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The number partitioning problem (NPP) is one of the NP-complete (nondeterministic polynomial-time
complete) computational problems. Its definite exact solution generally requires a check of all N solution
candidates, which is exponentially large. Here we describe a path to the fast solution of this problem in

√
N

quasi-adiabatic quantum annealing steps. We argue that the errors due to the finite duration of the quantum
annealing can be suppressed if the annealing time scales with N only logarithmically. Moreover, our adiabatic
oracle is topologically protected, in the sense that it is robust against small uncertainty and slow time dependence
of the physical parameters or the choice of the annealing protocol. We also argue that our approach can solve
many other famous NP-complete computational problems in

√
N steps.
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I. INTRODUCTION

The basic quantum algorithms, such as by Grover [1], ma-
trix inversion [2], and the solution of the glued-trees problem
[3], assume that a part of a targeted problem is presolved. That
is, such algorithms assume that a certain quantum function
that points to the solution indirectly or a Hamiltonian that
encodes the original mathematical problem is given almost for
free, i.e., can be called an oracle. In practice, the oracle is a
quantum operator that is usually hard to construct.

For a realistically interesting computational problem to
benefit from such quantum algorithms, there must be a sep-
arate fast algorithmic and hardware implementation of its
oracle, which is usually an unsolved problem. On the other
hand, there are no examples of provable scalable quantum
speedups using quantum annealing in the oracle-free con-
text. There are actually theoretical works arguing no quantum
speedup by a quantum annealing search for the ground state
of an Ising spin Hamiltonian without considerable symmetries
in the problem [4,5].

Recently, the physical Grover’s oracle implementation was
suggested [6] for a solution of the number partitioning prob-
lem (NPP) [7]. The idea in Ref. [6] was to use resonant
interactions of the computational qubits with a central quan-
tum system (a spin or a photon). The state of the qubits that
was to be marked by the oracle was interacting with a central
system at resonance, so that the phase of this special state
changed by π , while minimizing unwanted effects on the
amplitudes of the other computational basis states.

However, the resonant interactions with a targeted state
are highly sensitive to the precision of the resonance condi-
tions. Any uncontrollable mismatch of interactions or a small
imperfection of the control pulses produces a proportional
effect on the quantum state. On the other hand, the solution
of an exponentially hard problem by the Grover algorithm
requires an exponentially large number of the oracle calls,
so that by the end of the algorithm any uncontrolled error is
magnified by a factor

√
N , where N = 2n and n is the number

of computational qubits. To eliminate such errors, we must set

the coupling parameters and control fields in the system with
the corresponding exponentially high precision.

Thus, the Grover speedup in Ref. [6] for the computation
time was achieved at the expense of another physical resource,
which was the precision of the physical coupling parameters
and the control fields. We also note that for NPP such a
trade of resources is known even for classical computing.
Thus, there are classical dynamic programming algorithms
that achieve the exact solution of NPP in time T ∼ 2n/2, just
as with the Grover algorithm but using exponentially large
memory space, i.e., ∼2n/4 classical bits of memory [8]. In
the case of a quantum computer this exponential memory
resource is not used, i.e., we deal with O(n) computation space
but the requirement of the exponentially high precision on the
physical parameters is undesirable as well.

A more specific problem with the approach in Ref. [6] is
that its oracle affects the phases of the nonresonant states.
Only in the adiabatic limit, these unwanted phases become
truly suppressed, according to Ref. [6], as ∼2 arctan(EτO) +
π , where τO is the duration of the interaction that generates the
oracle and E is the characteristic energy gap to the states that
represent wrong solutions. Indeed, for |E |τO � 1 such phases
become close to either 0 or 2π , which would mean no un-
wanted error. However, for finite E and τO, the deviation is of
the order 1/(|E |τO). Hence, in order to make this phase error
scale as ∼1/

√
N , the time to produce the oracle has to scale as

τO ∼ √
N at fixed E . Taking this into account, the entire time

of the algorithm in Ref. [6] scales as τO

√
N ∼ N , which is the

same as for the classical algorithm. Similar hidden costs can
be found in other quantum algorithms, as we show briefly in
Appendix A. This raises a question about whether such hidden
costs on time and the trade of resources in quantum computing
are inevitable.

In this article, we propose an approach that essentially
eliminates these hidden problems from the solution of NPP
by the Grover algorithm during physical time ∼√

N . Our
approach uses quasi-adiabatic quantum annealing in order to
produce useful unitary transformations [9,10]. Importantly,
unlike Ref. [6], we do not request knowledge of the precise
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position of the resonance with the searched state. This
makes our approach not only robust against the physical
parameter uncertainty but also capable of solving a more
complex version of NPP, as well as many other NP-complete
(nondeterministic polynomial-time complete) problems that
we will consider in Sec. VI.

II. NUMBER PARTITIONING PROBLEM

The NPP has the goal to split a set S = {s1, s2, . . . , sn} of
positive integers sk , k = 1, . . . , n into two subsets S1 and S2

so that the difference between the sum of integers in S1 and
the sum of integers in S2 is minimized. There are different
formulations of this problem. We will restrict ourselves here
to its two specific versions that we will call NPP1 and NPP2.

(i) In NPP1, the difference may always be nonzero, so
the goal is to find the partition that delivers the minimal, in
absolute value, difference between the two sums.

(ii) In NPP2, it is assumed that the difference between the
sums in S1 and S2 is known to be zero for some partitions, so
the goal is to find at least one of them.

Both problems can be formalized by introducing n binary
variables σ z

k = ±1 that mark the number sk as belonging to S1

if σ z
k = 1 and as belonging to S2 if σ z

k = −1. NPP1 then has
the goal to find components of an n vector (σ z

1 , . . . , σ z
n ) that

provide the minimum,

min|HI |, (1)

where HI is a linear form

HI ≡
n∑

k=1

skσ
z
k . (2)

NPP2 is equivalent to finding the binary variables that
satisfy a constraint

HI ≡
n∑

k=1

skσ
z
k = 0. (3)

We can interpret the linear form HI as a simple Ising Hamil-
tonian of n quantum spins-1/2. So, the goal of NPP1 is to
find the eigenstate with the minimal non-negative eigenvalue
of HI , and the goal of NPP2 is to find an eigenstate of HI that
corresponds to zero eigenvalue.

