
PHYSICAL REVIEW A 108, 022411 (2023)

Provably superior accuracy in quantum stochastic modeling
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In the design of stochastic models, there is a constant trade-off between model complexity and accuracy.
Here we prove that quantum models enable a more favorable trade-off. We present a technique for identifying
fundamental upper bounds on the predictive accuracy of dimensionality-constrained classical models. We
identify quantum models that surpass this bound by creating an algorithm that learns quantum models given
time-series data. We demonstrate that this quantum accuracy advantage is attainable in a present-day noisy
quantum device. These results illustrate the immediate relevance of quantum technologies to time-series analysis
and offer an instance where their resulting accuracy advantage can be provably established.
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I. INTRODUCTION

In data analytics, the curse of dimensionality is a well-
acquainted adversary [1]. As we seek to predict the future
behavior of ever-more complex processes, tracking all poten-
tially relevant past observations becomes quickly intractable.
Even when the process emits only binary outputs at each point
in time, the cost of accounting for temporal correlations in the
last n time steps grows as 2n—making the exact simulation of
highly non-Markovian processes computationally infeasible.
These considerations motivate the need for modeling with di-
mensional constraints. Tractability is restored by constraining
the number of possible pasts we consider, at a potential cost
to the model accuracy. A big question is then: Given certain
constraints on model complexity, what is the most accurate
predictive model? Indeed, much of machine learning, from
dimensional reduction, feature detection to auto-encoders,
concerns variants of this question [2–4].

In traditional approaches, predictive models are classical.
The possible observed pasts are classified through classical
bits of data. For example, consider a discrete-time clock,
which “ticks” by emitting “1” every N time steps and “0”
at all other times. A model using a single bit of memory
cannot count to N . Should N > 2, future distortions become
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unavoidable. Assigning more bits to our model would, of
course, mitigate this distortion. However, this comes at a cost
of increased memory dimension. Forcing a bounded memory
dimension can thus result in unavoidable model distortion.

Here we ask: Can dimensionally constrained quantum
models—quantum machines that record relevant past infor-
mation using qubits—reduce such distortions?

To answer this, we first develop a means to bound the pre-
dictive accuracy that can be achieved by the classical models
with constrained memory dimensions. We then demonstrate
that these bounds can be surpassed by quantum-mechanical
models with the same memory dimension. These quantum
models were identified by designing a systematic algorithm
that takes raw time-series data as input. We implement a
model found by our algorithm on the IBM quantum computer
(“ibmq athens”). Despite the noise, a statistically significant
accuracy advantage remains, demonstrating a provable accu-
racy advantage from executing quantum models. Our quantum
models, capable of generating possible futures in quantum su-
perposition, can be a key resource for contemporary quantum
algorithms in risk and stochastic time-series analysis [5–7] in
the noisy intermediate-scale quantum (NISQ) era.

II. CLASSICAL AND QUANTUM MODELS

Consider a physical system observed at discrete times t
with corresponding outcomes xt ∈ X over some finite alpha-
bet X . We assume that the system is stationary and stochastic,
such that each xt is drawn from random variable Xt , all of
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FIG. 1. Comparison of classical and quantum models that pro-
duce statistical samples of a stochastic process’s future behavior. A
classical model stores classical states in its memory. In quantum
models, the quantum memory and the output register—initialized
in state |0〉—interact through the unitary transformation U , and a
measurement of the output register in the computational basis yields
xi. This can be repeated to sample x0:L . U (L) denotes the unitary
coupling the memory with L consecutive output registers. We train
the parameters θ of U on a classical computer. We execute the re-
sulting model on a noisy quantum device and prove that the accuracy
outperforms any same-dimension classical model.

which are governed by a time-translation invariant distribution
P(

←−
X ,

−→
X ). Here,

←−
X := · · · X−2X−1 and

−→
X := X0X1X2 · · · de-

note random variables governing stochastic outcomes in the
past and future.

