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Trace distance between fermionic Gaussian states from a truncation method
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In this paper we propose a truncation method for determining the trace distance between two Gaussian states in
fermionic systems. For two fermionic Gaussian states, characterized by their correlation matrices, we consider
the von Neumann entropies and dissimilarities between their correlation matrices and truncate the correlation
matrices to facilitate trace distance calculations. Our method exhibits notable efficacy in two distinct scenarios.
In the first scenario, the states have small von Neumann entropies, indicating finite or logarithmic-law entropy,
while their correlation matrices display near-commuting behavior, characterized by a finite or gradual nonlinear
increase in the trace norm of the correlation matrix commutator relative to the system size. The second scenario
encompasses situations where the two states are nearly orthogonal, with a maximal canonical value difference
approaching 2. To evaluate the performance of our method, we apply it to various compelling examples.
Notably, we successfully compute the subsystem trace distances between low-lying eigenstates of Ising and
XX spin chains, even for significantly large subsystem sizes. This is in stark contrast to existing literature, where
subsystem trace distances are limited to subsystems of approximately ten sites. With our truncation method, we
extend the analysis to subsystems comprising several hundred sites, thus expanding the scope of research in this
field.
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I. INTRODUCTION

Quantitative differentiation of quantum states is essential
in quantum information theory [1,2] and also plays important
roles in quantum many-body systems, quantum field theories,
and gravity [3–34]. Various quantities, such as relative en-
tropy, Schatten distances, trace distance, and fidelity, can be
employed for this purpose; in this study, our focus is specif-
ically on the trace distance. The trace distance, denoted by
D(ρ, σ ), quantifies the distinguishability between two density
matrices ρ and σ and is defined as half of the trace norm of
their difference [1,2], i.e.,

D(ρ, σ ) = 1
2 tr|ρ − σ |. (1)

In the context of extended quantum systems, the trace dis-
tance offers distinct advantages compared to other measures
of distinguishability. Not only is it a well-defined math-
ematical distance, but in the scaling limit it can discern
states that remain indistinguishable using other measures [24].
Furthermore, the trace distance D, defined as D = D(ρ, σ )
between two states ρ and σ , serves as an upper bound for
the difference between their von Neumann entropies S(ρ) =
−tr(ρ log2 ρ) and S(σ ) = −tr(σ log2 σ ), as established by the
Fannes-Audenaert inequality [35,36]

|S(ρ) − S(σ )| �D log2(d − 1) − D log2 D

− (1 − D) log2(1 − D), (2)
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where d represents the dimension of the Hilbert space. By
employing a specific case of Hölder’s inequality, the trace
distance also provides an upper bound on the difference in
expectation values of an operator

|tr[(ρ − σ )O]| � 2smax(O)D(ρ, σ ), (3)

where smax denotes the maximal singular value of the operator
O. This property of the trace distance proves highly valuable
for defining the eigenstate thermalization hypothesis (ETH),
initially proposed in terms of local operator expectation values
[37–39] and subsequently generalized to the subsystem ETH
in relation to the subsystem trace distance [10,13]. Moreover,
the average subsystem trace distance of neighboring states in
the spectrum can also be utilized as a novel signature to differ-
entiate between chaotic and integrable many-body quantum
systems [40]. However, calculating the trace distance for large
systems poses a notorious challenge due to the exponential
growth of the Hilbert space dimension with the number of
qubits.

In this study we also examine the fidelity, denoted by
F (ρ, σ ), which serves as a benchmark for comparison with
the trace distance. The fidelity provides both an upper and a
lower bound for the trace distance [1,2], given by

1 − F (ρ, σ ) � D(ρ, σ ) �
√

1 − F (ρ, σ )2. (4)

For fermionic Gaussian states ρ�1 and ρ�2 , determined by their
respective correlation matrices �1 and �2, the exact fidelity
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can be calculated as [41]

F (ρ�1 , ρ�2 )

=
(

det
1 − �1

2

)1/4(
det

1 − �2

2

)1/4

×

⎡
⎢⎣det

⎛
⎜⎝1 +

√√√√√1 + �1

1 − �1

1 + �2

1 − �2

√
1 + �1

1 − �1

⎞
⎟⎠
⎤
⎥⎦

1/2

. (5)

It is important to note that a fermionic Gaussian state ρ and
its corresponding correlation matrix � are related as described
in Eq. (16). For recent advancements in calculating the trace
distance and fidelity using variational techniques and quantum
computers, refer to [42–47].

In scenarios where the dimension of the Hilbert space is ex-
cessively large, exact evaluation of the trace distance becomes
impractical, despite the fact that the dominant contributions
to the trace distance often arise from a significantly smaller
subspace within the Hilbert space. This serves as motiva-
tion for our development of a truncation method designed
to calculate the trace distance between two Gaussian states
in fermionic systems. While straightforward for two pure
states, the task becomes nontrivial when dealing with two
mixed states, which can manifest as either density matrices
of the entire system or reduced density matrices (RDMs)
of a subsystem. An ideal situation for the effectiveness
of the truncation method can be characterized as follows.
Consider two states represented by density matrices expres-
sed as

ρ1 = ρ̃ ⊗ ρ̃1, ρ2 = ρ̃ ⊗ ρ̃2, (6)

where the dimension of ρ̃ is significantly larger than that of ρ̃1

and ρ̃2. In this ideal scenario, the specific form of ρ̃ does not
impact the trace distance calculation, leading to a simplified
expression

D(ρ1, ρ2) = D(ρ̃1, ρ̃2). (7)

For more general cases involving two distinct states ρ1 and ρ2,
the objective of the truncation method is to identify ρ̃1 and ρ̃2

with significantly smaller dimensions compared to ρ1 and ρ2,
enabling an approximation

D(ρ1, ρ2) ≈ D(ρ̃1, ρ̃2). (8)

A fermionic Gaussian state can be uniquely determined by
the two-point correlation functions of the Majorana modes in
the system or subsystem, which can be organized to construct
a purely imaginary antisymmetric correlation matrix [48,49].
By employing an orthogonal transformation, the correlation
matrix can be brought into canonical form. The canonical
values of the matrix govern the von Neumann entropy of the
state, while the corresponding canonical vectors determine
the effective modes. To truncate the Hilbert space dimension,
we employ different strategies to select a limited number of
effective modes. The first strategy, which we call the maxi-
mal entropy strategy, involves choosing the effective modes
with the smallest canonical values for the two relevant states.

These modes make the largest contributions to the sum of the
von Neumann entropies. In the second strategy, we compute
the canonical values and canonical vectors of the difference
between the two correlation matrices and select the effec-
tive modes with the largest canonical values. These chosen
modes contribute the most to the differences in the two-point
correlation functions of the two states, leading us to name
this method the maximal difference strategy. Additionally, we
adopt a mixed strategy that combines elements of both the
maximal entropy strategy and the maximal difference strat-
egy. In this approach, some modes are chosen according to
one strategy while the remaining modes are selected using
the other strategy. We refer to this combined method as the
mixed strategy. It is worth noting that the mixed strategy of
the truncation method consistently provides the most accurate
estimation of the trace distance due to the contractive nature
of the trace distance under a partial trace.

The truncation method demonstrates its effectiveness in
two intriguing scenarios. The first scenario encompasses the
cases where the states have a low von Neumann entropy,
indicating either finite or logarithmic-law entropy, and their
correlation matrices exhibit near-commuting behavior, which
is characterized by a finite or slow nonlinear increase of the
trace norm of the correlation matrix commutator with respect
to the system size. The second scenario includes the situations
where the states are nearly orthogonal, with a correlation
matrix difference featuring a maximal canonical value ap-
proaching 2. We validate the efficacy of the truncation method
through multiple examples, including the calculation of eigen-
state RDMs in Ising chains, XX chains, and ground-state
RDMs in Ising chains with different transverse fields. Notably,
we apply the method to compute subsystem trace distances
between low-lying eigenstates in critical Ising and XX spin
chains, with significantly larger subsystem sizes than those
considered in previous works [21,23,34]. The previous studies
only obtained trace distances for relatively small subsystem
sizes, with a maximum size of 7 in [21,23] and 12 in [34]. In
contrast, this paper presents results with a maximal subsystem
size of 359, surpassing the limitations of previous studies and
enabling trace distance calculations for much larger subsys-
tem sizes.