Note that for NPP1, the HI energy of the searched state is
not a priori known. This is why the strategy in Ref. [6] cannot
be applied to NPP1 directly. Also, NPP2 is a special case of
NPP1. However, we will treat NPP2 separately because the
knowledge of the energy of the searched state can be used for
a simpler strategy. The following facts have been established
about NPP previously.

First, NPP is NP-hard [7]. Therefore, it is generally ex-
ponentially hard to solve exactly. Although Monte Carlo
algorithms in many situations produce the solution in time
that scales with n polynomially, in the worst cases the needed
time is exponential: T ∼ 2n. Thus, if we are to solve such a
problem definitely and exactly, given only polynomial in n
memory resources, there is no better way than to test all 2n−1

independent possibilities for different n-vector solution can-
didates. In what follows, we will be concerned with the goal
to find such an exact solution with probability exponentially
close to 1.

NPP is NP-complete [7]. All other NP problems can be
solved faster if one finds a fast universal algorithm to solve
any of the NP-complete problems.

NPP can be formulated as a quadratic unconstrained binary
optimization (QUBO) problem, whose goal is to find the min-
imum of a quadratic form of binary variables [11]. Thus, the
quantum Ising spin Hamiltonian

HQ = H2
I (4)

has all non-negative eigenvalues, so the state with the mini-
mal eigenvalue can be found by standard means of quantum
annealing. However, the price for this strategy would be the
requirement to build an all-to-all interacting qubit network,
which is difficult in practice. Even then, we have to deal with
the lack of a known annealing protocol that would definitely
outperform the classical search for the ground state of HQ with
arbitrary free parameters. So, we will discard this strategy.

Finally, for any positive eigenvalue of HI there is the same
eigenvalue but with a negative sign, with corresponding eigen-
states different by the flip of all computational spins. The
range of possible eigenvalues of HI is also known: Since all sk

are positive, the highest and lowest eigenvalues are provided
by the fully polarized qubit states: Emax = −Emin = ∑n

k=1 sk .
Since all sk are integers, we definitely know that there is at
least a unit gap between any two different eigenvalues of HI .
This also means that there are no energy levels in a finite
vicinity of the fractional energy values, e.g., near E = 1/2.

III. SOLUTION STRATEGY

Consider any superposition of eigenstates of HI ,

|ψ〉 =
N∑

s=1

as|s〉, N ≡ 2n. (5)

We will show that by a single annealing step, whose time
scales only as ∼ logα N , where α = O(1), we can generate
an oracle that changes the sign of all state amplitudes with
HI energy below an arbitrarily prescribed energy level E . The
infidelity of this oracle is exponentially small in n. We use
this oracle to change the sign of the states with eigenvalues
of HI in the range (−1/2, E ) by applying the oracle at level
E and then applying it at level −1/2. This flips the sign of
the amplitudes of all basis states in (5) with only non-negative
eigenvalues below E .

Being able to flip the signs for the states in the range
(−1/2, E ), one can employ the algorithm of amplitude am-
plification [12,13] to find a basis state within this range with
nearly unit probability, in ∼√

N steps. Within this range,
the relative probabilities for the basis states to be found are
determined by their relative weights |as|2. In Appendix B,
we review the basics of the Grover algorithm and amplitude
amplification. Let the found eigenstate correspond to an eigen-
value Ek . We then reset

E → Ek + 1/2.

The NPP1 protocol starts with an equal superposition of
all the computational basis, i.e., as = 1/

√
N,∀s in (5). With

an initial trial value of the energy threshold E , we then repeat-
edly apply the procedure described above to update its value.
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The range (−1/2, E ) will then be shrunk so that E becomes
the lowest non-negative eigenvalue of HI , and therefore, the
target state is found. Since the initial state of the amplitude
amplification is the equal superposition, each eigenstate from
the desired energy range can be found with equal probability.
On average, each step of resetting E reduces the number of
eigenvalues in the interval (−1/2, E ) by a factor 2. Hence, the
algorithm takes only ∼ log2 N cycles to obtain the result with
a close to 1 probability. It takes then ∼ log2 N repetitions of
the entire process to make the probability of a wrong solution
exponentially small. This completes the algorithm up to the
procedure that generates the oracles, which will be the main
“know-how” result of our work.

For NPP2, we will provide a process that for any super-
position (5) produces, after a single quantum annealing step,
almost the same superposition but with the flipped sign for
amplitudes of all states |sα〉 that correspond to the zero eigen-
value, HI |sα〉 = 0. Having this, the desired eigenstate is found
by a conventional Grover algorithm in ∼√

N repetitions of the
quantum annealing process.

IV. GENERATING ORACLES

A. Basic hardware requirements

As in Ref. [6], the most complex part of hardware that we
request is the Ising central spin interaction Hamiltonian of the
form

Hint = r
n∑

k=1

skσ
z
k Iz, (6)

where sk are integers and σ z
k are the Pauli z matrices acting in

phase space of the computational qubits; Iz is the projection
operator for an ancillary spin, and r sets the energy scale. In
what follows, we will set the Planck constant h̄ = 1, as well as
r = 1, which makes both energy and time dimensionless. Our
energy and time variables can be reconstructed in physical
units by multiplying them by, respectively, r and h̄/r.

Unlike Ref. [6], our approach specifies that the central spin
has size I = 1. We will also assume that we have access to
high-fidelity quantum gates for rotating all the spins or qubits
by a fixed angle (single qubit resolution is not needed).

The interactions of the type (6) with the central spin
I = 1 are encountered in real physical systems. For example,
the electronic spin of an NV− center in diamond has electronic
spin-1, which is coupled to many nuclear spins-1/2 of 13C
isotopes via dipole interactions [14]. The direct interactions
between the nuclear spins are negligible due to their small
g-factors. When needed, the nuclear spins can be rotated by rf
pulses, while the electronic spin can be controlled by external
magnetic fields or optically.