An (exact) predictive model is a systematic algorithm that
takes each possible past ←−x , encodes it via the deterministic
map E to some suitable state E (←−x ) within a physical memory
M, while at each subsequent time-step sequentially outputting
x0, x1, x2 · · · with probability P(

−→
X = −→x |←−x ), as shown in

Fig. 1. Knowing the state of the memory M is thus as useful
as ←−x for purposes of inferring future statistics.

Regardless of how many steps L of the process are pro-
duced, it is always possible to work out what state we should
update M to, such that the model can continue the simulation
process. If a predictive model in state r←−x = E (←−x ) emits some
output x0, we know with certainty that the model memory will
transition to state r←−x ,x0

= E (←−x , x0) [8]. That requirement of
a unique new memory state for a given output and memory
state is termed unifilarity (see also Appendix F).

The memory size is naturally quantified by the number
of distinguishable memory states: d . There has been sig-
nificant interest in identifying the memory-minimal models
for replicating the statistics of a process. There are many
motivations, from inferring causal structure, quantifying com-
plexity, energy harvesting, to simulation of rare events [9–13].
This research has resulted in the definition of the topological
complexity dc of a process, quantifying the minimal memory
dimension (the number of mutually distinguishable internal
states) a model needs to predict its future. For Markovian
processes, knowing the very last output, x−1 is sufficient for

distortion-free future prediction. Thus the process’s topolog-
ical complexity needs never exceed the size of the output
alphabet, |X |. For non-Markovian processes though, dc can
scale without bound [14]. For example, the discrete-time clock
that ticks every N seconds aforementioned would have a topo-
logical complexity of N . Using a model with a lower memory
dimension would result in a necessary distortion in predicted
future statistics, highlighting a trade-off between memory cost
and accuracy.

In conventional models, the memory M is assumed to be
classical. Quantum mechanics, however, enables each past to
be encoded in a suitable quantum state |σ←−x 〉 [15–20]. Here
we are interested in (1) whether quantum models can lead to
a favorable trade-off of memory dimension and accuracy, and
if so (2) how such models can be designed. One motivation is
as a proof-of-principle demonstration of quantum advantage
in noisy intermediate scale quantum (NISQ) devices, where
our quantum memory is naturally constrained. The second
is that dimensional constraints are useful even when there
are no clear memory constraints. This is because many ap-
plications require models to be learned directly from data.
In such scenarios, statistical fluctuations imply that aiming
for zero distortion is likely meaningless—resulting in high-
dimensional models that are prone to overfitting. Indeed,
recent work has shown that models that remember less past
information may be more effective at generalizing [5].

III. QUANTIFYING DISTORTION

We begin by introducing a formal quantifier of model
distortion. We employ the Kullback–Leibler (KL) divergence
between probability distributions P(x) and Q(x),

D(P, Q) =
∑

x

P(x) log2

(
P(x)

Q(x)

)
. (1)

The KL divergence has operational significance in diverse
contexts including machine learning, hypothesis testing and
thermodynamics [21,22]. Consider a candidate model that,
when fed ←−x , generates conditional future statistics P̂−→

X0:L |←−x in-
stead of desired statistics P−→

X0:L |←−x , where X0:L = X0X1 . . . XL−1

denotes the first L future outputs. One possible definition of
the distortion associated with the candidate model is then

DL(P, P̂|←−x ) = 1

L
D

(
PX0:L |←−x , P̂X0:L |←−x

)
. (2)

However, (i) we want a distortion measure that does not
depend on L, the number of future time points. Moreover,
(ii) different pasts ←−x are associated with different distortions.
To take (i) and (ii) into account we define the distortion asso-
ciated with P̂ as

De(P, P̂) =
∑
←−x

P(
←−
X = ←−x ) lim

L→∞
DL(P, P̂|←−x ), (3)

where the e subscript reminds us it is the expected (meaning
average) distortion rate over pasts. Operationally, De(P, P̂)
represents how the likelihood of mistaking n samples from
a sequence of length-L conditional futures from P̂ for one
generated by the true distribution P scales with L. Specifically,
this likelihood scales as 2−nLDe in the limit of large L and n
[22,23].
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IV. CLASSICAL DISTORTION BOUNDS

