be derived:

minimize
O,D

e(Ssp,O,D)

� e(Ssp,O∗,D∗) (A20a)

� e(Sid,O∗,D∗) (A20b)

= minimize
O,D

e(Sid,O,D). (A20c)

Equation (A20b) is true because (A16) holds for every esti-
mation protocol {O,D} and every state ρall ∈ Ssp and (A20c)
holds because {O∗,D∗} is the optimal solution to Problem 3.
Moreover, because Ssp ⊃ Sid,

minimize
O,D

e(Ssp,O,D) � minimize
O,D

e(Sid,O,D). (A21)

According to (A20) and (A21),

minimize
O,D

e(Ssp,O,D) = e(Ssp,O∗,D∗)

= minimize
O,D

e(Sid,O,D). (A22)

The first equality in (A22) shows that O∗ is optimal for Prob-
lem 2. This completes the proof of Lemma 2. �

3. Sufficiency of considering the sampled qubit pairs

In a third step, we show that in the case of independent
noise, to minimize the estimation error with respect to the
average fidelity of the unsampled qubit pairs, it is sufficient to
minimize the corresponding value of the sampled qubit pairs.
To this end, transform Problem 3 into Problem 4.

Problem 4 (error minimization for sampled qubit pairs).
This problem is to

minimize
O,D

max
ρall∈Sid ( f all )

∑
M

ER[(F̌ − f̄M)2] (A23a)

subject to ER[F̌ − f̄M] = 0 ∀ ρM, (A23b)

where ρM is the state of all sampled qubit pairs and Sid ( f all )
denotes the set of N qubit pair states with independent noise
and fidelity composition f all = { fn, n ∈ N }, i.e.,

ρall = ⊗n∈Nρn, (A24)

in which ρn is the state of the nth qubit pair,

fn = 〈�−|ρn|�−〉, n ∈ N , (A25)

is the fidelity of the nth qubit pair, and

f̄M = 1

M

∑
n∈M

fn (A26)

is the average fidelity of the sampled qubit pairs.
The following lemma shows that a measurement opera-

tion O∗ which is optimal for Problem 4 is also optimal for
Problem 3.

Lemma 3 (equivalence of Problems 3 and 4). If a mea-
surement operation O∗ is optimal in Problem 4 for all
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compositions of fidelity, i.e., for all Sid ( f all ) ⊂ Sid, it is also
optimal in Problem 3.

Proof. Because the sample set M is drawn completely at
random, ∑

M
f̄ − f̄M = 0 ∀ ρall ∈ Sid. (A27)

According to (A27), Eq. (A12b) is equivalent to∑
M

ER[F̌ − f̄M] = 0 ∀ ρall ∈ Sid. (A28)

Equation (A28) indicates that any estimation protocol {O,D}
satisfies (A23b) for all Sid ( f all ) ⊂ Sid and M ⊂ N also satis-
fies (A12b). In the following, we prove the converse statement
by contradiction.

Suppose there is an estimation protocol {O,D} that satis-
fies (A28) but does not satisfy (A23b). In this case, there must
exist some ρM such that

ER[F̌ − f̄M] 	= 0. (A29)

We denote by m ∈ M one of the sampled qubit pairs, by l the
number of sampled qubit pairs whose state is the same as that
of the mth pair, i.e., ∑

n∈M
1(ρn = ρm) = l, (A30)

and by ρ(l ) the state ρM that satisfies (A29). Because m ∈ M,
it is clear that l � 1.

