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Fermionic Ansatz state preparation is a critical subroutine in many quantum algorithms such as the variational
quantum eigensolver for quantum chemistry and condensed-matter applications. The shallowest circuit depth
needed to prepare Slater determinants and correlated states to date scales at least linearly with respect to the
system size N . Inspired by data-loading circuits developed for quantum machine learning, we propose an
alternate paradigm that provides shallower, yet scalable, O(d log2

2 N ) two-qubit gate-depth circuits to prepare
such states with d fermions, offering a subexponential reduction in N over existing approaches in second
quantization, enabling high-accuracy studies of d � O(N/ log2

2 N ) fermionic systems with larger basis sets on
near-term quantum devices.
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I. INTRODUCTION

Quantum computers promise the ability to solve hard
many-body problems in quantum chemistry and condensed-
matter physics, including the computation of ground-state
energies and simulation of quantum dynamics [1–3]. The
relevant quantum algorithms frequently involve quantum state
preparation as a key step. For example, the success probability
of quantum phase estimation is determined by the overlap of
a trial Ansatz state with the eigenstate of interest [4–6]. Thus,
efficient preparation of high-quality Ansatz states is crucial for
many-body applications of quantum computing [7,8].

Most existing methods for preparing fermionic Ansätze
use second quantization with Jordan-Wigner mapping [9]
to efficiently represent the quantum many-body fermionic
wavefunction using a number of qubits that scales linearly
in the system size [1,2]. Widely-used fermionic Ansätze
typically fall into two broad classes: The first class con-
sists of hardware-efficient Ansätze which use parameterized
hardware-native gates to minimize the depth of the quantum
circuit [10], but are difficult to optimize [11] and do not
guarantee an accurate representation of the desired quantum
state [12]. The second class consists of problem-inspired An-
sätze which are more promising and explicitly incorporate the
physics of the system of interest, but require deeper circuits
that scale polynomially in system size, which exacerbates er-
rors due to quantum noise and decoherence [13–20], limiting
state-of-the-art demonstrations to less than a hundred qubits
[21,22], leaving studies of chemically-relevant molecular
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systems requiring more than 102–103 qubits well out of reach
[23,24].

The shallowest general-purpose problem-inspired Ansatz
states to date are mean-field Hartree-Fock states [13–15],
which are Slater determinants that can be prepared using
a mesh of fermionic single-excitation gates which have a
linear O(N ) two-qubit gate depth in the number of qubits
N , as shown in Fig. 1(a). While Hartree-Fock states are
efficiently simulatable using classical computers, they never-
theless serve as a useful starting point for quantum computers
to prepare more interesting classically intractable corre-
lated quantum Ansätze, such as the unitary coupled-cluster
Ansatz, which incorporates quantum correlations by applying
number-conserving multifermion excitation operators to a ref-
erence Hartree-Fock state [16–20,25].

Fermionic excitation operators are examples of Givens-
rotation gates which perform rotations in a two-dimensional
fermionic subspace of a larger Hilbert space and, together
with their controlled variants, form a universal quantum
gate set to realize any particle-conserving unitaries [26,27].
Therefore, such Givens-rotation gates have been helpful for
preparing various fermionic states in quantum chemistry and
condensed-matter applications [13–17,28–30]. Recently, such
gates have also attracted interest in the context of quantum
linear algebra, where they were used to construct shallow-
depth “Clifford-loader” gates, which are linear combinations
of anticommuting operators, as a means to efficiently encode
d-dimensional subspaces of RN into an N-qubit state [31–34],
enabling potential end-to-end quantum speedups for several
quantum machine learning and linear-algebra problems, in-
cluding determinant sampling and topological data analysis
[31]. It is thus timely to consider whether the implementation
of Clifford loaders via the Givens rotation is useful for prepar-
ing fermionic Ansatz states.
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FIG. 1. Different approaches for preparing d-occupied Slater
determinants of N modes on a quantum computer, assuming Jordan-
Wigner mapping. (a) Existing approaches use a linear-depth mesh of
fermionic single-excitation gates to apply a fermionic basis trans-
formation to a reference state [13–15]. (b) The proposed Clifford
loaders via the Givens-rotation approach applies a sequence Ĉ of
gates d times to an all-zero state of N qubits |0〉⊗N . (c) Ĉ consists of
two products of multiple Givens rotations, D̂ and D̂†, that sandwich
a Pauli-X gate on the first qubit. (d) The Givens rotations Ûμν are
arranged in a binary tree. (e) Ûμν is decomposed using Pauli rotation
gates Rx and Rz acting on qubit μ, Hadamard gates H acting on qubit
ν, and CNOT ladders Bμν acting on all qubits between μ and ν. θ and
�A are scalar and vector parameters, respectively.