The paper is structured as follows. Section II presents a
detailed explanation of the truncated canonicalized correlation
matrix method for fermionic Gaussian states. The conditions
under which the truncation method is effective are discussed
in Sec. III. Examples of its application to eigenstate RDMs
in the Ising chain and ground-state RDMs in Ising chains
with different transverse fields are examined in Secs. IV and
V, respectively. The truncation method is further validated
through examples of low-lying eigenstate RDMs in the critical
Ising chain (Sec. VI) and half-filled XX chain (Sec. VII).
A summary and discussion are provided in Sec. VIII. Addi-
tionally, Appendix A presents a simple example illustrating
the impossibility of a finite truncation method for the trace
distance between two orthogonal Gaussian states in the
scaling limit. Appendix B introduces the truncated diagonal-
ized correlation matrix method, a specialized version of the
truncation method, applicable to Gaussian states in the free-
fermion theory where the number of excited Dirac modes is
conserved.
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II. TRUNCATED CANONICALIZED CORRELATION
MATRIX METHOD

In this section we begin by providing a brief overview of
the canonicalized correlation matrix method presented in [34],
which is an exact approach requiring the explicit construction
of density matrices. However, its efficiency is limited to cases
involving very small system sizes. To address this limitation,
we introduce the truncated canonicalized correlation matrix
method, which allows for proper truncation under specific
conditions. By constructing effective density matrices within
a significantly smaller subspace of the full Hilbert space, we
can approximate the trace distance for cases involving much
larger system sizes.

A. Canonicalized correlation matrix method

We consider a system consisting of � spinless fermions,
denoted by a j and a†

j with j = 1, 2, . . . , �. This system can
represent either the entire system or a subsystem. To facilitate
our analysis, we introduce the Majorana modes defined as

d2 j−1 = a j + a†
j , d2 j = i(a j − a†

j ), j = 1, 2, . . . , �.

(9)

These Majorana modes satisfy the anticommutation relations

{dm1 , dm2} = 2δm1m2 , μ1, m2 = 1, 2, . . . , 2�. (10)

The system is described by a general Gaussian state with a
density matrix ρ. This state is characterized by a two-point
correlation function matrix � with elements given by

�m1m2 = 〈dm1 dm2〉ρ − δm1m2 , m1, m2 = 1, 2, . . . , 2�.

(11)

All other correlation functions in the Gaussian state can be de-
rived from the correlation matrix � using Wick contractions.

The correlation matrix � possesses the properties of being
purely imaginary and antisymmetric, and it can be converted
to the canonical form using the approach described in [50,51].
In this paper we adopt the procedure outlined in [51]. Specifi-
cally, we have the equations

�u j = −iγ jv j, �v j = iγ ju j, j = 1, 2, . . . , �, (12)

where γ j represents real numbers within the range [0,1] and
u j and v j are real 2�-component vectors. Each index j =
1, 2, . . . , � corresponds to a canonical value of �, and the
associated vectors uj and v j are referred to as the canonical
vectors. It is important to note that a 2� × 2� correlation
matrix has � canonical values and 2� canonical vectors. The
canonical vectors satisfy orthonormality conditions given by

uT
j1 u j2 = vT

j1v j2 = δ j1 j2 , uT
j1v j2 = 0, j1, j2 = 1, 2, . . . , �.

(13)

To transform � into the canonical form, we define the 2� × 2�

orthogonal matrix as

Q = (u1, v1, u2, v2, . . . , u�, v�), (14)

where each vector is represented as a column vector. The
matrix Q facilitates the transformation of � according to the

equation

QT �Q =
�⊕

j=1

(
0 iγ j

−iγ j 0

)
. (15)

The density matrix of the Gaussian state can be expressed
in terms of the modular Hamiltonian as [52–54]

ρ =
√

det
1 − �

2
exp

⎛
⎝−1

2

2�∑
m1,m2=1

Wm1m2 dm1 dm2

⎞
⎠, (16)

where the matrix W is defined as

W = arctanh �. (17)

Similar to �, the matrix W is also purely imaginary and
antisymmetric and can be transformed as

QT W Q =
�⊕

j=1

(
0 iδ j

−iδ j 0

)
,

δ j = arctanh γ j, j = 1, 2, . . . , �. (18)

We introduce the effective Majorana modes d̃m1 , defined as

d̃m1 ≡
2�∑

m2=1

Qm2m1 dm2 , μ1 = 1, 2, . . . , 2�, (19)

which also satisfy the anticommutation relations

{d̃m1 , d̃m2} = 2δm1m2 , μ1, m2 = 1, 2, . . . , 2�. (20)

The 2� effective Majorana modes d̃m with m = 1, 2, . . . , 2�

can be organized into � pairs {d̃2 j−1, d̃2 j} with j = 1, 2, . . . , �.
In the Gaussian state ρ characterized by the correlation matrix
�, each pair of effective Majorana modes {d̃2 j−1, d̃2 j} with
j = 1, 2, . . . , � decouple from the other effective Majorana
modes.

The density matrix can be expressed as

ρ =
(

�∏
j=1

√
(1 + γ j )(1 − γ j )

2

)
exp

(
−i

�∑
j=1

δ j d̃2 j−1d̃2 j

)

=
�∏

j=1

1 − iγ j d̃2 j−1d̃2 j

2
. (21)

To verify the properties of the density matrix, we check that
trρ = 1 and tr(ρd̃2 j−1d̃2 j ) = iγ j for j = 1, 2, . . . , �. To cal-
culate the trace distance between two Gaussian states, we use
their explicit density matrices. To calculate the fidelity, we can
utilize the formula

√
ρ =

�∏
j=1

{[(√1 + γ j +√
1 − γ j )

− i(
√

1 + γ j −√
1 − γ j )d̃2 j−1d̃2 j]/2

√
2}, (22)

which is derived by considering

√
ρ =

�∏
j=1

(α̃ j + β̃ j d̃2 j−1 + γ̃ j d̃2 j + δ̃ j d̃2 j−1d̃2 j ) (23)
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and determining the constants α̃ j , β̃ j , γ̃ j , and δ̃ j by comparing√
ρ

2 with ρ in (21).

B. Truncated canonicalized correlation matrix method

To calculate the approximate trace distance and fidelity, we
employ three strategies for implementing the truncated canon-
icalized correlation matrix method. The approach involves
dimension truncation of the Hilbert space to a subspace that
is spanned by a properly selected, limited number of effective
Majorana modes.

1. Maximal entropy strategy

Using a similarity transformation, we can change the cor-
responding density matrix ρ into a specific form for the
correlation matrix � [as given by Eq. (15)]. This transforma-
tion is described in Refs. [48,49] and yields

ρ ∼=
�⊗

j=1

(
1−γ j

2
1+γ j

2

)
. (24)

The von Neumann entropy of ρ is simply the sum of the
Shannon entropies of each effective probability distribution
{ 1−γ j

2 ,
1+γ j

2 } with j = 1, 2, . . . , �,

S(ρ) =
�∑

j=1

(
−1− γ j

2
log2

1− γ j

2
− 1+ γ j

2
log2

1+ γ j

2

)
.

(25)

For low-rank states ρ, the entropy S(ρ) is not large, al-
lowing us to truncate the effective probability distribution
{ 1−γ j

2 ,
1+γ j

2 } with j = 1, 2, . . . , � to include only a few values
with the smallest γ j . Applying the same idea to two Gaussian
states ρ1 and ρ2, we truncate the density matrices and calculate
their trace distance. It is important to note that for high-rank
states ρ, where the entropy S(ρ) is large, imposing trunca-
tion is generally inefficient and the maximal entropy strategy
introduced in this section is expected to fail. The flowchart
in Fig. 1 illustrates the evaluation of the trace distance using
the maximal entropy strategy of the truncated canonicalized
correlation matrix method.

We consider two general Gaussian states ρ1 and ρ2 with
correlation matrices �1 and �2. The canonical values and
vectors (γ j, u j, v j ) with j = 1, 2, . . . , � correspond to the
matrix �1, while the canonical values and vectors (γ j, u j, v j )
with j = � + 1, � + 2, . . . , 2� correspond to the matrix �2.
To choose 2t effective Majorana modes whose corresponding
canonical values contribute the most to the entropy sum of the
two states, given by

S(ρ1) + S(ρ2) =
2�∑
j=1

(
− 1 − γ j

2
log2

1 − γ j

2

− 1 + γ j

2
log2

1 + γ j

2

)
, (26)

we sort the 2� sets of canonical values and vectors (γ j, u j, v j )
with j = 1, 2, . . . , 2� in ascending order based on the values
of γ j ∈ [0, 1]. Then we select the first 2t canonical vectors

FIG. 1. Flowchart illustrating the evaluation of the trace distance
using the maximal entropy strategy within the truncated canonical-
ized correlation matrix method.