Subsequently, we consider the state

ρall = ρ(l ) ⊗ (⊗N−Mρm). (A31)

With the state defined in (A31), the sampled setM has at least
a number l of qubit pairs in the state ρm. When the number of
sampled qubit pairs in state ρm is equal to l , the joint state
of the sampled qubit pairs is equal to ρ(l ). Thus, according to
(A28) and (A29), there must exist a sample set M̃ such that

ER[F̌ − f̄M̃] 	= 0,
∑
n∈M̃

1(ρn = ρm) = l̃ � l + 1. (A32)

We denote the state ρM̃ by ρ(l̃ ). Next we consider the state

ρall = ρ(l̃ ) ⊗ (⊗N−Mρm) (A33)

and repeat the analysis above. Because l̃ � l + 1, by repeating
this analysis for at most M − l times, we can obtain that when
ρM = ρ(M ) = ⊗Mρm, the unbiased constraint is not met, i.e.,

ER[F̌ − f̄M] 	= 0. (A34)

However, according to (A34), Eq. (A28) does not hold for
the state ρall = ⊗Nρm. This contradiction shows that any es-
timation protocol {O,D} that satisfies (A12b) also satisfies
(A23b).

Using the strengthened unbiased constraint (A23b), the
estimation error in Problem 3 can be decomposed as∑

M
ER[(F̌ − f̄ )2]

=
∑
M

ER[(F̌ − f̄M + f̄M − f̄ )2] (A35a)

=
∑
M

ER[(F̌ − f̄M)2] + 2
∑
M

ER[(F̌ − f̄M)( f̄M − f̄ )]

+
∑
M

ER[( f̄M − f̄ )2] (A35b)

=
∑
M

ER[(F̌ − f̄M)2] + 2
∑
M

ER[F̌ − f̄M|ρM]

×( f̄M − f̄ ) +
∑
M

( f̄M − f̄ )2 (A35c)

=
∑
M

ER[(F̌ − f̄M)2] +
∑
M

( f̄M − f̄ )2, (A35d)

where (A35c) holds because in cases with independent noise,
the average fidelity of sampled qubit pairs f̄M and that of
unsampled qubit pairs f̄ are deterministic given each sample
set M; Eq. (A35d) is true due to (A23b).

Equation (A35) decomposes the estimation error into two
parts, i.e., the estimation error with respect to the average
fidelity of the sampled qubit pairs∑

M
ER[(F̌ − f̄M)2], (A36)

and the deviation between the average fidelity of sampled and
unsampled qubit pairs ∑

M
( f̄M − f̄ )2. (A37)

The value of (A37) is determined by the fidelity composition
of all qubit pairs, i.e.,

f all = { fn, n ∈ N }, (A38)

and not affected by the estimation protocol {O,D}. Therefore,
for every fidelity composition f all, minimizing the estimation
error

minimize
O,D

max
ρall∈Sid ( f all )

∑
M

ER[(F̌ − f̄ )2] (A39)

is equivalent to

minimize
O,D

max
ρall∈Sid ( f all )

∑
M

ER[(F̌ − f̄M)2]. (A40)

Hence, if a protocol {O∗,D∗} is optimal in Problem 4 for all
Sid ( f all ) ⊂ Sid, it is also the optimal solution to (A39) for all
Sid ( f all ) ⊂ Sid. Furthermore, because

Sid =
⋃
f all

Sid ( f all ), (A41)

protocol {O∗,D∗} minimizes

max
ρall∈Sid

∑
M

ER[(F̌ − f̄ )2]. (A42)

Therefore, {O∗,D∗} is also an optimal solution to Problem 3.
This completes the proof of Lemma 3. �

The following theorem summarizes the results of this sec-
tion.

Theorem 1 (generality of optimality with independent
noise). If a measurement operation O∗ is optimal in Prob-
lem 4 for all Sid ( f all ) ⊂ Sid, then a composite measurement

022418-9



LIANGZHONG RUAN PHYSICAL REVIEW A 108, 022418 (2023)

operation Ô∗ = O∗ ◦ T is optimal in Problem 1, where the
operation T is defined as in Definition 1.

Proof. The theorem is a direct consequence of
Lemmas 1–3. �

APPENDIX B: OPERATION CONSTRUCTION

In this Appendix we first derive a lower bound of the
estimation error and then, based on the conditions for achiev-
ing this lower bound, construct an optimal fidelity estimation
protocol.

1. Lower bound of the estimation error

We will first further simplify Problem 4 (Lemma 4), then
characterize the limit of separable operators (Lemma 5), and
finally determine the lowest feasible bound of the estimation
error (Lemma 6).