Here, we shall show how a d-fermion Slater determi-
nant can be prepared in second quantization using Clifford
loaders with an overall O(d log2 N ) Givens-rotation gate
depth. An overall O(d log2

2 N ) two-qubit gate-depth scaling
is thus achieved using Givens-rotation gates with O(log2 N )
two-qubit gate depth under Jordan-Wigner fermion-to-qubit
mapping. This is more depth efficient than existing ap-
proaches that scale as O(N ) in two-qubit gate depth with

respect to the system size N for a sufficiently slowly growing
d . We also show how this approach can be extended using the
same preparation technique for Slater determinants to prepare
fermionic L-wise correlated Ansatz states, which correlate
between L-tuples of the fermionic modes in the Ansatz, to
get quantum circuits that are shallower than that of the Slater
determinant by at least a factor of L. Finally, to validate
our correlated Ansatz, we shall demonstrate how the L = 2
pairwise correlated Ansatz can be used to capture a significant
fraction of correlation energy using an example of hydrogen
chains up to N = 20 qubits, for which pairwise electronic
correlation is likely to be significant. Our results establish
Clifford loaders constructed out of Givens rotations as a
promising method for efficient, practical, and scalable prepa-
ration of fermionic Ansatz states for large quantum chemistry
applications on near-term quantum computers.

II. PREPARING SLATER DETERMINANTS USING
SHALLOW CIRCUITS

We begin by showing how a Slater determinant with d
occupied and N − d unoccupied fermionic modes can be pre-
pared using a shallow quantum circuit. An arbitrary Slater
determinant |�1〉 is defined as [13,35–37]

|�1(A)〉 :=
d∏

l=1

N∑
μ=1

Aμl â
†
μ|vac〉, (1)

where A is an N × d real matrix such that all d columns
are orthogonal and normalized, |vac〉 is a vacuum state, and
â†

μ is a creation operator acting on the μth mode. While the
definition in Eq. (1) is pedagogically convenient, it requires
nonunitary operators �N

μ=1Aμl â†
μ which cannot be directly

implemented on a quantum circuit. Consequently, the most
efficient method to prepare Slater determinants to date is
to perform a fermionic basis transformation to a reference
Slater-determinant state for a given skew-Hermitian parameter
matrix κ as

|�1(A)〉 = exp

⎡
⎣ N∑

μ,ν=1

κμν â†
μâν

⎤
⎦ d∏

r=1

a†
r |vac〉, (2)

where the fermionic basis transformation is implemented
as a linear-depth mesh of fermionic single-excitation gates
exp[θ (â†

μâν − â†
ν âμ)], as shown in Fig. 1(a) [14,15].

We propose to improve the circuit-depth efficiency of
preparing Slater determinants using the equivalent form

|�1(A)〉 :=
d∏

l=1

N∑
μ=1

Aμl p̂μ|vac〉, (3)

as shown in Appendix A, where we use anticommuting
operators

p̂μ = â†
μ + âμ, (4)

with the relation { p̂μ, p̂ν} = 2δμνI, as shown in Appendix B.
Using the anticommuting operators p̂μ instead of â†

μ allows us
to exploit the recent result in Ref. [31] that provides a shallow
O(d log2 N ) Givens-rotation gate-depth decomposition of the
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Clifford loader

Ĉ( �Al ) =
N∑

μ=1

Aμl p̂μ (5)

for some normalized column �Al . Applying the Clifford loaders
Ĉ( �Al ) in succession d times on a vacuum state |vac〉, each with
orthogonal columns �Al , l = 1, . . . , d , from matrix A generates
the desired Slater determinant

|�1(A)〉 =
d∏

l=1

Ĉ( �Al )|vac〉, (6)

as shown in Fig. 1(b). In the case of d > N
2 , we may apply the

Clifford loader N − d times instead, followed by occupation-
vacant mode swap to all Fock bases at the end, which is
equivalent to a Pauli-X bit flip to all qubits under the Jordan-
Wigner mapping. The Slater determinant in Eq. (6) can be
simplified to [31,38]

|�1(A)〉 =
∑
|B|=d

det(AB)|B〉, (7)

where the sum is over all possible combinations of the ordered
set B containing d unique integers from 1 to N , AB is a d ×
d matrix minor of A whose row indexes are restricted by B,
and |B〉 denotes an N-mode Fock basis with occupied modes
indexed by B, as shown in Appendix C.

The Clifford loader Ĉ( �Al ) in Eq. (5) can be decomposed as

Ĉ( �Al ) = D̂( �Al ) p̂1D̂†( �Al ), (8)

as shown in Fig. 1(c), where the operator p̂1 = â†
1 + â1 acting

on the first mode is sandwiched by two products of multiple
Givens rotations, termed elsewhere as unary data loaders D̂
[31,34,39]. Its conjugate transpose D̂† is expressed as

D̂†( �Al ) =
�log2 N�∏

s=1

⎡
⎣ ∏

μ,ν∈Ts

Ûμν

(
θ (sl )
μν

)⎤⎦, (9)

where the Givens rotations

Ûμν (θ ) = exp[θ p̂μ p̂ν] (10)

are arranged in a binary-tree pattern according to
the set of (μ, ν) indexes Ts = {(μ, ν)|μ = 2s(k −
1)+1, ν = 2s−1(2k − 1)+1, k ∈ Z+\0} for each sublayer
s∈{1, . . . , �log2 N�}, as shown in Fig. 1(d).