(u j, v j ) corresponding to the first t canonical values γ j and
denote these selected vectors by wi, where i = 1, 2, . . . , 2t .

The 2t real vectors wi with i = 1, 2, . . . , 2t are not gener-
ally orthogonal and may not be independent. To orthogonalize
and normalize, i.e., orthonormalize, these vectors, we diag-
onalize the 2t × 2t matrix V , whose entries are given by
Vi1i2 = wT

i1 wi2 for i1, i2 = 1, 2, . . . , 2t . If the 2t vectors wi are
not independent, the 2t × 2t matrix V will have eigenvalues
close to zero. It is important to consider numerical errors that
can lead to very small eigenvalues. We sort the eigenvalues
and orthonormal eigenvectors (αi, ai ) with i = 1, 2, . . . , 2t of
V based on the values of αi in descending order, discarding
those smaller than a certain cutoff (e.g., 10−9). In cases where
the number of remaining vectors is odd, we add an extra vec-
tor with the largest eigenvalue smaller than the cutoff. After
discarding, we obtain 2�̃ sets of eigenvalues and eigenvectors
(αi, ai ) with i = 1, 2, . . . , 2�̃, from which we define the 2�-
component orthonormal vectors as

w̃i ≡ 1√
αi

2t∑
i′=1

[ai]i′wi′ , i = 1, 2, . . . , 2�̃. (27)

It can be easily verified that the orthonormality condition
w̃T

i1 w̃i2 = δi1i2 holds for i1, i2 = 1, 2, . . . , 2�̃. We then de-
fine the 2� × 2�̃ matrix Q̃ = (w̃1, w̃2, . . . , w̃2�̃) and the 2�̃ ×
2�̃ truncated correlation matrices �̃1 = Q̃T �1Q̃ and �̃2 =
Q̃T �2Q̃.

Using the truncated correlation matrices �̃1 and �̃2, we
construct the 2�̃ × 2�̃ truncated density matrices ρ̃1 and ρ̃2

using the canonicalized correlation matrix method explained
in the preceding section. Subsequently, we calculate the
approximate trace distance and fidelity as

D̃t,0(ρ1, ρ2) ≡ D(ρ̃1, ρ̃2), (28)

F̃t,0(ρ1, ρ2) ≡ F (ρ̃1, ρ̃2). (29)
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FIG. 2. Flowchart depicting the calculation of the trace distance
using the maximal difference strategy within the truncated canoni-
calized correlation matrix method.

To facilitate later discussion, we introduced the subscript t, 0
in these equations for convenience.

2. Maximal difference strategy

The entries of the correlation matrix difference between
two states are simply the differences of their two-point func-
tions. To truncate the Hilbert space, we can select the effective
Majorana modes that maximize the differences in two-point
functions among them. Both the differences in two-point func-
tions and the trace distance provide measures of the difference
between the two states. In certain cases, we expect that the
modes with the maximum differences in two-point functions
contribute the most to the trace distance. In this section we
introduce the maximal difference strategy for the truncation
method based on the canonicalization of the correlation matrix
difference. The flowchart in Fig. 2 illustrates the calculation of
the trace distance using the maximal difference strategy within
the truncated canonicalized correlation matrix method.

For two fermionic Gaussian states, denoted by ρ1 and ρ2,
we canonicalize the correlation matrix difference �1 − �2 and
sort the canonical values and canonical vectors (γ j, u j, v j )
with j = 1, 2, . . . , � in descending order based on the canon-
ical values. We rename the 2t canonical vectors (uj, v j ) with
j = 1, 2, . . . , t corresponding to the first t canonical values
γ j as wi with i = 1, 2, . . . , 2t . It is important to note that for
each canonical value there are two corresponding canonical
vectors. These 2t vectors wi with i = 1, 2, . . . , 2t are already
orthonormal. We construct the 2� × 2t matrix

Q̃ = (w1,w2, . . . ,w2t ) (30)

and obtain the 2t × 2t truncated correlation matrices

�̃1 = Q̃T �1Q̃, �̃2 = Q̃T �2Q̃. (31)

Using the canonicalized correlation matrix method, we con-
struct the 2t × 2t truncated density matrices ρ̃1 and ρ̃2 from
the 2t × 2t truncated correlation matrices �̃1 and �̃2. Finally,

FIG. 3. Flowchart illustrating the calculation of the trace distance
using the mixed strategy within the truncated canonicalized correla-
tion matrix method.

we calculate the approximate trace distance and fidelity using
the truncated density matrices as

D̃0,t (ρ1, ρ2) = D(ρ̃1, ρ̃2), (32)

F̃0,t (ρ1, ρ2) = F (ρ̃1, ρ̃2). (33)

The subscript 0, t is used for convenience in later discussion.

3. Mixed strategy

Given two fermionic Gaussian states, it is not guaranteed
that either the maximal entropy strategy or the maximal dif-
ference strategy will work in all cases. The essence of the
truncation method lies in selecting effective Majorana modes
to truncate the Hilbert space. In this section we introduce a
mixed strategy for the truncation method, where some ef-
fective Majorana modes are chosen based on the maximal
entropy strategy and others are chosen based on the maximal
difference strategy. The flowchart illustrating this mixed strat-
egy is shown in Fig. 3.

As before, we consider two fermionic Gaussian states,
denoted by ρ1 and ρ2, with correlation matrices �1 and �2.
For a fixed truncation number t , we split it into t = t1 + t2.
First, we obtain 2t1 vectors wi with i = 1, 2, . . . , 2t1 using
the maximal entropy strategy. Next we obtain 2t2 vectors wi

with i = 2t1 + 1, 2t1 + 2, . . . , 2t using the maximal differ-
ence strategy. Similar to the maximal entropy strategy, the 2t
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vectors wi with i = 1, 2, . . . , 2t are generally not orthogonal
and may not be independent. The procedure for orthonormal-
izing these 2t vectors wi with i = 1, 2, . . . , 2t is the same as
that in the maximal entropy strategy and we will not repeat
the details here. In the end, we obtain the 2�-component
orthonormal vectors w̃i with i = 1, 2, . . . , 2�̃, where �̃ � t .

Then we define the 2� × 2�̃ matrix

Q̃ = (w̃1, w̃2, . . . , w̃2�̃) (34)

and the truncated correlation matrices of size 2�̃ × 2�̃ as

�̃1 = Q̃T �1Q̃, �̃2 = Q̃T �2Q̃. (35)

Using the canonicalized correlation matrix method, we con-
struct the 2�̃ × 2�̃ truncated density matrices ρ̃1 and ρ̃2 from
the 2�̃ × 2�̃ truncated correlation matrices �̃1 and �̃2. Finally,
we calculate the approximate trace distance and fidelity using
the truncated density matrices as

D̃t1,t2 (ρ1, ρ2) = D(ρ̃1, ρ̃2), (36)

F̃t1,t2 (ρ1, ρ2) = F (ρ̃1, ρ̃2). (37)

When t2 = 0, the mixed strategy reduces to the maximal en-
tropy strategy, and when t1 = 0, it reduces to the maximal
difference strategy.

For a fixed t , there are t + 1 different ways to split it,
resulting in t + 1 approximate values of the trace distance and
fidelity. Since the trace distance is contractive under a partial
trace and the fidelity is expansive under a partial trace, the
exact trace distance of the two states is always greater than
or equal to the approximate trace distance obtained from the
truncation method and the exact fidelity is always less than or
equal to the approximate fidelity obtained from the truncation
method. For fixed t < �, we can obtain the best estimation
of the trace distance and fidelity using the mixed truncation
strategy as

D̃t (ρ1, ρ2) = max
0�t1�t

D̃t1,t−t1 (ρ1, ρ2), (38)

F̃t (ρ1, ρ2) = min
0�t1�t

F̃t1,t−t1 (ρ1, ρ2). (39)

When � � t , no truncation is necessary; we can directly
calculate the exact trace distance and fidelity using the canon-
icalized correlation matrix method.

The mixed strategy of the truncation matrix method consis-
tently provides higher precision than the other two strategies.
Hence, when we refer to the truncated canonicalized correla-
tion matrix method without specifying the strategy, we imply
the mixed strategy of the truncation method.