The state of a qubit pair ρn ∈ H4×4 has several parameters
other than fidelity. This property complicates the Fisher infor-
mation analysis of Problem 4. To overcome this challenge, we
further simplify Problem 4 to an equivalent one, Problem 5, in
which the fidelity composition f all is sufficient to parametrize
the state of the qubit pairs.

Problem 5 (error minimization for Werner states). Given
that ρall = ⊗n∈Nσn,

minimize
O,D

∑
M

ER[(F̌ − f̄M)2] (B1)

subject to ER[F̌ − f̄M|M] = 0 ∀M ⊂ N , (B2)

where σn is the Werner state with fidelity fn, i.e.,

σn = fn|�−〉〈�−| + 1 − fn

3
(I4 − |�−〉〈�−|). (B3)

Lemma 4 (equivalence of Problems 4 and 5). With the op-
timal estimation protocol {O,D}, the objective functions of
Problems 4 and 5 have the same value.

Proof. Recall the function of the worst-case-square estima-
tion error e(S,O,D) defined in (A7) and define Sw( f all ) =
{⊗n∈Nσn}. The objective functions of Problems 4 and 5 can
be rewritten as

minimize
O,D

e(Sid ( f all ),O,D),

minimize
O,D

e(Sw( f all ),O,D), (B4)

respectively.
We denote by {O∗,D∗} the optimal solution to Problem 5

and we denote the random bilateral rotation operation pro-
posed in [34] by B. We define the composition operation
Ô∗ = O∗ ◦ (⊗MB). In this case, we have that

minimize
O,D

e(Sid ( f all ),O,D)

� e(Sid ( f all ), Ô∗,D∗) (B5a)

� e(Sw( f all ),O∗,D∗) (B5b)

= minimize
O,D

e(Sw( f all ),O,D), (B5c)

where (B5b) holds because the operation B transforms a gen-
eral qubit pair state ρn to a Werner state σn with the same

fidelity and (B5c) holds because {O∗,D∗} is the optimal solu-
tion to Problem 2. Moreover, because Sw( f all ) ⊂ Sid( f all ),

minimize
O,D

e(Sw( f all ),O,D) � minimize
O,D

e(Sid ( f all ),O,D).

(B6)

From (B5) and (B6) we have

minimize
O,D

e(Sw( f all ),O,D) = minimize
O,D

e(Sid ( f all ),O,D),

(B7)

which proves Lemma 4. �
The next lemma characterizes the limit of separable opera-

tors when measuring maximally entangled qubit pairs.
Lemma 5 (limit of separable operators). Here |�〉 is a

maximally entangled state of a qubit pair and M = M (A) ⊗
M (B) is a separable operator, where M (X ) � 0, X ∈ {A, B}. In
this case,

0 � Tr(|�〉〈�|M (AB) )

Tr[(I4 − |�〉〈�|)M (AB)]
� 1. (B8)

Proof. We define

ρ = M (AB)

Tr(M (AB) )
. (B9)

Since M (X ) � 0, X ∈ {A, B}, ρ is the density matrix of a
separable state of a qubit pair. For this state, its fidelity with
respect to every maximally entangled state lies in the interval
[0, 1

2 ] [36,37], i.e.,

Tr(|�〉〈�|ρ) ∈ [
0, 1

2

]
. (B10)

Consequently,

Tr(|�〉〈�|ρ)

Tr[(I4 − |�〉〈�|)ρ]
= Tr(|�〉〈�|ρ)

1 − Tr(|�〉〈�|ρ)
∈ [0, 1]. (B11)

According to (B9) and (B11), Eq. (B8) is obtained. This
completes the proof of Lemma 5. �

Remark 4 (the role of inequality (B8)). To measure the fi-
delity with respect to a state |�〉〈�|, it is most efficient to
use |�〉〈�| and I4 − |�〉〈�| as measurement operators to
ensure that the distribution of the measurement outcome is
maximally sensitive to the changes in fidelity.