By treating �Al = (A1l , . . ., ANl ) in Eq. (9) as a vector in the
basis of { p̂1, . . . , p̂N }, we exploit the Givens-rotation property
that

Ûμν (θ ) p̂rÛ
†
μν (θ ) =

⎧⎨
⎩

cos(2θ ) p̂r + sin(2θ ) p̂ν r = μ,

cos(2θ ) p̂r − sin(2θ ) p̂μ r = ν,

p̂r r 	= μ, ν,

(11)

to obtain the required rotation angles θ (sl )
μν = 1

2 arctan As
νl

As
μl

clas-

sically by numerically performing parallel Givens rotations on
�Al that correspond to the sequence in D̂† that successively
zeros out the vector elements until the first element of �Al

becomes A1l = 1, corresponding to p̂1.

Binary Tree

CNOT Gate

Arrangement

FIG. 2. Linear-depth cascading CNOT ladder B in the decompo-
sition of the Givens-rotation gate Û is replaced by a nonequivalent
logarithmic-depth circuit that has no effect on Û .

Under the Jordan-Wigner mapping, the Givens rotation in
Eq. (10) maps to exp[−iθŶμX̂ν⊗ν−1

r=μ+1Ẑr], which is a Pauli-
string rotation gate that can easily be implemented on a
quantum circuit [28,40], as shown in Fig. 1(e). The controlled-
NOT (CNOT) ladder Bμν in the gate decomposition of the
Givens rotation Ûμν serves the purpose of encoding the parity
of nonexciting qubits into the rotation gate, and it consists of
a cascade of CNOT gates [28,40]. However, this CNOT ladder
can be replaced by the nonequivalent binary-tree CNOT gate
arrangement [31] shown in Fig. 2, without any effect on the
Givens rotation Ûμν , thereby reducing the CNOT depth from
linear to logarithmic in N . Thus, by implementing d such
Clifford loaders with these Givens-rotation gates, we can pre-
pare Slater determinants with shallow O(d log2

2 N ) two-qubit
gate-depth quantum circuits.

III. EXTENSION TO A CORRELATED ANSATZ

Next, we extended the technique above by introducing a
method to incorporate L-wise correlations into the fermionic
Ansatz state preparation, where L = 1 reduces to the Slater-
determinant case. The idea is to use a set of anticommuting
operators that contains non-particle-preserving multibody
Fock operators for the Clifford loaders in Eq. (5) and apply
the same technique undertaken in the Slater-determinant case.
Here, for simplicity we work with Pauli-string operators under
the Jordan-Wigner mapping. We extend the anticommuting
operator p̂μ = ⊗μ−1

r=1 Ẑr X̂μ used to prepare the Slater deter-
minant previously to

p̂(L)
μ =

μ−1⊗
r=1

ẐrL

μL⊗
r′=L(μ−1)+1

X̂r′ (12)

to generate L-wise correlations. The modified operator p̂(L)
μ

has L Pauli-X terms and μ Pauli-Z terms with modulo L
indexes such that p̂(L)

μ remains anticommuting { p̂(L)
μ , p̂(L)

ν } =
2δμνI, as shown in Appendix B. For example, the L = 2
pairwise correlated anticommuting operator is given as p̂(2)

μ =
Ẑ2Ẑ4Ẑ6 · · · Ẑ2μ−2X̂2μ−1X̂2μ. Thus, we may prepare an N-mode
d-occupied L-wise correlated state |�L〉 by applying d

L Clif-
ford loaders ĈL,

|�L(G)〉 =
d
L∏

l=1

ĈL( �Gl )|vac〉, (13)
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FIG. 3. (a) A product of multiple Givens rotations D̂†
L that is

composed of Givens-rotation gates Û (L)
μ,ν in a binary-tree arrange-

ment on the quantum circuit. (b) Û (L)
μ,ν is decomposed using Pauli

rotation gates Rx , acting on qubit Lμ, and Rz, acting on qubit
L(μ − 1)+1, and Hadamard gates H and CNOT ladders B(L)

μν that
act on all 2L − 1 qubits in {L(μ − 1)+1, . . ., Lμ − 1} and {L(ν −
1)+1, . . ., Lν}, with B(L)

μν also acting on ν − μ additional qubits in

{Lμ, L(μ+1), L(μ + 2), . . ., L(ν − 1)}. θ and �G are scalar and vec-
tor parameters, respectively.

where G is an N
L × d

L orthonormal matrix and �Gl is a column
vector of G, which simplifies to

|�L(G)〉 �
∑

|B′|= d
L

det(GB′ )|B′
L〉 (14)

up to an unobserved global phase, where the sum is over
all combinations of the ordered set B′ containing d

L unique
integers between 1 and N

L , GB′ is a d
L × d

L matrix minor
of G whose rows are restricted to B′, B′

L = {L( j − 1) + 1,

L( j − 1) + 2, . . . , L j| j∈B′}, and |B′
L〉 denotes an N-mode

Fock state with occupied modes indexed by B′
L, as shown in

Appendix C.
The L-wise correlated Ansatz state |�L〉 in Eq. (14) is

similar to the Slater determinant |�1〉 from Eq. (7) with regard
to how the amplitudes are calculated but differs in the Fock
states that have nonzero amplitudes. In the Slater-determinant
case, all Fock states with particle number d will have nonzero
amplitudes, while in the L = 2 pairwise case, all Fock states
that have both particle number d and L = 2-tuple neighbor-
ing occupations and neighboring vacancies will have nonzero
amplitudes. For instance, in the case N = 4 and d = 2, Fock
states {|0011〉, |1100〉} will have nonzero amplitudes, and
{|0101〉, |0110〉, |1010〉, |1001〉} will have zero amplitudes.