Estimating the computational expense for each step of the
truncation method is also intriguing. Within the algorithm, the
task of canonicalizing either the correlation matrix or the dif-
ference between two correlation matrices takes a polynomial
amount of time relative to the system size �. Constructing the
truncated correlation matrices also requires polynomial time
relative to the truncation number t . However, constructing
the truncated density matrices and calculating the trace dis-
tance between them is an exponential-time task in relation to
the truncation number t . Therefore, maintaining a reasonably
small truncation number t is crucial to ensuring the efficiency
of the truncation method.

III. CONDITIONS FOR THE TRUNCATION
METHOD TO WORK

Before applying the three strategies of the truncation
method to concrete examples, in this section we will analyze
the conditions under which the truncation method works and
when it might not work.

Based on the scaling behavior of von Neumann entropies,
we can classify states into two categories: small-entropy states
and large-entropy states. Small-entropy states have finite or
logarithmic von Neumann entropies with respect to system
size in the scaling limit. On the other hand, large-entropy
states exhibit volume-law von Neumann entropies in the scal-
ing limit. The trace distance between two fermionic Gaussian
states depends not only on the canonical values of the correla-
tion matrices but also on the canonical vectors. The efficiency
of the truncation method relies on the commutativity of the
density matrices or, equivalently, the commutativity of the
correlation matrices.

In the best scenario, the two correlation matrices commute,
denoted by �1�2 = �2�1, and the canonical vectors of the
correlation matrices, i.e., the effective Majorana modes of
the states in canonical form, are parallel. In this case, one
can calculate the trace distance for a relatively large system
[24]. To quantify the noncommutativity of general correlation
matrices �1 and �2, we introduce the noncommutativity trace
norm given by

N (�1, �2) = tr|�1�2 − �2�1|. (40)

In the worst scenario, the noncommutativity trace norm grows
linearly N (�1, �2) ∝ � in the scaling limit � → ∞. In this
case, the effective Majorana modes of the two states are sig-
nificantly different and the truncation method generally fails
to provide accurate results.

For small-entropy states, a sufficient condition for the trun-
cation method to work is that the states nearly commute,
meaning the noncommutativity trace norm of their correlation
matrices is either constant or grows slowly with the sys-
tem size. In all the cases of small-entropy states considered
in Sec. IV, the noncommutativity trace norms do not grow
faster than log2 log2 log2 � and the truncation method works
well. However, for the cases discussed in Sec. V, where the
noncommutativity trace norms grow linearly, the truncation
method generally fails.

Dealing with large-entropy states poses a more complex
situation. In some cases, no finite truncation method is possi-
ble, as illustrated in Appendix A. We currently lack a general
criterion to determine when the truncation method works
for more general fermionic Gaussian states, especially when
involving small-entropy states that do not nearly commute or
large-entropy states.

However, there is a special case where the maximal differ-
ence strategy of the truncation method works. If the maximal
canonical value of the correlation matrix difference �1 − �2

is exactly 2, the maximal difference strategy can select this
canonical value and its corresponding canonical vectors, re-
sulting in a trace distance D̃(ρ1, ρ2) = 1. Taking into account
the contractive property of the trace distance under a partial
trace, D(ρ1, ρ2) � D̃(ρ1, ρ2), and the fact that D(ρ1, ρ2) � 1,
we obtain the exact trace distance D(ρ1, ρ2) = 1. When the
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maximal canonical value of the correlation matrix difference
�1 − �2 is nearly 2, we similarly obtain a well-approximated
trace distance D(ρ1, ρ2) ≈ 1.

Based on the above analysis, we propose the following
protocol for using the truncation method:

two Gaussian states

⎧⎪⎪⎨
⎪⎪⎩

small entropy and nearly commuting conditions ⇒ it works

otherwise

{
nearly orthogonal condition ⇒ it works

otherwise ⇒ it possibly fails.

(41)

Note that the small-entropy condition refers to finite or
logarithmic-law entropy for both states in the scaling limit.
The nearly commuting condition implies that the noncommu-
tativity trace norm of the two correlation matrices approaches
a constant or grows very slowly with the system size. The
nearly orthogonal condition represents a special case where
the maximal canonical value of the correlation matrix dif-
ference is nearly 2. It is worth noting that not all nearly
orthogonal Gaussian states have the maximal canonical value
of the correlation matrix difference nearly equal to 2, as shown
in the example in Appendix A.

When the conditions in (41) are satisfied, it is necessary to
determine the required truncation number t . For cases satis-
fying the small-entropy and nearly commuting conditions, we
need t � log2 �, where � is the system size, to ensure that the
truncated density matrices can approximately reproduce the
von Neumann entropies of the two states and then the trace
distance between the two states. For cases satisfying the nearly
orthogonal condition, a finite value of the truncation number t
is sufficient to achieve an approximate trace distance.

IV. EXAMPLES OF EIGENSTATE RDMS
IN THE ISING CHAIN

We utilize the truncation method to calculate the subsys-
tem trace distance between the ground and excited states in
the Ising chain with transverse field. The Hamiltonian of the
system, with periodic boundary conditions, is given by

H = −1

2

L∑
j=1

(
σ x

j σ
x
j+1 + λσ z

j

)
, (42)

where σ
x,y,z
j+L = σ

x,y,z
j are the Pauli matrices. Through the

Jordan-Wigner transformation, this Hamiltonian can be
rewritten as a fermionic chain [55–57]

H =
L∑

j=1

[
λ

(
a†

j a j − 1

2

)
− 1

2
(a†

j a j+1 + a†
j+1a j

+ a†
j a

†
j+1 + a j+1a j )]. (43)

After further Fourier transformation and Bogoliubov transfor-
mation, it takes the form

H =
∑

k

εk

(
c†

kck − 1

2

)
, εk ≡

√
λ2 − 2λ cos

2πk

L
+ 1.

(44)

We focus on the case where L is an even integer and consider
the Neveu-Schwarz (NS) sector with antiperiodic boundary

conditions for the fermions. In the NS sector, the momenta
take on half-integer values

k = −L − 1

2
, . . . ,−1

2
,

1

2
, . . . ,

L − 1

2
. (45)

The energy eigenstates are characterized by the momenta
of the excited quasiparticles K = {k1, k2, . . . , kr} and the
RDM of a quasiparticle excited state is also a Gaussian state.
For the subsystem A = [1, �] in the state |K〉, we define the
2� × 2� correlation matrix �A,K , which has entries

[�A,K ]2 j1−1,2 j2−1 = [�A,K ]2 j1,2 j2 = f K
j2− j1 ,

[�A,K ]2 j1−1,2 j2 = −[�A,K ]2 j2,2 j1−1 = gK
j2− j1 ,

(46)

where j1, j2 = 1, 2, . . . , �. The quantities f K
j and gK

j are de-
fined as [48,49,58–60]

f K
j ≡ 2i

L

∑
k∈K

sin

(
2π jk

L

)
,

gK
j ≡ − i

L

∑
k /∈K

cos

(
2π jk

L
− θk

)

+ i

L

∑
k∈K

cos

(
2π jk

L
− θk

)
, (47)

where the angle θk is determined by

eiθk = λ − cos 2πk
L + i sin 2πk

L√
λ2 − 2λ cos 2πk

L + 1
. (48)

We compute the approximate subsystem trace distance
and fidelity for various states. In the case of a gapped Ising
chain, the von Neumann entropies of the RDMs, which are
also known as entanglement entropies, exhibit finite values
in the scaling limit for few-quasiparticle states [27,28,61–
68]. When the Ising chain is critical, the leading entangle-
ment entropies in few-quasiparticle states follow a logarithmic
law. As for many-quasiparticle states, there are two typical
scaling laws observed for the entanglement entropy. In cases
where nearly all excited modes occur successively, the en-
tropies adhere to the logarithmic law [48,49,69,70]. We refer
to these as logarithmic-law many-quasiparticle states or sim-
ply logarithmic-law states. On the other hand, when certain
fixed patterns are successively excited in an extended region
of momentum space, with a mix of excited and nonexcited
modes within these patterns, the entropies follow a volume
law in the regime 1 � � � L [58]. These are referred to as
volume-law many-quasiparticle states or volume-law states. It
is worth noting that the scaling behavior of the entanglement
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FIG. 4. Symbols exemplify the approximate trace distance D and fidelity F between two small-entropy states obtained using the truncated
canonicalized correlation matrix method: (a)–(c) K1 vs K2, (d)–(f) K1 vs K3, and (g)–(i) K3 vs K4. Three strategies are employed: (a), (d), and
(g) the maximal entropy strategy; (b), (e), and (h) the maximal difference strategy; and (c), (f), and (i) the mixed strategy in an Ising chain
with a transverse field. The red solid lines represent exact fidelity results calculated using Eq. (5). The red dotted lines represent the lower and
upper bounds of the trace distance derived from fidelity, as specified by Eq. (4). In this scenario, we have set λ = 1, L = 120, and t = 10.