Since the target state |�−〉 is entangled, separable oper-
ations cannot realize the measurement operators mentioned
above. To increase their efficiency, separable measurement
operators should be designed to best mimic the ideal oper-
ator |�−〉〈�−|. The inequality (B8) characterizes the best
alignment between separable operators and the target state.
Consequently, Eq. (B8) is the critical constraint that upper
bounds the efficiency of separable operators in fidelity esti-
mation.

Based on the above results, the following lemma character-
izes a lower bound for the estimation error in Problem 4.

Lemma 6 (lower bound for the estimation error). The
mean-square estimation error, i.e., the objective function of
Problem 4 divided by

(N
M

)
, is no less than

∑
n∈N

(2 fn + 1)(1 − fn)

2MN
. (B12)
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Proof. According to Lemma 4, the minimum value of the
objective function of Problem 4 is equal to that of Problem 5.
Therefore, the following analysis lower bounds the objective
function of Problem 5.

In Problem 5, ρall = ⊗n∈Nσn, i.e., the qubit pairs are in
independent Werner states. In this case, for each sampled set
M, the fidelity composition of the sampled qubit pairs,

fM = { fn, n ∈ M}, (B13)

is the unknown fixed parameter that determines the dis-
tribution of the measurement outcome R. According to
the unbiased constraint (A23b) and the fact that FM =
1
M

∑
n∈M fn,

∂ER[F̌ ]

∂ fM
= 1M

M
, (B14)

where 1M denotes the 1 × M all-1 vector. In this case, accord-
ing to the Cramér-Rao bound [30,31],

ER[(F̌ − f̄M)2] � ∂ER[F̌ ]

∂ fM
[IR( fM)]−1

(
∂ER[F̌ ]

∂ fM

)T

,

(B15)

where IR( fM) is the M × M Fisher information matrix of the
measurement outcome R evaluated at point fM. The elements
of IR( fM) are specified as

In,m( fM) =ER

[
∂

∂ fn
lnP (R; fM)

(
∂

∂ fm
lnP (R; fM)

)T
]
,

(B16)

where n, m ∈ M and P (r; fM) is the distribution of measure-
ment outcome r given the fidelity composition fM.

According to Proposition 1 in [38], the reciprocal of the di-
agonal elements of a Fisher information matrix lower bounds
the inverse of that matrix, i.e.,

[IR( fM)]−1 � diag
(
I−1
n,n ( fM), n ∈ M

)
, (B17)

where � denotes the matrix inequality and diag(·) denotes the
diagonal matrix. Substituting (B14) and (B17) into (B15), we
get

ER[(F̌ − f̄M)2] � 1

M2

∑
n∈M

I−1
n,n ( fM). (B18)

Given that the state of qubit pairs ρall = ⊗n∈Nσn and the
measurement operator

Mr =
∑

k

⊗n∈M(
M (A)

r,n,k ⊗ M (B)
r,n,k

)
, (B19)

the distribution of the measurement outcome can be expressed
as

P (r; fM) = Tr(⊗n∈MσnMr )

=
∑

k

Tr
[ ⊗n∈M (

σnM (A)
r,n,k ⊗ M (B)

r,n,k

)]

=
∑

k

∏
n∈M

Tr
(
σnM (A)

r,n,k ⊗ M (B)
r,n,k

)
. (B20)

To characterize the effect of fidelity fn on the distribution of
the measurement outcome, we define

ar,n =
∑

k

Tr
(|�−〉〈�−|M (A)

r,n,k ⊗ M (B)
r,n,k

)

×
∏

m∈M\{n}
Tr

(
σmM (A)

r,m,k ⊗ M (B)
r,m,k

)
,

br,n =
∑

k

Tr
[
(I4 − |�−〉〈�−|)M (A)

r,n,k ⊗ M (B)
r,n,k

]

×
∏

m∈M\{n}
Tr

(
σmM (A)

r,m,k ⊗ M (B)
r,m,k

)
. (B21)