For a given normalized column �Gl , we may define a
corresponding L-wise correlated Clifford loader ĈL( �Gl ) =
D̂†

L( �Gl ) p̂(L)
1 D̂L( �Gl ), where p̂(L)

1 = ⊗L
r=1 X̂r consists of L Pauli-

X gates that act on the first L qubits sandwiched by two
products of multiple Givens rotations, D̂L and D̂†

L. Each D̂L is
composed of Givens-rotation gates Û (L)

μν (θ ) = exp[θ p̂(L)
μ p̂(L)

ν ]
arranged in a binary-tree pattern similar to that shown in
Fig. 3(a). Since the Givens-rotation gate Û (L)

μν (θ ) is a Pauli-
string rotation gate, its gate decomposition [40] and the
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FIG. 4. Estimated two-qubit gate depth per occupied mode d to
prepare an N-mode Slater determinant |�1〉 and an L = 2 pairwise
correlated Ansatz state |�2〉 using Clifford loaders compared to ex-
isting d-independent linear-depth approaches.

corresponding rotation angle can be obtained in a fashion sim-
ilar to that in the Slater-determinant case, as shown Fig. 3(b).
We refer readers to Appendix D for the explicit form of the
Givens rotation in terms of Pauli operators.

IV. RESOURCE ANALYSIS

For simplicity, we treat all types of two-qubit gate
depths as equal and assume there is no circuit compila-
tion. We estimated that the overall two-qubit gate depth
required to prepare an L-wise correlated Ansatz state |�L〉 is
2d
L {�log2

2
N
L �+(1+2 log2 L)�log2

N
L �}≈O( d

L log2
2

N
L ), as shown

in Appendix E. This shows that our approach to prepare an
L-wise correlated Ansatz state |�L〉 is shallower than a Slater
determinant |�1〉 by at least a factor of L, ceteris paribus.

We plotted the estimated two-qubit gate depth per occupied
mode for Slater determinants |�1〉 and pairwise correlated
Ansatz states |�2〉 on a quantum computer, as shown in Fig. 4,
and compared the result to the previous linear-depth approach
of preparing d = 2, 16, and 128 occupied Slater determinants,
which has a d-independent two-qubit gate depth of about 2N
[13–15]. Indeed, the crossover point d≈ N

log2
2 N

shows that the
minimum number of qubits N required to achieve a shallower
circuit increases subexponentially with the number of occu-
pied modes d . However, we highlight that this crossover point
can be practically surpassed by near-term quantum devices
such as superconducting qubits [41] and trapped ions [42]
with fewer than 105 qubits for systems with 2 � d � 128 oc-
cupied fermionic modes, which is a sizable range that encom-
passes many systems of interest in quantum chemistry and
condensed-matter physics. In general, our approach is suitable
for problem classes that have a sufficiently slowly grow-
ing d � O( N

log2
2 N

). One such problem is the computation of
quantum observable quantities for fermionic systems for the
complete-basis-set limit, where d is preserved but said quanti-
ties are computed for increasing values of N and extrapolated
using various schemes to very large limits of N [43–45].

V. EXAMPLE: LINEAR HYDROGEN
MOLECULAR CHAINS

To validate our L = 2 pairwise correlated Ansatz state,
we numerically evaluated the fraction of the electronic
correlation energy Epair/Ecorr captured by the optimized
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FIG. 5. Numerically calculated fraction of the electronic corre-
lation energy ratio Epair/Ecorr captured by an optimized pairwise
correlated Ansatz state for hydrogen chains up to H6 at a fixed
interatomic distance of 1.4 bohrs for various basis-set mixtures up
to 20 qubits.

pairwise correlated Ansatz state |�2(G∗)〉 for three linear hy-
drogen molecular chains (H2, H4, and H6) with d = 2, 4, and
6 electrons at a fixed interatomic distance of 1.4 bohrs, where
the pairwise electronic correlation is likely to be significant.
Epair = EHF − 〈Ĥe〉 is the correlation energy beyond the mean-
field energy EHF of a molecule captured by |�2(G∗)〉, while
Ecorr = EHF − EFCI is the exact value of the correlation en-
ergy, where EFCI is known as the full-configuration-interaction
(FCI) energy. G∗ is an optimized parameter matrix, obtained
using a classical quasi-Newton Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm with Bound constraints
(L-BFGS-B) optimizer that minimizes the expectation of
the electronic Hamiltonian 〈Ĥe〉. We considered different
mixtures of atomic basis sets [24], slater-type orbital ap-
proximated by 3 Gaussian primitives (STO-3G), split-valence
(6-31G, 6-311G), correlation-consistent polarized valence
double zeta (cc-pVDZ), augmented correlation-consistent po-
larized valence double zeta (aug-cc-pVDZ) for each hydrogen
atom, resulting in system sizes ranging from 4 to 20 qubits.
Such mixing of basis sets for each atom is a common strategy
in computational quantum chemistry to reduce the resources
required to achieve a desired precision [46]. All calculations
were performed numerically using SCIPY [47], PYSCF [48],
and PENNYLANE [49]. Figure 5 shows that a large fraction of
the electronic correlation energy Epair/Ecorr is captured by the
optimized pairwise correlated Ansatz state |�2(G∗)〉.