The physical effect on which our oracle generation relies
essentially is the Robbins-Berry topological phase [15], which
we briefly review in Appendix C. This phase is generated
when a unit spin Î interacts with an adiabatically changing
magnetic field b(t ) with the Hamiltonian

H (t ) = b(t ) · Î, (7)

so that the spin starts at its zero projection on the initial
field direction; the field remains finite during the evolution

(a) (b)

FIG. 1. Paths of the adiabatically changing magnetic field
direction b(t )/|b(t )|. The spin-1 is initially in the zero projec-
tion eigenstate along the field. It remains in the instantaneous
zero-projection eigenstate during the time of evolution up to an
accumulated phase. (a) The geometric phase along path C, where the
magnetic field flips its direction, is π . A closed path would generate
no Berry phase [15]. Therefore, the phase difference between C+ and
C− is π . (b) The phases of paths C± and C0 are, respectively, π and
zero

and ends up pointing in the opposite to its initial direction.
In Fig. 1(a), the black arrow curve shows an example of a
trajectory that the field direction leaves on a unit sphere. At the
end of the protocol, the spin is in the initial physical state with
zero spin projection on the initial axis but its quantum state
acquires a phase π that does not depend on the time-dependent
b(t ). This makes this phase topologically protected, including
against weak nonadiabatic transitions.

B. Grover’s oracle for NPP1

For NPP1, we do not know a priori the energy of the state
that we are searching for. Hence, we start with an arbitrary
“guessed” value by generating a random eigenstate of HI

and measuring its eigenvalue Ek . If it is negative, we find
the corresponding positive energy eigenstate by flipping all
qubits. We set the initial threshold to be E = Ek + 1/2.

Then, we mark the amplitudes of all states that have en-
ergy Em < E by performing the quantum annealing with the
Hamiltonian

Ha1(s) = A(s)

[(
n∑

k=1

skσ
z
k Iz

)
− EIz

]
+ B(s)Ix, (8)

where Ix(z) is the spin-1 projection operator on the x(z) axis.
s = t/T ∈ [0, 1] is a dimensionless parameter, t is time, and
T is the total annealing time. The annealing schedule, A(s)
and B(s), is designed such that

A(0) = B(1) = 0, A(1) = B(0) = 1. (9)

The precise shape of the annealing schedule is not important,
and we use the word “adiabatic” in the sense that the evolution
takes finite time but it is slow enough to suppress nonadiabatic
excitations beyond some desired tolerance level. An example
for the shapes of A(s) and B(s) are plotted in Fig. 2 (top). We
will discuss more precisely the requirements for the annealing
schedules in Sec. IV D.

The annealing Hamiltonian Ha1 in (8) is trivially solvable
because it does not contain the terms that flip computational
qubits. Since Ha1 commutes with time-independent HI , the
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FIG. 2. Top: Annealing schedule in (18), where the constant c
is fixed at 10. Bottom: Simulation of the infidelity of the adiabatic
oracle as a function of the total annealing time, for NNP1 with the
problem set S = {0, 1, 2}. The energy threshold for the oracle is set
at E = 1.5. Red circles are the numerical data. Black curves are the
best fit to an exponential function ∼ exp (axb) with b ≈ 1.08.

evolution with Ha1 splits into N invariant 3 × 3 sectors, with
the kth sector corresponding to a conserved eigenvalue Ek of
HI . Within this sector, the effective Hamiltonian Ha1 has the
form

Hk (s) = A(s)(Ek − E )Iz + B(s)Ix. (10)

The evolution starts with the state that is a direct product of
an arbitrary superposition |ψ〉 of states of the computational
qubits and the zero projection state of spin I on the x axis:

|�〉 = |ψ〉 ⊗ |0x〉. (11)

The spin-1 state |0x〉 is the eigenstate of the initial H1a

at s = 0. During the adiabatic evolution, in each sec-
tor the spin follows the instantaneous zero-projection state
|0bk (s)〉 on the direction of the effective field with com-
ponents bk (s) ≡ (bx, by, bz ) = [B(s), 0, A(s)(Ek − E )]. The
corresponding eigenvalue of Hk in each sector is identically
zero: Hk (t )|0bk (t )〉 = 0. Hence, the dynamic phase is not gen-
erated.

In Fig. 1(a) we show that for Ek > E , the direction of b(t )
changes from the direction of the x axis to the direction of
the z axis. For Ek < E , however, the field ends up pointing
in the opposite to the z-axis direction. In either case, the
central spin ends up in the zero projection state, |0z〉, on the
z axis. However, the difference between the geometric phases
generated by these two paths [red arrow curves in Fig. 1(a)]
is the same as the phase generated by the field that switches
from the positive to the negative direction along the z axis.
According to Ref. [15] (see also Appendix C), this leads to an
acquired topological π -phase difference between the sectors
with Ek − E > 0 and Ek − E < 0.

Summarizing, if the initial state before the annealing is

|�in〉 =
(∑

k

ak|k〉
)

⊗ |0x〉, (12)

then after the annealing the state is

|�out〉 =
(∑

k

(−1)δ(k)ak|k〉
)

⊗ |0x〉, (13)

where δ(k) = 1 for Ek < E and δ(k) = 0 for Ek > E , as it is
required for the solution of NPP1 described in Sec. III.

C. Grover’s diffusion step

In addition to Grover’s oracle, the Grover algorithm em-
ploys a Grover diffusion step, which is an application of a
unitary operator

UGD = 2| ⇒〉〈⇒ | − 1, (14)

where |⇒〉 is the state with all computational spins-1/2 ro-
tated to point along the x axis, and 1 is the unit operator.
While formally this step can be performed with a polynomial
number of gates, as in Ref. [6] we can generate it with a
similar annealing step.