It is evident that the value of fn has no effect on ar,n and br,n,
i.e.,

∂ar,n

∂ fn
= ∂br,n

∂ fn
= 0 ∀ r, n. (B22)

According to (B3) and (B20), the distribution of the mea-
surement outcome can be rewritten as

P (r| fM) = fn

∑
k

Tr
(|�−〉〈�−|M (A)

r,n,k ⊗ M (B)
r,n,k

)

×
∏

m∈M\{n}
Tr

(
σmM (A)

r,m,k ⊗ M (B)
r,m,k

)

+ 1 − fn

3

∑
k

Tr
[
(I4 − |�−〉〈�−|)M (A)

r,n,k

⊗ M (B)
r,n,k

] ∏
m∈M\{n}

Tr
(
σmM (A)

r,m,k ⊗ M (B)
r,m,k

)

= fnar,n + 1 − fn

3
br,n. (B23)

According to (B16), (B22), and (B23),

In,n( fM) =
∑

r

P (r| fn)

(
∂

∂ fn
lnP (r| fn)

)2

=
∑

r

(
ar,n − 1

3 br,n
)2

fnar,n + 1− fn

3 br,n

. (B24)

According to the property of the positive-operator-valued
measure, i.e.,

∑
r Mr = I4M , it can be obtained that

∑
r

ar,n = Tr

(
|�−〉〈�−| ⊗ (⊗m∈M\{n}σm)

∑
r

Mr

)

= Tr[|�−〉〈�−| ⊗ (⊗m∈M\{n}σm)]

= Tr(|�−〉〈�−|)
∏

m∈M\{n}
Tr(σm)

= 1. (B25)

Similarly,∑
r

br,n = Tr(I4 − |�−〉〈�−|)
∏

m∈M\{n}
Tr(σm)

= 3. (B26)
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Applying Lemma 5, we get

0 � Tr
(|�−〉〈�−|M (A)

r,n,k ⊗ M (B)
r,n,k

)
� Tr

[
(I4 − |�−〉〈�−|)M (A)

r,n,k ⊗ M (B)
r,n,k

]∀ r, n, k. (B27)

Substituting (B27) into (B21), we obtain that

0 � ar,n � br,n ∀ r, n. (B28)

Defining

Ir,n(ar,n, br,n) =
(
ar,n − 1

3 br,n
)2

fnar,n + 1− fn

3 br,n

, (B29)

then because

∂2Ir,n

∂2ar,n
= 6b2

r,n

[(1 − fn)br,n + 3 fnar,n]3
� 0, (B30)

the function Ir,n is convex with respect to ar,n. Therefore,
according to (B28),

Ir,n(ar,n, br,n) � br,n − ar,n

br,n
Ir,n(0, br,n) + ar,n

br,n
Ir,n(br,n, br,n)

= 1

3(1 − fn)
(br,n − ar,n) + 4

3(2 fn + 1)
ar,n.

(B31)

Substituting (B25), (B26), and (B31) into (B24), we obtain
that

In,n( fM) =
∑

r

Ir,n(ar,n, br,n)

� 1

3(1 − fn)

∑
r

(br,n − br,n) + 4

3(2 fn + 1)

∑
r

br,n

= 2

3(1 − fn)
+ 4

3(2 fn + 1)

= 2

(2 fn + 1)(1 − fn)
. (B32)

Substituting (B32) into (B18), the mean-square estimation
error is lower bounded as(

N

M

)−1 ∑
M

ER[(F̌ − f̄M)2]

�
(

N

M

)−1 ∑
M

∑
n∈M

I−1
n,n ( fM)

M2

�
(

N

M

)−1 ∑
n∈N

(
N − 1

M − 1

)
(2 fn + 1)(1 − fn)

2M2

=
∑
n∈N

(2 fn + 1)(1 − fn)

2MN
. (B33)

With (B33), Eq. (B12) is obtained, which completes the proof
of Lemma 6. �

2. Achieving the minimum estimation error

This Appendix describes the measurement operation used
to achieve the minimum estimation error.