VI. SUMMARY AND OUTLOOK

We proposed Givens-rotation-based Clifford loaders for
efficient preparation of d occupied Slater determinants |�1〉
of N modes using shallower O(d log2

2 N ) two-qubit gate-depth
quantum circuits. We also showed that by redefining new sets
of the anticommutation operators p̂μ for the Clifford loaders,
the same technique can be used to prepare L-wise correlated
Ansatz states |�L〉 to yield quantum circuits shallower than
those of Slater determinants by at least a factor of L. As
demonstrated in the application of L = 2 pairwise correlated
Ansatz states to hydrogen chains, L-wise correlated states
are potentially useful in fermionic systems with significant
L-wise fermionic correlation, even though they are not
expected to fully capture all the correlation energy. It will be
interesting to generalize the Clifford loaders to other types
of fermionic correlation while keeping the same shallow
gate-depth scaling intact.

To the best of our knowledge, our approach to fermionic
Ansatz state preparation offers a subexponential improvement
in gate depth over existing methods in the second quantization
with respect to system size N for fermionic problems where
the number of occupied modes is d � O( N

log2
2 N

). Nonetheless,
our results have established Clifford loaders via Givens ro-
tations as an efficient, yet practical and scalable, fermionic
Ansatz state-preparation technique, which will enable the
study of molecules and materials requiring larger basis-set
sizes on near-term quantum devices.
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APPENDIX A: PROOF OF EQUIVALENCE BETWEEN
TWO DEFINITIONS OF AN ARBITRARY SLATER

DETERMINANT

An arbitrary Slater determinant |�1(A)〉 with d occupied
and N − d unoccupied fermionic modes is defined as

|�1(A)〉 =
d∏

l=1

N∑
k=1

Alkâ†
k |vac〉, (A1)

where A is an N × d real matrix such that all the d columns
are orthogonal and normalized, |vac〉 is a vacuum state, and
â†

k is a creation operator acting on the kth mode. To begin, we
expand the product in Eq. (A1) and replace the index k in the
summation with indices k1, . . . , kd ,

|�1(A)〉 =
⎛
⎝ N∑

kd =1

Adkd â†
kd

⎞
⎠ · · ·

⎛
⎝ N∑

k1=1

A1k1 â†
k1

⎞
⎠|vac〉 (A2)

=
N∑

kd ,...,k1=1

Adkd · · · A1k1 â†
kd

· · · â†
k1
|vac〉. (A3)

We want to show that Eq. (A3) is equivalent to the alternate
definition of the Slater determinant,

|�1,alt(A)〉 =
d∏

l=1

N∑
k=1

Alk (â†
k + âk )|vac〉, (A4)

where we use an anticommuting operator â†
k+âk . Starting

from Eq. (A4), we expand the product and replace index k
in the summation with indices k1, . . . , kd ,

|�1,alt(A)〉 =
⎛
⎝ N∑

kd =1

Adkd

(
â†

kd
+ âkd

)⎞⎠

· · ·
⎛
⎝ N∑

k1=1

A1k1

(
â†

k1
+ âk1

)⎞⎠|vac〉. (A5)
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Here, we consider evaluating the product of the two rightmost
summation terms in Eq. (A5). We split the derivation into two
cases, d = 1 and d > 1. For d = 1, we note that â j |vac〉 = 0
for any mode j; thus, Eqs. (A3) and (A5) become trivially
equivalent. For d > 1 we have,

⎡
⎣ N∑

k2=1

A2k2 (â†
k2

+ âk2 )

⎤
⎦
⎡
⎣ N∑

k1=1

A1k1 (â†
k1

+ âk1 )

⎤
⎦

=
N∑

k2,k1=1

A2k2 A1k1 (â†
k2

+ âk2 )
(
â†

k1
+ âk1

)
(A6)

=
N∑

k2,k1=1

A2k2 A1k1

(
â†

k2
â†

k1
+ â†

k2
âk1 + âk2 â†

k1
+ âk2 âk1

)
.

(A7)

We then apply the fermionic commutation relation {âα, â†
β} =

δαβI to Eq. (A7) to get

N∑
k2,k1=1

A2k2 A1k1

(
â†

k2
â†

k1
+ δk2k1 I + âk2 âk1

)
, (A8)

and since the columns of A are orthogonal, the inner product
between any column i, j vanishes,

∑
k AikA jk = 0, and we

thus have
N∑

k2,k1=1

A2k2 A1k1

(
â†

k2
â†

k1
+ âk2 âk1

)
. (A9)

Substituting Eq. (A9) back into Eq. (A5) and using
â j |vac〉 = 0 for any mode j gives

|�1,alt(A)〉 =
⎛
⎝ N∑

kd =1

Adkd

(
â†

kd
+ âkd

)⎞⎠

. . .