entropy remains unchanged when a finite number of modes
are altered in a given state. To summarize, we can classify the
typical states as follows:

⎧⎪⎨
⎪⎩

few-quasiparticle states

many-quasiparticle states

{
logarithmic-law states

volume-law states.
(49)

Note that the few-quasiparticle states and the logarithmic-
law states are called small-entropy states and the volume-law
states are referred to as large-entropy states. Here are some
examples of few-quasiparticle states

K1 = {
1
2 , 3

2

}
,

K2 = {
1
2 , 3

2 , 5
2 , 7

2

}
,

(50)

logarithmic-law states

K3 =
{
−L − 1

2
,−L − 3

2
, . . . ,−1

2

}
,

K4 =
{
−L − 1

2
,−L − 3

2
, . . . ,

3

2

}
, (51)

and volume-law states

K5 =
{
−L − 1

2
,−L − 5

2
, . . . ,−3

2

}
,

K6 =
{

1

2
,

5

2
, . . . ,

L − 3

2

}
. (52)

We examine six categories of trace distance and fidelity
involving various representative states. These categories
include the following: (i) two few-quasiparticle states, (ii)
two logarithmic-law states, (iii) two volume-law states, (iv)
one few-quasiparticle state and one logarithmic-law state,
(v) one few-quasiparticle state and one volume-law state, and
(vi) one logarithmic-law state and one volume-law state. In
Fig. 4 we provide instances of trace distance and fidelity be-
tween two small-entropy states. Additionally, Fig. 5 presents
examples of trace distance and fidelity between one
small-entropy state and one large-entropy state. Both
figures compare the approximate fidelity obtained from
the truncated correlation matrix method with the exact
results calculated directly from correlation matrix (5). It
is noteworthy that the exact fidelity establishes lower and
upper bounds for the trace distance as per (4). Based
on the examples presented in Fig. 4 and additional unshown
examples, we observe that the mixed strategy of the truncation
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FIG. 5. Symbols demonstrate the approximate trace distance D and fidelity F between a small-entropy state and a large-entropy state
obtained using the truncation method: (a)–(c) K3 vs K5 and (d)–(f) K3 vs K6. Three strategies are employed: (a) and (d) the maximal entropy
strategy, (b) and (e) the maximal difference strategy, and (c) and (f) the mixed strategy in an Ising chain with a transverse field. The red solid
lines represent exact fidelity results calculated using Eq. (5). The red dotted lines represent the lower and upper bounds of the trace distance
derived from fidelity, as specified by Eq. (4). We have set λ = 1, L = 120, and t = 10.

method performs effectively when dealing with small-entropy
states exclusively. We verify that the conditions outlined in
(41) are met for these states. Notably, the noncommutativity
trace norm approaches a constant or exhibits slow growth
with increasing system size in these cases.

The situation becomes more intricate when at least one
large-entropy state is involved, as illustrated in Fig. 5. In all
cases where at least one large-entropy state is present and the
maximal difference strategy of the truncation method proves
successful, there are numerous canonical values of the corre-
lation matrix difference that approach nearly 2. An example
of this is seen in the case of K3 versus K6. Similarly, for
cases involving only small-entropy states where the maxi-
mal difference strategy of the truncation method is effective,
there are also considerable numbers of canonical values of
the correlation matrix difference that approach nearly 2, as
exemplified by the case of K1 versus K3. The maximal differ-
ence strategy of the truncation method performs well in these
cases, where the trace distance rapidly approaches 1 and the
fidelity rapidly decreases to 0 with an increase in subsystem
size. This behavior aligns with the conditions specified in
(41). In all these instances, there exists a sizable consecu-
tive segment in the momentum space where the modes are
either fully excited or unexcited in one state compared to the
other.

Furthermore, Fig. 6 illustrates the relationship between the
truncation number and the approximate fidelity specifically
for cases where the truncation method proves successful. In
the scenario of K1 versus K2, the conditions of small entropy
and near-commuting states in (41) are satisfied, requiring the
truncation number t to be at least the logarithm of the system
size L. In Fig. 6, where L = 120, it is necessary to have
t � log2 L ≈ 6.9. For the case of K1 versus K3, the nearly
orthogonal conditions in (41) are satisfied and even a very
small finite value of the truncation number t is sufficient to

yield a well-approximated fidelity. These results are consistent
with the analysis presented at the end of Sec. III.

V. EXAMPLES OF GROUND-STATE RDMS
IN DIFFERENT ISING CHAINS

In this section we focus on evaluating the trace distance
between eigenstate RDMs obtained from different Hamilto-

FIG. 6. Correlation between the truncation number and the ap-
proximate fidelity F demonstrated for specific examples in the Ising
chain, showcasing the effectiveness of the truncation method: (a) K1

vs K2 and (b) K1 vs K3. The red solid lines (exact) represent the
exact fidelity calculated using formula (5). The symbols represent
the approximate fidelity obtained using the mixed strategy of the
truncation method with different truncation numbers. In this analysis,
we have set λ = 1 and L = 120.
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FIG. 7. Examples showcasing the subsystem trace distance D ≡ D(ρA,λ1 , ρA,λ2 ) and fidelity F ≡ F (ρA,λ1 , ρA,λ2 ) between two ground states
of the Ising chain with varying transverse fields: (a)–(c) λ1 = 1 and λ2 = 2 and (d)–(f) λ1 = 0.5 and λ2 = 2. These quantities are obtained
using (a) and (d) the maximal entropy strategy, (b) and (e) the maximal difference strategy, and (c) and (f) the mixed strategy of the truncated
correlation matrix method (depicted by symbols), while the exact fidelity results are represented by the red solid lines using the formula (5).
Additionally, the red dotted lines indicate the lower and upper bounds for the trace distance derived from the formula (4). The values of
L = 120 and t = 10 are set for this analysis.

nians. Specifically, we calculate the subsystem trace distance
among the ground states in the NS sector of Ising chains (42)
with varying transverse fields λ. The ground state in the NS
sector, denoted by |G(λ)〉, is characterized by the condition

ck|G(λ)〉 = 0, κ = −L − 1

2
, . . . ,

L − 1

2
. (53)

The state |G(λ)〉 depends on the transverse field λ, and for
convenience, we will use |λ〉 ≡ |G(λ)〉 to represent the NS
sector ground state in the Ising chain with transverse field
λ. Additionally, we introduce the notation �A,λ ≡ �A,G(λ) to
denote the subsystem correlation matrix.

Our aim is to calculate the approximate trace distance
D(ρA,λ1 , ρA,λ2 ) and fidelity F (ρA,λ1 , ρA,λ2 ) for various val-
ues of λ1 and λ2. Examples are illustrated in Fig. 7. It is
worth noting that all the ground-state RDMs considered in
this section correspond to small-entropy states, characterized
by either finite or logarithmic-law von Neumann entropies.
However, for two different small-entropy states, the noncom-
mutativity trace norm (40) exhibits linear growth with respect
to the subsystem size �. According to the conditions stated in
(41), this suggests that the truncation method is generally not
effective in such cases [as shown in Figs. 7(a)–7(c)]. However,
for cases where the two density matrices are nearly orthogo-
nal, indicated by the presence of maximal canonical values of
the correlation matrix difference approaching 2, the truncation
method works well, as demonstrated in Figs. 7(d)–7(f).

VI. EXAMPLES OF LOW-LYING EIGENSTATE RDMS
IN THE CRITICAL ISING CHAIN

As an intriguing application of the truncation method,
we explore the subsystem trace distance and fidelity among
several low-lying eigenstates in the critical Ising chain, i.e.,

the Hamiltonian (42) with λ = 1. The critical Ising chain is
known to be described by a conformal field theory, specifically
the two-dimensional free-fermion theory.