Note that UGD has the same structure as the Grover oracle
in the sense that UGD merely changes the relative sign of the
amplitude of a particular state of the computational qubits.
The only problem is that this state, |⇒〉, is not an eigenstate
of HI . However, if we have an access to a unitary operator

UGDz ≡ 2|⇑〉〈⇑| − 1, (15)

where ⇑ is the fully spin-polarized state along the z axis, then
a simple rotation of all spins from the z axis to x axis direction
transforms UGDz into UGD. If all computational spin qubits
are identical, this unitary operation is achieved with a simple
pulse of a magnetic field:

Urot = e−i(π/4)
∑n

k=1 σ
y
k , (16)

so that

UGD = UrotUGDzU
†
rot.

The Hamiltonian HI has a nondegenerate state with all
spins polarized along the z axis, which corresponds to HI

eigenvalue Emax = ∑N
k=1 sk . Since the energy of this state is

known, we can mark amplitudes of all other states with a
−1 factor by setting E = Emax − 1/2 and performing a single
annealing step. Thus, we do not have to change the interaction
part of the Hamiltonian: the diffusion step is achieved with the
annealing step as for the Grover oracle but in a different field
acting on the ancillary spin.

The application of the spin rotation before and after this
annealing with (8) produces the equivalent effect to the appli-
cation of the Grover diffusion operator. The fact that no other
quantum gates are needed is practically useful because a sim-
ple spin rotation can be performed with very high fidelity, e.g.,
∼10−6 [16] probability of error, whereas the entire universal
set of quantum gates cannot be usually produced with fidelity
better than ∼99%. What is important for our discussion is
that such a rotation of spin qubits can be done by rotating
the control field quasi-adiabatically. The precision and time
scaling of this process, then, is not worse than for the oracle
generation.
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D. Fidelity of the oracle

In Grover algorithm, the oracle is called ∼√
N times, so it

is required that the error does not accumulate to O(1) proba-
bility of a wrong state after

√
N annealing steps. This imposes

a constraint on the tolerance of the nonadiabatic excitations
and the running time of the adiabatic oracle.

With suitable time-dependent annealing schedules, one can
suppress nonadiabatic deviations exponentially in the total
running time T [17–19]. Generally, the nonadiabatic errors
scale as

Pex ∼ exp (−η
2/β ), (17)

where η is a numerical factor depending on the specific an-
nealing schedule, 
 is the characteristic gap near an avoided
crossing point, and β is the rate of the transition through this
gap. In our case, the lowest gap is found in the sector with

 = |E − Ek| = 1/2.

An example of the protocol with exponential suppression
of the errors is

A(s), B(s) = 1
2 [1 ± tanh c(2s − 1)], (18)

where c is a large constant to ensure that the annealing
schedule starts and terminates smoothly (derivatives of the
schedules are suppressed [17]). Note that if c is of the order of
n = log2 N , the deviations of the boundary values of A(s) and
B(s) from (9) are exponentially small. Therefore, we ignore
errors caused by the imperfect boundary condition of the
annealing schedules. Shapes of A(s) and B(s) are plotted in
Fig. 2 (top).

To quantify the accuracy of the oracle with the above
annealing schedule, we simulated its infidelity as a function
of T . The infidelity is defined as the 1 − F (T ), where F (T )
is the probability for the final output state of the oracle to be
detected in the desired output state of an ideal oracle. In Fig. 2
(bottom), the exponential decay of the infidelity is observed.

Since the oracle is called ∼√
N times, the error of each

oracle call must scale as

Pex ∼ 1/
√

N . (19)

For our protocol, the rate of the transition through the
gap is β ∼ c/T . Since c ∼ n, the condition (19) is satisfied
if e−ηT/n ∼ 2−n/2 for some η = O(1). This condition implies
that the running time of the oracle satisfies

T ∼ log2 N, (20)

which retains the overall quadratic speedup of the Grover
algorithm.

V. SIMPLER APPROACHES

In this section, we discuss possible strategies to simplify
experimental verification of our approach. First, one can re-
duce the number of steps by considering the NPP2 version of
the problem, in which the target state of the corresponding
Ising Hamiltonian HI is known to have zero energy. This
knowledge can be used to simplify the generation of the
oracle. We will then discuss a strategy that does not involve
time-dependent tuning of the interaction strength between the
Ising spins. This may be important for experiments without
access to time-dependent interactions.

FIG. 3. Top: Annealing schedule in (22), where the constant c
is fixed at 10. Bottom: Simulation of the infidelity of the adiabatic
oracle as a function of the total annealing time, for NNP2 with the
problem set S = {1, 2, 3}. Red circles are the numerical data. Black
curves are the best fit to an exponential function ∼ exp (axb) with
b ≈ 1.36. Inset shows a zoom in the oscillation of the nonadiabatic
excitation probability on top of the overall exponential decay.

A. Simplified oracle for NPP2

For NPP2, the HI energy of the searched state is
known: E0 = 0. Since this state belongs to the energy range
(−1/2, 1/2), we can generate its Grover oracle by performing
annealing with the Hamiltonian Ha1 initially at E = 1/2 and
then at E = −1/2. Note that, as for NPP1, this approach
is topologically protected. Namely, the physical parameters
sk can be set not precisely and even can experience slow
time-dependent deviations from the desired integer values.
Nevertheless, the topological π phase is robust as long as the
level E is set in the gap that separates the searched state from
the other states.

If the zero energy of the searched state is protected by sym-
metry of interactions, the oracle for NPP2 can be generated in
only a single quantum annealing step with the time-dependent
Hamiltonian

Ha2(s) = A(s)

(
N∑

k=1

skσ
z
k Iz

)
+ B(s)Ix, (21)

where A(0) = A(1) = 0 and B(0) = −B(1) = 1. For exam-
ple, such an annealing protocol can be created by combining
the schedules in NPP2:

A(s), B(s) =
{

1
2 [1 ± tanh c(4s − 1)] s � 1/2,

± 1
2 [1 − tanh c(4s − 3)] s > 1/2.

(22)

The shape of this schedule is plotted in Fig. 3 (top), in which
we also demonstrate that nonadiabatic errors of this oracle are
suppressed with the total annealing time T exponentially.