⎛
⎝ N∑

k2,k1=1

A2k2 A1k1 â†
k2

â†
k1

⎞
⎠|vac〉. (A10)

Henceforth, we consider the even- and odd-d cases separately.
First, assuming d is even, we can reapply the result in Eq. (A9)
to the rest of the pairs of summation terms in Eq. (A10), which
yields

|�1,alt(A)〉 =
⎛
⎝ N∑

kd ,kd−1=1

Adkd Ad−1kd−1 â†
kd

â†
kd−1

⎞
⎠

· · ·
⎛
⎝ N∑

k2,k1=1

A2k1 A1k1 â†
k2

â†
k1

⎞
⎠|vac〉 (A11)

=
N∑

kd ,...,k1=1

Adkd · · · A1k1 â†
kd

· · · â†
k1
|vac〉. (A12)

Alternatively, if d is odd, we have

|�1,alt(A)〉 =
⎛
⎝ N∑

kd =1

Adkd

(
â†

kd
+ âkd

)⎞⎠ N∑
kd−1,...,k1=1

Ad−1kd−1 · · · A1k1 â†
kd−1

· · · â†
k1
|vac〉 (A13)

=
N∑

kd ,...,k1=1

Adkd · · · A1k1

(
â†

kd
â†

kd−1
· · · â†

k1
+ âkd â†

kd−1
· · · â†

k1

)|vac〉 (A14)

=
N∑

kd ,...,k1=1

Adkd · · · A1k1

(
â†

kd
â†

kd−1
· · · â†

k1
+

���������0
δkd kd−1 â†

kd−2
· · · â†

k1
− â†

kd−1
âkd â†

kd−2
· · · â†

k1

)
|vac〉 (A15)

=
N∑

kd ,...,k1=1

Adkd · · · A1k1

(
â†

kd
â†

kd−1
· · · â†

k1
−

�����������0
â†

kd−1
δkd kd−2 â†

kd−3
· · · â†

k1
+

����������0
â†

kd−1
â†

kd−2
âkd â†

kd−3
· · · â†

k1

)
|vac〉 (A16)

=
N∑

kd ,...,k1=1

Adkd · · · A1k1 â†
kd

· · · â†
k1
|vac〉, (A17)

where we have applied the fermionic commutation relation in Eq. (A14) and matrix orthogonality in Eqs. (A15) and (A16).
Hence, by combining the even Eq. (A12) and odd Eq. (A17) results, we have established the equivalence between the alternative
definition in Eq. (A4) and the original definition in Eq. (A1).

APPENDIX B: PROOF OF ANTICOMMUTATION RELATIONS

Here, we shall show that p̂k = â†
k + âk has the desired anticommutation relation { p̂i, p̂ j} = 2δi jI:

{ p̂i, p̂ j} = {â†
i + âi, â†

j + â j} (B1)

= (â†
i + âi )(â

†
j + â j ) + (â†

j + â j )(â
†
i + âi ) (B2)
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= �
��â†

i â†
j + âiâ

†
j + â†

i â j +��âiâ j +�
��â†

j â
†
i + â j â

†
i + â†

j âi +��â j âi (B3)

= âiâ
†
j + â†

i â j + â j â
†
i + â†

j âi (B4)

= 2δi j I (shown). (B5)

Next, we shall show that p̂(L)
μ =⊗μ−1

r=1 ẐrL
⊗μL

r′=L(μ−1)+1 X̂r′ , used to incorporate L-wise correlation into the Clifford loaders
via the Givens-rotation approach, has the desired anticommutation relation { p̂(L)

μ , p̂(L)
ν } = 2δμνI. We shall split the derivation into

two cases, μ = ν and μ < ν. Let us first consider μ = ν, where

2 p̂(L)
μ p̂(L)

μ = 2

⎛
⎝μ−1⊗

r=1

ẐrL

μL⊗
r′=L(μ−1)+1

X̂r′

⎞
⎠
⎛
⎝μ−1⊗

s=1

ẐsL

μL⊗
s′=L(μ−1)+1

X̂s′

⎞
⎠ (B6)

= 2I (shown). (B7)

Second, without loss of generality, let us consider μ < ν, and we note that X̂μẐμ = −iŶμ:

p̂(L)
μ p̂(L)

ν =
⎛
⎝μ−1⊗

r=1

ẐrL

μL⊗
r′=L(μ−1)+1

X̂r′

⎞
⎠
⎛
⎝ ν−1⊗

s=1

ẐsL

νL⊗
s′=L(ν−1)+1

X̂s′

⎞
⎠ (B8)

= −i

⎡
⎣ μL−1⊗

r=(μ−1)L+1

X̂rŶμL

ν−1⊗
r′=μ+1

Ẑr′L

νL⊗
r′′=(ν−1)L+1

X̂r′′

⎤
⎦ (B9)

Therefore, by noting ẐμX̂μ = iŶμ we then have{
p̂(L)

μ , p̂(L)
ν

} = p̂(L)
μ p̂(L)

ν + p̂(L)
ν p̂(L)

μ (B10)

= −i

⎡
⎣ μL−1⊗

r=(μ−1)L+1

X̂rŶμL

ν−1⊗
r′=μ+1

Ẑr′L

νL⊗
r′′=(ν−1)L+1

X̂r′′

⎤
⎦

+ i

⎡
⎣ μL−1⊗

s=(μ−1)L+1

X̂sŶμL

ν−1⊗
s′=μ+1

Ẑs′L

νL⊗
s′′=(ν−1)L+1

X̂s′′

⎤
⎦ (B11)

= 0 (shown). (B12)