In our analysis, we focus on states corresponding to the
low-lying eigenstates |G〉, |σ 〉, |μ〉, |ψ〉, |ψ̄〉, and |ε〉 in the
two-dimensional free-fermion theory. The ground state is de-
noted by |G〉. The states |σ 〉, |μ〉, |ψ〉, |ψ̄〉, and |ε〉 correspond
to primary operators σ , μ, ψ , ψ̄ , and ε, respectively, within
the framework of two-dimensional conformal field theory.
The state-operator correspondence in two-dimensional con-
formal field theory establishes that these primary operators
give rise to corresponding primary excited states. For a more
comprehensive understanding of the correspondence between
spin chain eigenstates and field theory states, further details
can be found in, e.g., Ref. [60].

In [21,23] there are results of trace distances

D(ρA,G, ρA,σ ) = D(ρA,G, ρA,μ) = x

2
+ o(x),

D(ρA,σ , ρA,μ) = x,

D(ρA,σ , ρA,ψ ) = D(ρA,σ , ρA,ψ̄ ) = D(ρA,μ, ρA,ψ )

= D(ρA,μ, ρA,ψ̄ ) = x

2
+ o(x),

D(ρA,σ , ρA,ε ) = D(ρA,μ, ρA,ε ) = x

2
+ o(x),

D(ρA,G, ρA,ψ ) = D(ρA,G, ρA,ψ̄ ) = D(ρA,ψ , ρA,ε )

= D(ρA,ψ̄ , ρA,ε ) ≈ 1.81x2 + o(x2),

D(ρA,ψ , ρA,ψ̄ ) ≈ 2.27x2 + o(x2),

D(ρA,G, ρA,ε ) ≈ 3.02x2 + o(x2) (54)
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FIG. 8. Solid lines represent the (a)–(c) trace distance D, (d) and (e) fidelity F , and (f) 1 − F between low-lying eigenstates in the two-
dimensional free-fermion theory. The symbols depict the corresponding approximate trace distance and fidelity obtained using the mixed
strategy of the truncation strategy in the critical Ising chain. Note that in (e) the fidelity F (ρA,ψ , ρA,ψ̄ ) coincides with F (ρA,G, ρA,ε ). For the
Ising chain, we have chosen a system size of L = 360 and a truncation number of t = 10.

and fidelities

F (ρA,G, ρA,σ ) = F (ρA,G, ρA,μ) =
(

cos
πx

2

)1/8
,

F (ρA,σ , ρA,μ) =
(

cos
πx

2

)1/2

,

F (ρA,σ , ρA,ψ ) = F (ρA,σ , ρA,ψ̄ ) = F (ρA,μ, ρA,ψ )

= F (ρA,μ, ρA,ψ̄ ) = 1 − π2x2

64
+ o(x2),

F (ρA,σ , ρA,ε ) = F (ρA,μ, ρA,ε ) = 1 − π2x2

64
+ o(x2),

F (ρA,G, ρA,ψ ) = F (ρA,G, ρA,ψ̄ ) = F (ρA,ψ , ρA,ε ) (55)

= F (ρA,ψ̄ , ρA,ε ) = �
( 3+csc πx

2
4

)
�
( 1+csc πx

2
4

)√2 sin(πx),

F (ρA,ψ , ρA,ψ̄ ) = F (ρA,G, ρA,ε ) = �2
( 3+csc πx

2
4

)
�2
( 1+csc πx

2
4

)2 sin(πx).

Note that the fidelity between the ground state and a gen-
eral primary excited state in two-dimensional conformal field
theory was initially derived in [5]. The calculations of the
trace distance and fidelity in the critical Ising chain presented
in [21,23] are exact, but they are limited to cases with very
small subsystem sizes. In our study we have recalculated

the trace distance and fidelity for significantly larger subsys-
tem sizes by employing a mixed strategy of the truncation
method. The results are depicted in Fig. 8. Remarkably, there
is excellent agreement between the approximate results ob-
tained from the spin chain and the analytical results from field
theory.

The success of the truncation method can be attributed to
the fact that all relevant spin chain reduced density matri-
ces are nearly commuting small-entropy states. This means
that the noncommutativity trace norm of the two correlation
matrices, as defined in (40), either approaches a constant or
exhibits very slow growth with respect to the system size.
Furthermore, the relevant RDMs are small entropy states, i.e.,
the von Neumann entropies of the RDMs are finite or follow
a logarithmic law.

VII. EXAMPLES OF LOW-LYING EIGENSTATE RDMS
IN THE HALF-FILLED XX CHAIN

We investigate the subsystem trace distance be-
tween eigenstates in the XX chain described by the
Hamiltonian

H = −
L∑

j=1

(
1

4

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)+ λ

2
σ z

j

)
. (56)

By applying the Jordan-Wigner transformation, the XX
chain can be mapped to the free-fermion theory with the
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Hamiltonian

H = −1

2

L∑
j=1

[a†
j a j+1 + a†

j+1a j + λ(1 − 2a†
j a j )], (57)

where the number of excited Dirac modes is a conserved
quantity given by N = ∑L

j=1 a†
j a j .

To compute the subsystem trace distance, we have two
methods at our disposal: the truncated canonicalized cor-
relation matrix method, as discussed in Sec. II, and the
truncated diagonalized correlation matrix method, as intro-
duced in Appendix B. It is worth noting that the classification
of small-entropy states, which refer to states with finite or
logarithmic-law von Neumann entropies, and large-entropy
states, which correspond to states with volume-law von Neu-
mann entropies, follows the same criteria as in the Ising
chain. The results and conclusions obtained for the XX chain
are consistent with those of the Ising chain. The truncation
method is effective for two small-entropy states that exhibit
nearly commutative properties. However, when dealing with
large-entropy states, the truncation method generally proves
to be unsuccessful, except in cases where two special nearly
orthogonal Gaussian RDMs are involved. It is important to
note that these nearly orthogonal Gaussian states are char-
acterized by the presence of eigenvalues of the correlation
matrix difference that are close to −1 or 1.

In this paper we present the results of the trace distance
and fidelity analysis for several low-lying eigenstates in the
XX chain without a transverse field (λ = 0) while omitting
the detailed calculations. The ground state of this system
exhibits a half-filled momentum space. The critical XX chain,
in the continuum limit, corresponds to the two-dimensional
free-compact-boson theory, which is also recognized as a con-
formal field theory. Within the XX chain, we focus on specific
states, namely, the ground state denoted by |G〉, current states
represented by |J〉 and |J̄〉, the state |JJ̄〉, and the vertex
operator state denoted by |α, ᾱ〉 defined as |α, ᾱ〉 = Vα,ᾱ|G〉.
It is worth noting that |0, 0〉 is equivalent to |G〉.

In [21,23] one can find the field theory results for the trace
distance

D(ρA,α,ᾱ, ρA,α′,ᾱ′ ) = x if (α − α′)2 + (ᾱ − ᾱ′)2 = 1,

D(ρA,α,ᾱ, ρA,α′,ᾱ′ ) =
√

(α − α′)2 + (ᾱ − ᾱ′)2x + o(x),

D(ρA,J , ρA,α,ᾱ ) = D(ρA,J̄ , ρA,ᾱ,α ) =
√

α2 + ᾱ2x + o(x),

D(ρA,JJ̄ , ρA,α,ᾱ ) =
√

α2 + ᾱ2x + o(x),

D(ρA,G, ρA,J ) = D(ρA,G, ρA,J̄ ) = D(ρA,J , ρA,JJ̄ )

= D(ρA,J̄ , ρA,JJ̄ ) ≈ 2.99x2 + o(x2),

D(ρA,J , ρA,J̄ ) ≈ 3.94x2 + o(x2),

D(ρA,G, ρA,JJ̄ ) ≈ 4.63x2 + o(x2) (58)

and fidelity

F (ρA,α,ᾱ, ρA,α′,ᾱ′ ) =
(

cos
πx

2

)[(α−α′ )2+(ᾱ−ᾱ′ )2]/2

,

F (ρA,J , ρA,α,ᾱ ) = F (ρA,J̄ , ρA,ᾱ,α )

= 1 − (α2 + ᾱ2)
π2x2

16
+ o(x2),

F (ρA,JJ̄ , ρA,α,ᾱ ) = 1 − (α2 + ᾱ2)
π2x2

16
+ o(x2),

F (ρA,G, ρA,J ) = F (ρA,G, ρA,J̄ ) = F (ρA,J , ρA,JJ̄ ) (59)

= F (ρA,J̄ , ρA,JJ̄ ) = �2
( 3+csc πx

2
4

)
�2
( 1+csc πx

2
4

)2 sin(πx),

F (ρA,J , ρA,J̄ ) = F (ρA,G, ρA,JJ̄ )=�4
( 3+csc πx

2
4

)
�4
( 1+csc πx

2
4

)4 sin2(πx).