The corresponding effective magnetic field b(s) switches
direction to the opposite one by the end of the annealing, as
we illustrate in Fig. 1(b). According to Ref. [15], this leads to
the same state |0x〉 at the end of annealing as at the beginning
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but with an acquired topological π phase in all sectors with
Ek �= 0.

In contrast, for the eigenstates of HI with the eigenvalue
E0 = 0, the state |0x〉 remains the exact eigenstate of the time-
dependent Hamiltonian H0(s) = B(s)Ix with zero eigenvalue.
Hence, during the entire protocol this state does not change
and does not even acquire any dynamic or geometric phases.

Summarizing, if the initial state before the annealing is
(12), then after the annealing the state is

|�out 〉 =
(∑

k

(−1)δ(k)ak|k〉
)

⊗ |0x〉, (23)

where δ(k) = 1 for Ek �= 0 and δ(k) = 0 for Ek = 0.

B. Annealing with time-independent couplings

A caveat of the standard annealing schedule discussed
above is that the time-dependent A(s) appears in front of the
coupling terms of the Ising spins. Experimentally, changing
the interaction strength could be hard to achieve, e.g., if the
computational qubits are nuclear spins. Here, we introduce an
annealing protocol with fixed coupling strengths. For NNP1,
in contrast to (8), the oracle is realized with the Hamiltonian

H ′
a1(t ) =

(
n∑

k=1

skσ
z
k Iz

)
− EIz + g(t )Ix, (24)

where the time changes in the interval t ∈ (Tmin, Tmax) such
that

g(Tmin) � 1, g(Tmax) � 1.

An example of such a protocol is

g(t ) = e−t/T , (25)

where Tmin ∼ −T n and Tmax ∼ T n.
Considering no environmental decoherence, the errors for

this oracle originate from two sources: (i) the finite time of
the evolution, which leads to the nonadiabatic transitions over
the energy gap, and (ii) the finite interval of the external field
values g(t ), which leads to the error ∼|Ek/g(Tmax)| due to
misalignment of the initial field b from the x axis.

Given that nonzero eigenvalues Ek of HI are integer num-
bers, the adiabatic conditions correspond to T � 1 in order
to guarantee that in the worst case with |Ek − E | = 1/2 we
avoid the nonadiabatic transitions during the evolution within
each Ek sector. In Appendix D we calculate the nonadiabatic
transition probability for the protocol (25) analytically, and
thus verify its exponential suppression with T .

For the Hamiltonian (24), the boundary-related errors are
suppressed if the physical interval for g(t ) is sufficiently large,
so that at the beginning and the end of the evolution the
deviation of the entire field from the x-axis direction is ex-
ponentially suppressed, e.g.,

g(Tmax) = −g(Tmin) ∼ eηn, (26)

where η > 1/2 is chosen to make sure that the boundary error
is not accumulated substantially after

√
N calls of the oracle.

This guarantees that we are able to prepare the initial state of
the spin-1 in all sectors as the zero projection on the x-axis
eigenstate. Note, however, that due to the exponentially fast

changes of g(t ), the entire time of the field sweep depends on
n only linearly. So, the entire time of the annealing step still
scales logarithmically with N ≡ 2n:

Tmax − Tmin ∼ logα N, α = O(1).

The condition (25) suggests that if the couplings are time
independent we still need a large resource in the form of an
exponentially large interval for the range of g(t ). Experimen-
tally, allowing no time-dependent control of the interactions
may simplify the first demonstrations of our approach. How-
ever, we expect that the time-dependent interactions will be
required with growing n in order to reduce the range for the
accessible external field.

Finally, we note that the most complex instances of NPP
are very rare unless the largest integer number in the set S
is exponentially growing with n [7]. In such situations, our
annealing protocols still keep the annealing time logarithmic,
albeit with an extra power of log N . However, the energy
range for both spin-spin interactions and the external field
has to grow with n exponentially. This resource requirement,
however, is inevitable if we are to encode exponentially large
input values in physical parameters. A strategy to alleviate this
problem can be found in Ref. [6].

VI. GENERALIZATION TO MANY CONSTRAINTS

Let us finally comment on possible extensions of our ap-
proach to more difficult constraint satisfaction problems. If the
energy range for the couplings in HI is restricted, the number
of states that satisfy a single constraint is typically exponen-
tially large. However, m = O(n) independent constraints of
the form

H (k)
I = ak, (27)

or

H (k)
I � bk, k = 1, . . . , m, (28)

can be usually satisfied simultaneously by only O(1) states,
as, e.g., in the graph coloring problem [20]. This makes
the multiple constraint satisfaction generally classically hard
even when the coupling parameters are similar in size. Here,
H (k)

I are the linear forms of binary variables with integer
coefficients. They are different for different k; ak , bk are in-
dependent integers.

Let N1, . . . , Nm be the numbers of states that satisfy, re-
spectively, the first, the first two, and so on up to all m such
constraints, and let us introduce the ratios

ns = Ns−1

Ns
, s = 1, . . . , m, where N0 ≡ N.

The ns should be possible to find using the quantum algorithm
for the number of solutions estimate in

√
ns calls of the Grover

oracle for each ns, without changing the leading scaling of
the time of the entire algorithm that we now describe. As our
goal is only to demonstrate further research directions, here
we assume that we deal with a problem for which all ni are
given to be known.

We can prepare the oracle for each constraint separately.
So, let us start with the first constraint and use its oracle to
implement the Grover algorithm. In ∼√

n1 oracle calls, we
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will thus prepare a state |+〉1, which is the superposition of all
N1 states that satisfy the first constraint.

Let us look at the preparation of the state |+〉1 as at appli-
cation of a unitary operator U1, such that |+〉1 = U1|⇑〉. By
reversing the sequence of our field pulses, we can create an
operator U −1

1 in ∼√
n1 steps with oracle calls. Thus, we can

use this operator for the amplitude amplification algorithm
that creates an overlap between the initial state |⇑〉 and the
superposition state |+〉2 of all states that satisfy the first two
constraints.