According to the proof of Lemma 6, a necessary condi-
tion for achieving the minimum estimation error is that the
inequality in (B31) is balanced. To this end, the projection of
a measurement operator onto the target state, i.e., ar,n defined
in (B21), must balance either of the two inequalities in (B28).
The estimation protocol is built according to this principle.
Specifically, we consider bilateral local Pauli measurements
in the same basis. When both nodes make measurements in
the u basis, u ∈ {x, y, z}, the operators corresponding to the
asymmetric and symmetric measurement results Mu,0 and
Mu,1 are given, respectively, by

Mx,0 = | + −〉〈+ − | + | − +〉〈− + |
= |�−〉〈�−| + |�−〉〈�−|, (B34a)

Mx,1 = | + +〉〈+ + | + | − −〉〈− − |
= |�+〉〈�+| + |�+〉〈�+|, (B34b)

My,0 = | × 〉〈×  | + |  ×〉〈 × |
= |�−〉〈�−| + |�+〉〈�+|, (B34c)

My,1 = | × ×〉〈× × | + |  〉〈  |
= |�+〉〈�+| + |�−〉〈�−|, (B34d)

Mz,0 = |01〉〈01| + |10〉〈10|
= |�−〉〈�−| + |�+〉〈�+|, (B34e)

Mz,1 = |00〉〈00| + |11〉〈11|
= |�−〉〈�−| + |�+〉〈�+|, (B34f)

where |+〉 = |0〉+|1〉√
2

, |−〉 = |0〉−|1〉√
2

, |×〉 = |0〉+i|1〉√
2

, and |〉 =
|0〉−i|1〉√

2
.

In (B34), the operators Mu,0, u ∈ {x, y, z}, balance the sec-
ond inequality in (B28) and the operators Mu,1, u ∈ {x, y, z},
balance the first inequality in (B28). The following two lem-
mas confirm the optimality of the proposed measurement
operator.

Lemma 7 (unbiased estimator). Given the measurements
made in Protocol 1, the estimated fidelity

f̌ = 1 − 3εM
2

(B35)

satisfies (A23b), where the QBER εM is expressed as

εM =
∑

n∈M rn

M
, (B36)

in which rn is the measurement result of qubit n.
Proof. We define the following four terms:

f (0) = 1

M

∑
n∈M

Tr(ρn|�−〉〈�−|),

f (1) = 1

M

∑
n∈M

Tr(ρn|�+〉〈�+|),

f (2) = 1

M

∑
n∈M

Tr(ρn|�−〉〈�−|),

f (3) = 1

M

∑
n∈M

Tr(ρn|�+〉〈�+|). (B37)
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In this case, f̄M = f (0). Moreover, as the Bell states form a
basis of C4,

3∑
i=0

f (i) = 1

M

∑
n∈M

Tr(ρn) = 1. (B38)

Given the distribution of An, i.e., Pr(An = u) = 1
3 , u ∈

{x, y, z}, and the expression of the measurement operators
(B34), the following expression can be obtained:

E

[∑
n∈M Rn1(An = x)

M

∣∣∣∣∣ f̄M

]

= 1

M

∑
n∈M

Pr(An = x)E[Rn|An = x, f̄M]

= 1

3M

∑
n∈M

Tr[ρn(I4 − Mx,0)]

= 1

3M

( ∑
n∈M

Tr(ρn|�+〉〈�+|) +
∑
n∈M

Tr(ρn|�+〉〈�+|)
)

= f (1) + f (3)

3
. (B39)

Similar to (B39), we can obtain that

E

[∑
n∈M Rn1(An = y)

M

∣∣∣∣ f̄M

]

= 1

3M

∑
n∈M

Tr[ρn(I4 − My,0)]

= f (1) + f (2)

3
, (B40)

E

[∑
n∈M Rn1(An = z)

M

∣∣∣∣ f̄M

]

= 1

3M

∑
n∈M

Tr[ρn(I4 − Mz,0)]