APPENDIX C: EVALUATION OF THE SLATER
DETERMINANT AND L-WISE CORRELATED ANSATZ

USING CLIFFORD LOADERS

In the main text, we proposed to construct Clifford loaders
Ĉ using Givens rotation to prepare the Slater determinant
|�1(A)〉 as follows:

|�1(A)〉 =
d∏

l=1

Ĉ( �Al )|vac〉. (C1)

We want to show that Eq. (C1) can be mathematically eval-
uated using geometric algebra, also known as real Clifford
algebra. We define a Clifford loader Ĉ(�x) for a given normal-
ized size-N vector �x as a linear combination of anticommuting
operators p̂r as follows:

Ĉ(�x) =
N∑

μ=1

xμ p̂μ. (C2)

A geometric product of two Clifford loaders Ĉ(�x)Ĉ(�y) for
any two normalized size-N vectors �x and �y is defined as

Ĉ(�x)Ĉ(�y) = Ĉ(�x) · Ĉ(�y) + Ĉ(�x) ∧ Ĉ(�y), (C3)

where · and ∧ refer to the standard inner dot and exterior
wedge products, respectively. Substituting the definition in
Eq. (C2) into Eq. (C3), we have

Ĉ(�x)Ĉ(�y) =
N∑

r=1

xryr ( p̂r · p̂r ) +
N∑

μ,ν=1

xμyν ( p̂μ ∧ p̂ν ). (C4)

In this work, we shall consider only orthogonal and nor-
malized size-N vectors �Al for l = 1, 2, . . . , d , such that the
inner product of any two vectors is zero. As a result, the geo-
metric product of two Clifford loaders is simply equivalent to
its exterior product as the first term of Eq. (C4) vanishes under
orthogonality. Thus, products of multiple Clifford loaders can
be easily written as exterior products of multiple anticommut-
ing operators,

d∏
l=1

Ĉ( �Al ) =
N∑

μ,ν,...,r=1

Aμ1Aν2 · · · Ard ( p̂μ ∧ p̂ν ∧ · · · ∧ p̂r )︸ ︷︷ ︸
d operators

.

(C5)
We note the following identities of the exterior product:

p̂μ ∧ p̂μ = 0 (C6)
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and

p̂σ1 ∧ p̂σ2 ∧ · · · ∧ p̂σd = sgn(σ ) p̂B1 ∧ p̂B2 ∧ · · · ∧ p̂Bd , (C7)

where we let σ be a permutation of {B1, B2, . . . , Bd} for any
ordered set B containing d unique integers between 1 and N
and Bμ and σμ refer to the μth integers of B and σ , respec-
tively. Using identities (C6) and (C7), the sum in Eq. (C5)
reduces to

d∏
l=1

Ĉ( �Al ) =
∑
|B|=d

∑
σ∈B

sgn(σ )Aσ11Aσ22 · · · Aσd d

× ( p̂B1 ∧ p̂B2 ∧ · · · ∧ p̂Bd ), (C8)

where the outer sum is over all possible combinations of the
ordered set B containing d unique integers between 1 and N
and the inner sum is over all possible integer permutations σ

of each B. Using the Leibniz-determinant formula for matrix
minors

det(AB) =
∑
σ∈B

sgn(σ )Aσ11Aσ22 · · · Aσd d , (C9)

where AB is a d × d matrix minor of A whose rows are
restricted to B, we have

d∏
l=1

Ĉ( �Al ) =
∑
|B|=d

det(AB) p̂B1 ∧ p̂B2 ∧ · · · ∧ p̂Bd . (C10)

Hence, by letting the anticommuting operator be

p̂μ = â†
μ + âμ (C11)

and applying the product of d Clifford loaders (C10) to a
vacuum state |vac〉, we obtain the alternative expression of the
Slater determinant,

d∏
l=1

Ĉ( �Al )|vac〉 =
∑
|B|=d

det(AB)|B〉, (C12)

where |B〉 denotes a Fock state whose occupied modes are
indexed by B.

Next, we consider extending the application of Clifford
loaders to prepare L-wise correlated Ansatz states, where
L = 1 reduces to the Slater-determinant case. The idea is
to use a new set of anticommuting operators p̂(L)

μ that con-
tains non-particle-preserving multibody Fock operators for
the Clifford loaders in Eq. (C2). In the main text, under the
Jordan-Wigner mapping, we modify the anticommuting oper-
ator p̂μ = ⊗μ−1

r=1 Ẑr X̂μ in Eq. (C11) used to prepare the Slater
determinant above to

p̂(L)
μ =

μ−1⊗
r=1

ẐrL

μL⊗
r′=L(μ−1)+1

X̂r′ (C13)

to apply L-wise correlation. This modified operator p̂(L)
μ has

L Pauli-X terms and μ Pauli-Z terms with modulo L indexes
such that { p̂(L)

μ , p̂(L)
ν } = 2δμνI. For example, the L = 2 pair-

wise correlated anticommuting operators are given as p̂(2)
μ =

Ẑ2Ẑ4Ẑ6 · · · Ẑ2μ−2X̂2μ−1X̂2μ. In terms of Fermionic creation
and annihilation operators, Eq. (C13) maps back to

p̂(L)
μ =

⎧⎪⎨
⎪⎩
⊗μ−1

r=1 (I − 2â†
rLârL )