Note that |〈⇑|U †
1 |+〉2|2 = 1/n2. Hence, it takes ∼√

n2 calls
of this unitary and its inverse, as well as the oracle that marks
the states that satisfy the second constraint, in order to prepare
|+〉2 using the amplitude amplification. Thus, it takes totally√

n1n2 steps with calls of the constraint-marking oracles in
order to prepare this state from the initial |⇑〉.

We can then treat the preparation process of |+〉2 as a
unitary operator U2 action, whose time to implement takes
∼√

n1n2 more elementary steps. The construction of the state
|+〉3 would then take ∼√

n1n2n3 such steps, and so on. By
induction, we find that the preparation of the state that satisfies
all m constraints would take ∼ ∏m

k=1

√
nk = √

N/Nm ∼ √
N

calls of the fast oracles, whose construction we already de-
scribed. Thus, the introduction of multiple constraints does
not affect the ∼√

N scaling, at least for the “typical” situations
for which the numbers ni can be quickly estimated.

The number of constraints that can be satisfied is re-
stricted by the error with which the Grover algorithm can
prepare the sequence of states |+〉1 → |+〉2 → · · · → |+〉m.
For example, instead of |+〉1, the algorithm prepares a state
|+〉1 + c1|e1〉, where e1 is some error state with amplitude
c1 ∼ 1/

√
n1. Iterating, we find that instead of the final |+〉m,

the algorithm prepares a state

|+〉m +
m∑

k=1

ck|ek〉,

where ck ∼ 1/
√

nk . The error states |ek〉 are generated from
strongly different initial states, so they are expected to be es-
sentially orthogonal to each other. Hence, altogether, they can
be considered as a state orthogonal to |+〉 with an amplitude
∼

√
c2

1 + · · · + c2
m. For example, if all nk are of the order n,

then O(n) constraints produce an error with the probability
comparable to the one of the correct result. This would still
be acceptable because the correct solution can be found then
after O(1) repetitions of the entire algorithm.

Finally, in some of the QUBO problems, such as the set
partitioning and minimum vertex cover problems [20], in ad-
dition to the constraints (27) and (28) we must minimize some
linear form:

find min

(
n∑

k=1

dkσ
z
k

)
,

with integers dk .
We already described how to prepare a unitary U that

transforms |⇑〉 into the superposition |+〉 of all states that
satisfy (27) and (28). We can then use it with the oracle that
marks all states in this superposition below arbitrary energy
level E . The Grover algorithm then is used to produce the state

that contributes to |+〉 and has a lower eigenvalue than E . This
allows us to update E as in Sec. III (see also Refs. [10,21] for
similar approaches to energy minimization) and determine the
solution of such a problem in a logarithmic number of the level
E updates.

VII. DISCUSSION

The NPP is one of the practically most useful famous
computational problems. We showed that quantum mechanics
allows its general exact solution with probability expo-
nentially close to 1 faster than the classical solution, and
essentially without an exponential overhead due to the con-
trol precision. The computational memory is polynomial in
the size of the partition problem. In contrast, many classical
algorithms require exponential memory to achieve a speedup.

The computation time Tcomp ∼ 2n/2 of our algorithm still
scales exponentially with the number of integers that should
be partitioned. However, this quadratic speedup may still pro-
vide a quantum advantage: For modern classical computers,
the exact solution of NPP should become generally impossible
for n ∼ 60, which corresponds to an order of 260/2 ∼ 109 calls
of the oracle in the Grover algorithm. Thus, we estimate that
the quantum supremacy for this problem can be achieved if the
quantum annealing model with the central spin interactions is
implemented for n ≈ 60 qubits, with ∼10−9 error rate per one
annealing step. For the qubits with the quantum lifetime of
order 1 s, these steps should take no more than 1 ns. Altogether
this is still beyond the ability of modern quantum technology,
but the numbers are not too far away from what is possi-
ble. For example, similar estimates show that our approach
is within the modern experimental reach for n ≈ 40, which
would be hard for a desktop. For such n, we need ∼106 oracle
calls, with the fidelity that was demonstrated in some systems
[16].

Finally, we comment on a recent work [22], claiming that
the Grover algorithm provides no quantum advantage. The
criticism in Ref. [22] was based on the assumption that the
Grover oracle is constructed as a separate quantum circuit.
The authors in Ref. [22] argued that for the cases when this
circuit can be simulated classically, the problem is also solv-
able entirely by a classical computer. Hence, for many known
classically complex problems, the Grover oracle may be hard
to implement as a quantum circuit. For example, it can be hard
to design such an oracle using a classical computer.

Our work does not contradict Ref. [22]. Namely, we do
not know a short circuit that would simulate our quan-
tum annealing step on a gate-based quantum computer
with the desired accuracy. For example, the Suzuki-Trotter
decomposition requires ∼√

N = 2n/2 quantum gates in or-
der to simulate our annealing step with accuracy O(1/

√
N ),

which would be needed to suppress the discretization errors
throughout all ∼√

N steps of the Grover algorithm. Hence,
our approach may not provide an advantage if it is imple-
mented as a fully gate-based quantum circuit, unless using
methods designed to accelerate gate-based quantum annealing
simulations [23].

We showed, however, that this problem can be avoided
with a physical quantum annealing evolution, which can be
performed in time that scales with N only logarithmically and
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employs only simple interactions between qubits. Thus, we
resolved the question in favor of quantum computers without
arguing against the analytical results in Ref. [22].
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APPENDIX A: HIDDEN ENERGY COST OF QUANTUM
FOURIER TRANSFORM

The quantum Fourier transform (QFT) [24] is a compo-
nent of many quantum algorithms, such as Shor’s algorithm
[25]. It can be implemented with a polynomial in the num-
ber of qubits, n, basic quantum gates. However, its practical
implementation in hardware contains a hidden exponentially
growing cost, which is similar to the one that we discuss in
the Introduction.

Namely, a basic requirement for the QFT is to use a con-
trolled phase shift, associated with a unitary operator

Rk =
(

1 0
0 e2π i/2k

)
. (A1)

The standard estimate for the physical QFT algorithm perfor-
mance assumes implicitly that such operators can be called in
a finite time τ for all k = 1, . . . , n. In practice, however, such
a phase shift is induced by switching on the coupling between
the qubits during the time duration τ with the characteristic
coupling energy

Ek = 2π/(τ2k ).