The fidelity between the ground state and any primary excited
state in two-dimensional conformal field theory was deter-
mined in [5]. In Fig. 9 we present the results for the critical
XX chain and the free-compact-boson theory. Once again,
the truncation method exhibits remarkable effectiveness due
to the near commutativity of all pertinent reduced density
matrices, which are all small-entropy states.

VIII. CONCLUSION

In this paper we have developed a truncation method for
evaluating the trace distance between two fermionic Gaussian
states. To verify the efficacy of the method, we examined
various examples of RDMs in the Ising and XX chains.
Our findings indicate that the method performs well under
two distinct sets of conditions, as outlined in (41). The first
condition pertains to the von Neumann entropies of the two
states, which should be small. By small we mean that the von
Neumann entropies of both states either are finite or follow
a logarithmic law. Additionally, the correlation matrices of
the two states should exhibit near-commutation behavior. The
second condition is related to the near orthogonality of the two
states, as characterized by the correlation matrix difference
having a maximal canonical value close to 2. As an applica-
tion of the truncation method, we computed the subsystem
trace distances among the ground state and the low-lying
excited states in the critical Ising chain and the half-filled XX
chain. The results obtained in Secs. VI and VII demonstrate
excellent agreement with the predictions derived from the
corresponding two-dimensional conformal field theories. This
represents a significant improvement over the calculations of
subsystem trace distances presented in [21,23], from around
ten sites to several hundreds sites.

The method we have introduced does not always yield
satisfactory results, as demonstrated by the examples dis-
cussed in Secs. IV and V. By truncating the dimension of
the Hilbert space and carefully selecting a limited number
of effective modes, the truncation method can potentially be
successful when applied to two states that share similar ef-
fective modes. Moreover, it is important to note that only a
finite number of effective modes significantly contribute to the
trace distance. The condition of near orthogonality outlined in
(41) pertains to specific cases that are relatively straightfor-
ward to comprehend. When the maximal canonical value of
the correlation matrix difference approaches 2, the maximal
difference strategy presented in Sec. II B 2 can identify an
effective mode associated with this maximal canonical value
and provide an approximate trace distance value close to 1.
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FIG. 9. Solid lines represent the (a)–(c) trace distance D, (d) fidelity F , and (e) and (f) 1 − F between low-lying eigenstates in the two-
dimensional free-compact-boson theory. The symbols depict the corresponding approximate trace distance and fidelity obtained using the
mixed strategy of the truncation method in the half-filled XX chain. Note that in (d) the fidelity F (ρA,J , ρA,J̄ ) coincides with the fidelity
F (ρA,G, ρA,JJ̄ ). For the XX chain, we have chosen a system size of L = 360 and a truncation number of t = 10.

For more general scenarios, we anticipate that the truncation
method will be effective when the two states possess nearly
identical effective modes and only a limited number of these
modes have major contributions to the trace distance. These
conditions correspond to the nearly commuting and small-
entropy conditions outlined in (41), respectively. In Sec. IV
each unsuccessful example features at least one state with
a von Neumann entropy that follows a volume law, thereby
violating the small-entropy condition. Similarly, in Sec. V
each unsuccessful example involves a noncommutativity trace
norm of the two correlation matrices that scales linearly with
the system size, violating the nearly commuting condition. In
this paper we have summarized the conditions under which
the truncation method can succeed based on the examples
provided. However, it remains an intriguing area of research
to gain a deeper understanding of how and why the method
works, as well as the circumstances under which it may fail.

It is important to note that a finite truncation method is
not always feasible for two Gaussian states with volume
law entropies, as illustrated by an example in Appendix A.
However, there are instances of fermionic Gaussian states for
which a finite truncation method is possible, yet the approach
presented in this paper may fail. An example of such a case
can be found in Sec. V, where we examined the trace distance
between ground-state reduced density matrices in Ising chains
with different transverse fields. An intriguing avenue for

future research would be to generalize the truncation method
introduced in this paper and apply it to a broader range of
fermionic Gaussian states, as well as non-Gaussian states. It
is worth noting that calculating fidelity and relative entropy is
often easier than determining the trace distance. One possible
approach to calculating the trace distance is as follows: Iden-
tify a finite-dimensional subspace within the Hilbert space
that minimize the fidelity or maximize the relative entropy
and then compute the trace distance within that subspace. A
similar truncation method could also be employed to compute
other quantities in fermionic systems and spin chains, such
as entanglement negativity [71,72] and reflected entropy [73].
We look forward to revisiting this problem in future investiga-
tions.
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FIG. 10. Trace distance and fidelity (A4) computed be-
tween two toy model states (A1) characterized by probabilities
p1 = 1

3 and p2 = 1
2 .

APPENDIX A: EXAMPLE OF ORTHOGONAL STATES
WITH NO POSSIBLE TRUNCATION

For certain orthogonal or nearly orthogonal Gaussian
states, it is not necessary for the canonical values of the cor-
relation matrix difference to be nearly 2 in the scaling limit.
In this Appendix we provide an example of two orthogonal
Gaussian states in the scaling limit, where all the canonical
values of the correlation matrix difference can be smaller
than 2. In such cases, a finite truncation method for the trace
distance does not exist.

We consider the Gaussian state density matrix in its sim-
plest form, given by

ρp =
�⊗

j=1

(
p

1 − p

)
, (A1)

where p ∈ (0, 1). The corresponding correlation matrix is

�p =
�⊕

j=1

(
i(1 − 2p)

−i(1 − 2p)

)
. (A2)

The von Neumann entropy of the density matrix follows a
volume law

S(ρp) = �[−p log2 p − (1 − p) log2(1 − p)]. (A3)

The trace distance and fidelity can be easily obtained as

D(ρp1 , ρp2 ) = 1

2

�∑
i=0

Ci
�|pi

1(1 − p1)�−i − pi
2(1 − p2)�−i|,

F (ρp1 , ρp2 ) = [
√

p1 p2 +
√

(1 − p1)(1 − p2)]�. (A4)

We provide an example with p1 = 1
3 and p2 = 1

2 in Fig. 10.
Even when p1 and p2 are very close to each other, as long as
p1 �= p2, we observe the following limits as � → +∞:

lim
�→+∞

D(ρp1 , ρp2 ) = 1,

lim
�→+∞

F (ρp1 , ρp2 ) = 0. (A5)

This indicates that the two states ρp1 and ρp2 with p1 �= p2

become orthogonal in the scaling limit � → +∞. With finite
truncation, it is impossible to approach this limit.

The correlation matrix difference is given by

�p1 − �p2 =
�⊕

j=1

( −2i(p1 − p2)
2i(p1 − p2)

)
. (A6)

All the canonical values of the correlation matrix difference
are equal to 2|p1 − p2|. However, this value is only equal
to 2 in the special trivial cases when p1 = 1 and p2 = 0 or
when p1 = 0 and p2 = 1. This observation confirms that in
the scaling limit, it is not necessary for the canonical values
of the correlation matrix difference to be nearly 2 for certain
orthogonal or nearly orthogonal Gaussian states.

APPENDIX B: TRUNCATED DIAGONALIZED
CORRELATION MATRIX METHOD

In the context of Gaussian states in a free-fermion theory,
where the number of excited Dirac modes is conserved, a spe-
cialized version of the truncation method called the truncated
diagonalized correlation matrix method can be employed.

In this Appendix we begin by reviewing the diagonalized
correlation matrix method described in [34] and subsequently
extend it to the truncated diagonalized correlation matrix
method. The overall procedure is similar to that outlined
in Sec. II, with the distinction being the transformation
from canonicalization of purely imaginary antisymmetric
correlation matrices to the diagonalization of Hermitian corre-
lation matrices. The truncated diagonalized correlation matrix
method proves to be advantageous, as the diagonalization of
an � × � Hermitian matrix is generally easier compared to the
canonicalization of the 2� × 2� purely imaginary antisymmet-
ric matrix.