Our goal here is then to first bound the minimal distortion
achievable for a classical model of given memory dimension
d̂c, and find means to surpass this bound using quantum
models under identical memory constraints. To derive such
bounds, we first make use of computational mechanics, which
provides a means to construct memory-minimal classical
models in the zero-distortion limit. Such constructions—ε

machines [8,10,24,25]—rationalize that if two ←−x and ←−x ′

have coinciding future statistics, then mapping them into the
same memory state si will not increase distortion. Thus, the
ε machine then allocates one memory state for each equiv-
alence class of pasts with the same conditional future [26].
The number of equivalence classes provably coincides with
the process’s classical topological complexity, dc. Thus, there
exists a systematic method to find an exact model whenever
d̂c � dc.

The situation when d̂c < dc is significantly less trivial.
There exists no known means to prove a candidate predictive
model achieves minimal distortion. Indeed, most research has
been focused on inferring approximate classical models from
data—owing to its practical usefulness [27]. Such models
constitute upper bounds on achievable distortion. However,
we need the lower bound on achievable distortion in or-
der to be able to claim a provable quantum advantage for
distortion.

An intuition behind our derivation of the lower bound is
that it is natural to create approximate classical models by
“merging” causal states, a process which can also be termed
a coarse-graining of the memory states. For example, a pre-
dictive model that has no distortion if one uses three causal
states (s1, s2, s3) may be approximated by a model with just
two causal states, such as (s1, s2) where s2 can be the encoded
state for the case of the output associated with s3 in the exact
model. We prove no other method of creating approximate
models has lower distortion.

The proof involves introducing a more general type of
“models” which can be used to bound the achievable dis-
tortion of predictive models. We call this wider family
premodels. Such premodels still include an encoding func-
tion E that encodes each possible past within a memory M.
However, they are not required to output future predictions in
temporal order: instead of generating predictions of X0, X1,
X2, . . . by repeated application of the same process, they may
generate a prediction of all future outcomes simultaneously
(see Appendix F for a precise definition). Since these premod-
els constitute a wider family, if no premodel with memory
dimension d can achieve a distortion of De, then no classical
model can either. We consider a class of premodels that cor-
respond to “coarse-grained” ε machines—where additional
memory is saved by merging two or more causal states. We
can then prove (see Appendix F) that the distortion achievable
through coarse-graining lower bounds that of all classical
predictive models:

Theorem 1. Let P be any stationary process. Then, for
every model dimension d̂c, the algorithm in Box 1 produces
a bound on the minimum distortion De of a unifilar model by
considering all possible mergers of causal states and searching
over the next K output statistics.

Thus, minimizing the distortion over the finite set of
coarse-grained classical models, yields a lower bound on the
distortion of all classical models for the given memory dimen-
sion.

Theorem 1 accordingly enables a set procedure (see Box 1)
that allows us to identify a fundamental bound on the minimal
distortion (as characterized by the normalized Kullback–
Leibler divergence) of any classical model under set memory
constraints. Furthermore, we show in Theorem 2 of the Ap-
pendix that this bound is tight for Markovian processes (for
which an approximate model is needed if the memory dimen-
sion is smaller than the size of the output alphabet) in that we
can find a minimum distortion model through the procedure
of Box 1. Thus we rigorously bound the accuracy of classical
models of a given dimension.

V. INFERRING QUANTUM MODELS

A. Overview

We now describe our algorithm for learning memory-
constrained quantum models for classical time-series data,
summarized in Box 2. Recall that a d̂q-dimensional quantum
model is one where each past ←−x is encoded into a suitable
quantum state |σ←−x 〉 within a d̂q- dimensional quantum mem-
ory M. The action that generates conditional future outcomes
x1, x2, . . . at each time-step can thus be a quantum process.
Figure 1 illustrates one potential circuit realization of such
models. There is (i) the coupling of M to an output register
initially in |0〉 via a time-step-independent unitary U (ii) the
measurement of the output register, and the subsequent emis-
sion of the measurement outcome.