Hence, the accessible energy bandwidth for this coupling has
to range from En ∼ 1/(Nτ ) to E1 ∼ 1/τ , where N = 2n.

Such an energy resource is hard to provide physically. For
example, if we assume that the qubit is rotated by an effective
magnetic field that can be set in the range of 1 Tesla, which
is 104 Gauss, with the precision of only 1 Gauss, then the
number of matrices Rk that we can implement in one time step
is restricted by n = log2 104 ≈ 13, which is still too small for
commercial applications.

Moreover, the physical energy bandwidth for the qubit
control is always finite, as well as our ability to discretize
this bandwidth by distinct coupling energies. Hence, as n
is growing, the gates Rk have to be composed generally of
repeated applications of the gates from the finite subset of the
readily accessible controlled phase shifts. Then, the time to
implement the QFT algorithm scales with N = 2n linearly.

APPENDIX B: AMPLITUDE AMPLIFICATION

Given a quantum state in an equal superposition of N basis
states, i.e.,

|s0〉 = 1√
N

N∑
i=1

|i〉, (B1)

the Grover algorithm finds the target state |ω〉 in ∼√
N steps.

The basic ingredient of the Grover algorithm is the oracle
operation

Ô ≡ I − 2|ω〉〈ω|, (B2)

which flips the sign of the target state and keeps the other basis
states unchanged. Each oracle call is also supplemented by a
diffusion operator, defined as

D̂ ≡ I − 2|s0〉〈s0|. (B3)

This operation flips the sign of |s0〉 and keeps the component
orthogonal to |s0〉 unchanged. For large N , after ∼√

N calls
of the oracle (followed by the diffusion operation after each
oracle call), the state ends up in the target state |ω〉 with nearly
unit probability.

Grover’s algorithm can be generalized to amplify the am-
plitudes of more than one target state, as described in the
following. For an arbitrary state

|s〉 =
N∑

i=1

ci|i〉, (B4)

the task is to amplify the amplitude of all the basis states
within a given subspace. Let P̂ be the projector onto the target
subspace, and a be the “weight” of the initial state |s〉 in the
target subspace, i.e.,

a ≡ 〈s|P̂|s〉.

Similarly to the original Grover algorithm, the amplitude
amplification implements the oracle and diffusion operators
defined as

Ô ≡ I − 2P̂,

D̂ ≡ I − 2|s〉〈s|. (B5)

For large N , after ∼1/
√

a calls of the oracle and diffusion,
the initial state |s〉 is projected to the target subspace with
nearly unit probability. This approach, however, requires that
the weight a of the initial state in the target subspace is
determined. In case a is not known a priori, one can employ
the amplitude estimation algorithm [13] first, and then apply
the procedure described above.

If the task is not to find the projection of the initial state
onto the target subspace, but to find a single basis state within
the target subspace, as needed in the NNP1 protocol devel-
oped in the main text, the amplitude amplification algorithm
can achieve this directly. That is, with (expected) ∼1/

√
a

number of steps, one finds a single basis state within the
desired subspace. The basic procedure of the algorithm is
the following: with a fixed constant 1 < c < 2, one should
start with l = 0 and compute M = �cl�; apply the oracle for
a number of steps uniformly picked from [1, M], and then
measure the system. If a state within the target subspace is
found, the algorithm terminates. Otherwise, increase l by 1
and repeat above. Proof of the algorithm can be found in
Ref. [13].
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APPENDIX C: ROBBINS-BERRY PHASE FOR SPIN 1

To derive the Robbins-Berry phase [15], we consider a unit
spin, I = 1, in an external field b(t ) that changes with time
adiabatically so that the initial and final field directions do
not coincide but rather differ by sign: b(tin ) = −b(tfin) = bẑ.
Here, without loss of generality we assume that the initial
field direction is along the z axis. Let the initial spin state |0z〉
correspond to the zero spin projection on this axis.

Assume that during the adiabatic evolution, the magnetic
field is always nonzero and the Hamiltonian is

H (t ) = b(t ) · Î. (C1)

Let b = (b, θ, ϕ) be the parametrization of the field vector
by the time-dependent components in spherical coordinates,
and

Rx(θ ) = e−iÎxθ , Rz(ϕ) = e−iÎzϕ (C2)

be the spin rotation operators. The instantaneous eigenstates
of the Hamiltonian (C1) are the spin projection states on the
instantaneous field direction. For the zero spin projection on
the field axis this state is

|0b(t )〉 = Rz(ϕ)Rx(θ )R−1
z (ϕ)|0z〉. (C3)

The eigenvalues of H are −|b(t )|, 0, and |b(t )|, which
are always separated by a finite gap from each other be-
cause b(t ) is nonzero. According to the adiabatic theorem,
the solution of the time-dependent Schrödinger equation in
the adiabatic limit should coincide with |0b(t )〉 up to a phase
factor exp{i(φd + φgeom )}, where

φd = −
∫ t

Tmin

dτ 〈0b(τ )|H |0b(τ )〉,

φgeom(C) =
∫

C
A(b) · db.

Here, C is the magnetic field trajectory, and

A(b) ≡ i

〈
0b| ∂

∂b
|0b

〉

is the standard Berry connection along this path.
The state |0b(t )〉 corresponds to the zero eigenvalue of H ,

so the dynamic phase is identically zero: φd = 0. The explicit
calculations of the Berry connection show that all its com-
ponents, A = (Ab, Aθ , Aϕ ), are identically zero, which means
that the geometric phase correction to |0b(t )〉 is also identi-
cally zero. Thus, |0b(t )〉 is the solution of the time-dependent
Schrödinger equation with the Hamiltonian H (t ) in the adia-
batic limit.

At the end of the evolution, bfin has opposite direction to z
axis. Hence, the final state |0fin〉 coincides with the initial state
|0z〉 up to an unknown phase factor that we now determine.
The final state in Eq. (C3) corresponds to θ = π . Note also
that R−1

z (ϕ)|0z〉 = |0z〉. Hence, the final state of the spin is
given by

|0fin〉 = eiπ Îx |0z〉.