= f (2) + f (3)

3
. (B41)

Substituting (B38)–(B41) into (B35) yields

E[F̌ | f̄M ]

= 1 − 3

2
E[EM| f̄M]

= 1 − 3

2
E

[∑
a∈{x,y,z}

∑
n∈M Rn1{An = a}

M

∣∣∣∣∣ f̄M

]

= 1 − 3

2

(
3∑

i=1

2 f (i)

3

)

= f (0) = f̄M, (B42)

where F̌ and EM are the random variable form of f̌ and
εM, respectively. Equation (B42) shows that the estimator
given in (B35) satisfies (A23b). This completes the proof of
Lemma 7. �

Next Lemma 8 proves the optimality of the proposed mea-
surement operation in scenarios with independent noise.

Lemma 8 (optimality with independent noise). Protocol 1
achieves the minimum estimation error in Problem 4.

Proof. By repeating the derivation from (B39)–(B42) for
qubit pair n, the following expression can be obtained:

Pr(Rn = 1) = 2
3 (1 − fn). (B43)

Hence, the variance of Rn is given by

V [Rn] = Pr(Rn = 1)[1 − Pr(Rn = 1)]

= (2 fn + 1)(2 − 2 fn)

9
. (B44)

In the case of independent noise, the measurement out-
comes Rn, n ∈ M, on different qubit pairs are independent.
Therefore, according to (B35) and (B36),

V [F̌ |M] = 9

4M2

∑
n∈M

V [Rn]

=
∑
n∈M

(2 fn + 1)(1 − fn)

2M2
. (B45)

According to Lemma 7, F̌ satisfies (A23b); hence

ER[(F̌ − F̄M)2|M] = V [F̌ |M]. (B46)

As the sample set M is selected completely at random,
Eqs. (B45) and (B46) indicate that for all Sid ( f all ) ⊂ Sid,(

N

M

)−1 ∑
M⊂N

ER[(F̌ − F̄M)2]

=
(

N

M

)−1 ∑
M⊂N

∑
n∈M

(2 fn + 1)(1 − fn)

2M2

=
(

N

M

)−1 ∑
n∈N

(
N − 1

M − 1

)
(2 fn + 1)(1 − fn)

2M2

=
∑
n∈N

(2 fn + 1)(1 − fn)

2MN
. (B47)

According to Lemma 6, the estimation error of Problem 4
is no less than (B47). This aspect shows that Protocol 1 is
optimal in Problem 4 for all fidelity compositions Sid ( f all ) ⊂
Sid. This completes the proof of Lemma 8. �

Finally, Theorem 2 summarizes the results of this section.
Theorem 2 (optimal estimation protocol). Protocol 1 is

optimal for Problem 1.
Proof. Denote the measurement operation and estimator of

Protocol 1 by O∗ and D∗, respectively. According to Lemma 8
and Theorem 1, the estimation protocol {Ô∗,D∗} is optimal
for Problem 1, where the composite measurement operation
Ô∗ = O∗ ◦ T .

Recall the property of the operation T given in (A4), where
|φ〉 and |ψ〉 are Bell states {|�±〉, |�±〉}. Given (A4) and the
fact that Bell states form a basis of H4, the Kraus operators of
T processing one qubit pair can be expressed as

Tφ = |φ〉〈φ|, φ ∈ {�±, �±}. (B48)
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In this case of (B34) and (B48), the operation T does not
change the operators of O∗, i.e.,

Mu,r =
∑

φ∈{�±,�±}
T †

φMu,rTφ ∀ u ∈ {x, y, z}, r ∈ {0, 1},

(B49)

where the dagger is the Hermitian transpose. Equa-
tion (B49) shows that the composite measurement operation

Ô∗ =O∗ ◦ T is equivalent to O∗, i.e.,

Ô∗ = O∗ ◦ T = O∗. (B50)

According to (B50), the estimation protocol {O∗,D∗} of Pro-
tocol 1 is optimal for Problem 1. This proves Theorem 2. �
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