1. Diagonalized correlation matrix method

We consider a system of � spinless fermions denoted by
a j and a†

j , where j = 1, 2, . . . , �. In the context of Gaussian
states, these states can be characterized by the correlation
matrix C, defined as

Cj1 j2 = 〈
a†

j1
a j2

〉
, j1, j2 = 1, 2, . . . , �. (B1)

The trace distance and fidelity between two Gaussian states
can be computed using the diagonalized correlation matrix
method described in [34]. The correlation matrix C satisfies
the eigenvalue equation

Cuj = μ ju j, j = 1, 2, . . . , �, (B2)

where μ j are real eigenvalues in the range [0,1] and u j

are the corresponding eigenvectors. We define the unitary
matrix as

U ≡ (u1, u2, . . . , u�), (B3)

where each eigenvector is represented as a column vector. The
correlation matrix C can be diagonalized as

U †CU = diag(μ1, μ2, . . . , μ�). (B4)
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The density matrix can be expressed in terms of the modular
Hamiltonian, as shown in [52,74], given by

ρ = det(1 − C) exp

(
−

�∑
j1, j2=1

Mj1 j2 a†
j1

a j2

)
, (B5)

where the matrix M is defined as

M = log2(C−1 − 1). (B6)

Notably, the matrix M is also diagonal under the same basis,
satisfying

U †MU = diag(ν1, ν2, . . . , ν�),

ν j = log2

(
μ−1

j − 1
)
, j = 1, 2, . . . , �. (B7)

We introduce the effective Dirac modes as

ã j =
�∑

j′=1

U †
j j′a j′ , ã†

j =
�∑

j′=1

Uj′ ja
†
j′ . (B8)

Using these modes, the density matrix can be expressed as

ρ =
(

�∏
j=1

(1 − μ j )

)
exp

(
−

�∑
j=1

ν j ã
†
j ã j

)

=
�∏

j=1

[(1 − μ j ) + (2μ j − 1)ã†
j ã j]. (B9)

To calculate the trace distance and fidelity, we employ the ex-
plicit form of the density matrices. For the fidelity calculation,
it is convenient to use the square root of the density matrix:

√
ρ =

�∏
j=1

[
√

1 − μ j + (
√

μ j −√
1 − μ j )ã

†
j ã j]. (B10)

To verify this formula, one can compare
√

ρ
2 with ρ in

Eq. (B9).

2. Truncated diagonalized correlation matrix method

We perform a truncation of the Hilbert space by selecting
a limited number of effective Dirac modes based on three
different strategies.

a. Maximal entropy strategy

For the correlation matrix C given by Eq. (B4), the cor-
responding density matrix ρ can be transformed through a
similarity transformation to the following form:

ρ ∼=
�⊗

j=1

(
1 − μ j

μ j

)
. (B11)

The von Neumann entropy of ρ is obtained by summing
the Shannon entropy of each effective probability distribution
{1 − μ j, μ j} with j = 1, 2, . . . , �:

S(ρ) =
�∑

j=1

[−(1 − μ j ) log2(1 − μ j ) − μ j log2 μ j]. (B12)

For a low-rank state ρ, it is possible to truncate the effective
probability distribution by selecting a few cases where μ j is

closest to 1
2 . We follow this idea and truncate two density

matrices to calculate their trace distance.
We consider two states ρ1 and ρ2 with correlation ma-

trices C1 and C2. The matrix C1 has � pairs of eigenvalues
and eigenvectors (μ j, u j ) with j = 1, 2, . . . , � and the matrix
C2 has � pairs of eigenvalues and eigenvectors (μ j, u j ) with
j = � + 1, � + 2, . . . , 2�. We sort the 2� pairs of eigenvalues
and eigenvectors (μ j, u j ) with j = 1, 2, . . . , 2� based on the
values of |μ j − 1

2 |, from the smallest to the largest. We choose
the first t vectors and rename them vi with i = 1, 2, . . . , t .
These t selected modes have the greatest contributions to the
sum of the von Neumann entropies

S(ρ1) + S(ρ2) =
2�∑
j=1

[−(1 − μ j ) log2(1 − μ j ) − μ j log2 μ j].

(B13)

The vectors vi with i = 1, 2, . . . , t are generally not or-
thogonal and may not be independent. To orthogonalize these
vectors, we introduce a t × t matrix V with entries

Vi1i2 ≡ v
†
i1
vi2 , i1, i2 = 1, 2, . . . , t . (B14)

We sort the t pairs of eigenvalues and eigenvectors (αi, ai )
with i = 1, 2, . . . , t of V in descending order of αi, discarding
those smaller than a cutoff, e.g., 10−9. After discarding, we
obtain �̃ sets of eigenvalues and eigenvectors (αi, ai ) with i =
1, 2, . . . , �̃. From these we define �̃ orthonormal vectors

ũi ≡ 1√
αi

t∑
i′=1

[ai]i′vi′ , i = 1, 2, . . . , �̃. (B15)

Next we define the � × �̃ matrix

Ũ ≡ (ũ1, ũ2, . . . , ũ�̃) (B16)

and the �̃ × �̃ truncated correlation matrices

C̃1 ≡ Ũ †C1Ũ , C̃2 ≡ Ũ †C2Ũ . (B17)

Using the diagonalized correlation matrix method men-
tioned in the preceding section, we construct the 2�̃ × 2�̃

truncated density matrices ρ̃1 and ρ̃2 from the �̃ × �̃ truncated
correlation matrices C̃1 and C̃2. With these truncated density
matrices ρ̃1 and ρ̃2, we calculate the approximate trace dis-
tance and fidelity

D̃t,0(ρ1, ρ2) ≡ D(ρ̃1, ρ̃2), (B18)

F̃t,0(ρ1, ρ2) ≡ F (ρ̃1, ρ̃2). (B19)

b. Maximal difference strategy

To compare two states ρ1 and ρ2, we select t < � eigenvec-
tors u1, u2, . . . , ut of the correlation matrix difference C1 − C2

that correspond to the t largest absolute eigenvalues. We then
define the � × t matrix as

Ũ ≡ (u1, u2, . . . , ut ). (B20)

The truncated correlation matrices are defined as

C̃1 ≡ Ũ †C1Ũ , C̃2 ≡ Ũ †C2Ũ . (B21)

Using the diagonalized correlation matrix method, we con-
struct the 2t × 2t truncated density matrices ρ̃1 and ρ̃2 from
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the t × t truncated correlation matrices C̃1 and C̃2. With these
truncated density matrices ρ̃1 and ρ̃2, we calculate the approx-
imate trace distance and fidelity

D̃0,t (ρ1, ρ2) ≡ D(ρ̃1, ρ̃2), (B22)

F̃0,t (ρ1, ρ2) ≡ F (ρ̃1, ρ̃2). (B23)

c. Mixed strategy

We also employ a strategy that combines elements of both
the maximal entropy strategy and the maximal difference
strategy. For a fixed value of t = t1 + t2, we first obtain t1
vectors vi with indices i = 1, 2, . . . , t1 using the maximal
entropy strategy and then we obtain t2 vectors vi with indices
i = t1 + 1, t1 + 2, . . . , t using the maximal difference strat-
egy. Next we perform orthonormalization on the vectors vi

with indices i = 1, 2, . . . , t , resulting in a set of orthonormal
vectors ũi with indices i = 1, 2, . . . , �̃, where �̃ is constrained
to be less than or equal to t .

We define the � × �̃ matrix as

Ũ ≡ (ũ1, ũ2, . . . , ũ�̃). (B24)

Additionally, we define the �̃ × �̃ truncated correlation matri-
ces as

C̃1 ≡ Ũ †C1Ũ , C̃2 ≡ Ũ †C2Ũ . (B25)

Using the diagonalized correlation matrix method, we con-
struct the 2�̃ × 2�̃ truncated density matrices ρ̃1 and ρ̃2 from
the �̃ × �̃ truncated correlation matrices C̃1 and C̃2.

To evaluate the approximate trace distance and fidelity, we
calculate

D̃t1,t2 (ρ1, ρ2) ≡ D(ρ̃1, ρ̃2), (B26)

F̃t1,t2 (ρ1, ρ2) ≡ F (ρ̃1, ρ̃2). (B27)

Finally, we obtain estimates of the trace distance and fidelity
using the mixed strategy of the truncation method

D̃t (ρ1, ρ2) ≡ max
0�t1�t

D̃t1,t−t1 (ρ1, ρ2), (B28)

F̃t (ρ1, ρ2) ≡ min
0�t1�t

F̃t1,t−t1 (ρ1, ρ2). (B29)
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