The phase difference between the initial and the final states is

eiφ = 〈0z|0fin〉 = 〈0z|
∞∑

k=0

(iπ Îx )k

k!
|0z〉, (C4)

which can be calculated by recalling the matrix form

Îx =

⎛
⎜⎝

0 1/
√

2 0

1/
√

2 0 1/
√

2

0 1/
√

2 0

⎞
⎟⎠.

All odd powers of Ix have zero expectation values over the
state |0z〉, whereas 〈0z|Î2

x |0z〉 = 1, and Î4
x = Î2

x . Then, the se-
ries in (C4) can be summed as

eiφ =
∞∑

k=0

(iπ )2k

(2k)!
= cos(π ) = −1.

Thus, the accumulated phase by the end of the field sweep
to the opposite direction is φ = π . This is the Robbins-Berry
phase, which does not depend on the path of the field b(t )
between its boundary values.

APPENDIX D: NONADIABATIC TRANSITIONS
FOR SPIN-1 IN TIME-DEPENDENT FIELD

The theory of nonadiabatic transitions for spin-1/2 in a
time-dependent magnetic field is well established. Its gener-
alization to problems with more than two interacting states
remains an obscure topic but with some exceptions. Thus, in
1932, Majorana showed that any result for a spin-1/2 in a
time-dependent magnetic field can be generalized to a spin of
arbitrary size [26]. Here, we review this generalization with
application to our annealing problem for spin-1.

Consider again the Hamiltonian of a spin-1 in a time-
dependent magnetic field:

H = b(t ) · Î, (D1)

and associate with it the Hamiltonians, h1 and h2, of two
independent spins-1/2 that are placed in the same as in (D1)
time-dependent field, i.e.,

h1 = h2 = 1
2 b(t ) · σ̂. (D2)

Note that h1 and h2 act in different spin spaces. Hence, both
spins are described simultaneously by a combined Hamilto-
nian

H ′ = h1 ⊗ 12 + 11 ⊗ h2, (D3)

where 11,2 are unit 2 × 2 matrices acting in, respectively, the
first and the second spin sectors. The Hamiltonian (D3) is
acting in space with four basis vectors:

|1〉 ≡ |↑↑〉, |−1〉 ≡ |↓↓〉, |0〉 ≡ 1√
2

(|↑↓〉 + |↓↑〉),

(D4)

|−〉 ≡ 1√
2

(|↑↓〉 − |↓↑〉), (D5)

where we use short notation |↑↑〉 ≡ |↑〉 ⊗ | ↑〉, etc. Since
|−〉 is an eigenstate of H ′ for all times, it decouples from
the triplet (D4). Moreover, within the triplet (D4), H ′ has
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the matrix form (D1). Indeed, it is easy to check, e.g., that
〈1|H ′|1〉 = −〈−1|H ′| − 1〉 = bz, 〈1|H ′|0〉 = bx/

√
2, etc.

Since spins-1/2 experience the same time-dependent field,
their evolution over the time interval t ∈ (Tmin, Tmax) is de-
scribed by the same evolution matrix:

U1 = U2 =
(

a b
−b∗ a∗

)
, (D6)

with complex amplitudes a and b. The evolution matrix for
the Hamiltonian H ′ factorizes as the direct product:

U ′ = U1 ⊗ U2. (D7)

For example, if the initial state, at t = Tmin, is |1〉 = | ↑↑〉 then
the amplitude of the state |1〉 at time Tmax is

〈1|U ′|1〉 = a2.

Similarly, 〈0|U ′|1〉 = −√
2ab∗, whereas 〈1|U ′|−〉 = 0, etc.

Summarizing, if we know the evolution operator (D6) for
spin-1/2 in a time-dependent magnetic field, then we can also
write the evolution matrix for the Hamiltonian that describes
spin-1 in the same field:

U =

⎛
⎜⎝

a2
√

2ab b2

−√
2ab∗ |a|2 − |b|2 √

2a∗b

(b∗)2 −√
2a∗b∗ (a∗)2

⎞
⎟⎠. (D8)

The central element, U00 = |a2| − |b2| = 2|a|2 − 1, of this
matrix is the amplitude to stay on the zero-projection state
after the evolution. Note that this element is purely real. For
spin-1/2, the adiabatic evolution that flips the spin to the
opposite direction corresponds to |a| = 0 and |b| = 1, which
leads to U00 = −1, in agreement with the Robbins-Berry

phase π in Appendix C. Our result is more general: even in the
case of small but finite nonadiabatic transitions, the element
U00 remains real and thus this π phase is protected.

For a quasi-adiabatic sweep of one magnetic field compo-
nent from large negative to large positive values throughout
an avoided crossing point, the probability of the nonadiabatic
transition for spin-1/2 is generally given by the Dykhne for-
mula [27]:

|a|2 = ce−2Im[
∫ t0

0 dτ
√

b2
z +bx (τ )2], (D9)

where t0 is the complex-valued time point that corresponds to
closing the gap in the spectrum: |b2

z + b2
x(t0)| = 0. If there are

many such points we should choose the one that minimizes
the integral in (D9). Generally c = 1, with exceptions in cases
of rare symmetries.

The Dykhne formula predicts an exponentially suppressed
probability of a nonadiabatic transition |a|2 ∼ e−η
T , where

 is the minimal gap during the evolution and T is a charac-
teristic time of the transition through the avoided crossing; η is
a model-specific coefficient of order 1. For our spin-1 models,
the probability to make a nonadiabatic transition to the states
with nonzero spin polarization on the final field axis is given
by

Pex = 1 − |U00|2 ≈ 4|a|2. (D10)

For the model (24) with exponential coupling decay (25),
the invariant sectors have the field components bz = Ek − E
and bx(t ) = e−t/T . The Dykhne formula then predicts |a|2 ≈
e−π |Ek−E |T , and for spin-1 we find

Pex ≈ 4e−π |Ek−E |T .
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