⊗μL
r′=L(μ−1)+1[â†

r′ + (−1)r′
âr′ ] if L is even,

−⊗L(μ−1)−1
r=1/∈LZ (I − 2â†

r âr )
⊗μL

r′=L(μ−1)+1[â†
r′ + (−1)r′−L(μ−1)−1âr′ ] if L is odd,

(C14)

where the r index in the odd-L case increments with size 1
from 1 to L(μ − 1) − 1 but skips every index that is a multiple
of L. Here, we note that in Eq. (C14), all fermionic terms in
normal ordered form that contain any annihilation operators
will vanish when acted upon by a vacuum state and fermionic
terms that contain only creation operators will survive. Thus,
by substituting Eq. (C14) into the product of d

L Clifford load-
ers in Eq. (C10) and applying it to a vacuum state |vac〉, we
obtain an expression of the L-wise correlated Ansatz state up
to an unobservable global phase,

d
L∏

l=1

ĈL( �Gl )|vac〉 �
∑

|B′ |= d
L

det(GB′ )|B′
L〉, (C15)

where the sum is over all possible combinations of ordered
set B′ containing d

L unique integers between 1 and N
L , GB′ is

a d
L × d

L matrix minor of G whose rows are restricted to B′,
B′

L = {L( j − 1) + 1, L( j − 1) + 2, . . . , L j| j ∈ B′}, and |B′
L〉

denotes an N-mode Fock basis whose occupied modes are
indexed by B′

L.

APPENDIX D: GIVENS-ROTATION GATE AND ITS
DECOMPOSITION FOR THE L-WISE CORRELATED

ANSATZ STATE

The Givens-rotation gate is defined in the main text as

Û (L)
μν (θ ) = exp

[
θ p̂(L)

μ p̂(L)
ν

]
, (D1)

where, with the use of anticommuting operators in Eq. (C13),
it becomes

Û (L)
μν (θ ) = exp

⎡
⎣−iθ

μL−1⊗
r=L(μ−1)+1

X̂rŶμL

νL⊗
r′=L(ν−1)+1

X̂r′

ν−1⊗
r′′=μ+1

Ẑr′′L

⎤
⎦.

(D2)

For example, an L = 2 pairwise Givens rotation would be

Û (2)
μν (θ ) = exp[−iθ X̂2μ−1Ŷ2μX̂2ν−1X̂2ν Ẑ2(μ+1)

× Ẑ2(μ+2) · · · Ẑ2(ν−1)], (D3)

which can easily be decomposed, as shown in Fig. 6, us-
ing gate-decomposition techniques from [40]. Therefore, the
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=

/2
/2

FIG. 6. The pairwise Givens-rotation gate Û (2)
μ,ν is decomposed

using Pauli-rotation gates Rx , which acts on qubit 2μ that correspond
to Ŷ2μ, and Rz, which acts on qubit 2μ − 1, and Hadamard gates H
and CNOT ladders B(L)

μν that act on all three qubits in {2μ − 1, 2ν −
1, 2ν} that correspond to X̂2μ−1X̂2ν−1X̂2ν , with B(L)

μν also acting on ν −
μ additional qubits in {2μ, 2(μ+1), 2(μ + 2), . . ., 2(ν − 1)}. θ is a
scalar parameter.

Givens-rotation gate Û (L)
μν (θ ) used in this work is simply a

Pauli-string-rotation gate whose gate decomposition is a gen-
eralization of Fig. 6, as shown in Fig. 3(b) of the main text.

APPENDIX E: DERIVATION OF THE TWO-QUBIT
GATE-DEPTH SCALING OF THE L-WISE CORRELATED

QUANTUM CIRCUIT ANSATZ

To prepare the L-wise correlated Ansatz state |�L〉 on a
quantum computer under Jordan-Wigner mapping, we apply
d
L Clifford loaders ĈL to an all-zero qubit state. Each Clifford
loader Ĉ has two products of multiple Givens rotations, DL

and D†
L. Each DL has �log2

N
L � Givens-rotation gate depth.

Each Givens-rotation gate U (L)
μν contains two CNOT ladders

B(L)
μν that act on all 2L + ν − μ − 1 qubits in {L(μ − 1) +

1, . . . , Lμ}, {L(μ + 1), L(μ + 2), . . . , L(ν − 1)}, and {L(ν −
1) + 1, . . . , Lν}. We employ the logarithmic-depth CNOT lad-
ders shown in Fig. 2 in the main text; thus, each CNOT ladder
B(L)

μν has a two-qubit gate depth of �log2(2L + ν − μ − 1)� ≈
O(log2 N ). Focusing on all Givens rotations U (L)

1,2s that act
on the first qubit in every sublayer s∈{1, 2, . . ., �log2

N
L �}, as

shown in Fig. 3(a) in the main text, the overall two-qubit gate
depth of the quantum circuit required to prepare the L-wise
correlated Ansatz state |�L〉 is estimated to be

2d

L

�log2
N
L �∑

s=1

2�log2(2L + 2s − 1 − 1)�

� 4d

L

�log2
N
L �∑

s=1

log2(2s+log2(L) ) (E1)

= 4d

L

�log2
N
L �∑

s=1

[s + log2(L)] (E2)

= 2d

L

(⌈
log2

2
N

L

⌉
+ (1 + 2 log2 L)

⌈
log2

N

L

⌉)
. (E3)
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