Just as in the classical case, identifying distortion-
minimizing quantum models of fixed memory dimension is
also highly nontrivial. Our goal here then is not to neces-
sarily find the provably optimal quantum model, but to find
one that achieves a distortion smaller than our fundamental
classical bound. To do this, we construct an algorithm that
infers quantum models from time-series data. The algorithm
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takes two inputs: (i) a data sequence x0:L, assumed to be
drawn from some stationary stochastic process P and (ii) our
desired memory dimension d̂q. From this data, the algorithm
learns a quantum model of the process, including (i) an en-
coding map E which specifies how to encode each past into a
quantum memory of dimension d̂q, and (ii) the relevant phys-
ical process—described by a unitary U as in Fig. 1—whose
repeated application produces entangled output states. Mea-
surements on such output states emit outputs that approximate
the process’s conditional future behavior.
To operate the learning algorithm, we cast the problem as
minimizing some cost function over a parameter set B. This
involves finding (a) an effective parametrization of all such
models to optimize over and (b) a computable cost function
that proxies the expected KL-divergence De.
To tackle (a), first note that our model’s output behavior is
entirely defined by a family of Kraus operators A = {Ax},
where Ax = 〈x|U |0〉 captures the action of the memory when
it interacts with an output register that is subsequently ob-
served to have output x. Observe also that Ax informs the
encoding map from pasts onto quantum memory states. To see
this, note that a memory initially in ρ is (up to normalization)
mapped to AxρA†

x after observation of x. Thus, observation
of a past ←−x implies applying a sequence of Kraus operators

A←−x := Ax−1 Ax−2 · · · . We can therefore encode the ←−x as

E (←−x ) := |σ←−x 〉 := cA←−x |σ0〉, (4)

where c is the constant of normalization. Here, the initial
quantum state |σ0〉 can be the leading eigenvector of any Kraus
operator Ax (see Appendix C).
To tackle (b), the obvious candidate cost function is De itself.
However, evaluating De requires writing out probabilities of
conditional futures whereas in a practical scenario only a
sample x0:L of the desired process P would be given as input.
We therefore employ the negative log-likelihood of producing
x0:L,

C(A) = − log2 PA(x0:L ), (5)

as a proxy, where the subscript A reminds us that the model
being trained depends on the free parameters A. In the limit
of L → ∞, a model minimizing the negative log-likelihood
of Eq. (5) exactly replicates the desired stochastic behavior
[28,29]. With both the cost function and parameter spaces es-
tablished, the use of gradient-descent optimization algorithms
such as Adam is enabled.

B. Model parametrization

The candidate quantum models of dimension d̂q for a
process with output alphabet X can be parametrized by a
complete set of |X | Kraus operators A = {Ax}x∈X , where Ax

denotes the Kraus operator describing how the model updates
upon emission of output x. However, this parametrization is
nonideal for optimization due to the completeness constraint.

Here, we demonstrate an alternative parametrization using
B = {Bx}x∈X , where each Bx is a general d̂q × d̂q complex ma-
trix. Notably, we show that given any such B, it is possible to
recover a corresponding set A via the following process: First,
consider the linear map EB∗

(·) := ∑
x B†

x · Bx. By construction,
this map is completely positive, so its leading eigenvalue λ is
real and positive, and the associated eigenmatrix V is posi-
tive semidefinite. Thus, V admits a decomposition V = W †W
(where W is invertible). We can then set Ax such that

Ax := W BxW
−1/

√
λ. (6)

Every set {Ax} formed in this way satisfies the completeness
relation (see Appendix A). Thus, each Bx can be used directly
to construct a valid set of corresponding Kraus operators Ax.
This further results in valid unitary operator U (see Appendix
B). Likewise, via Eq. (6) one can also infer the encoding map
E from B (see Appendix C).

C. Computing the cost function

The learning algorithm relies on optimizing the parameters
to minimize the cost function. A direct way is optimizing over
the Kraus operators A, but this is generally cumbersome as A
is constrained by the completeness relation

∑
x(Ax )†Ax = I.

Thus, we instead devise a way to optimize over a set of un-
constrained d̂q × d̂q complex matrices B = {Bx}, whose value
enables the deduction of A via tensor network techniques [30].
We show that C can be computed directly from B without first
deducing A, thereby boosting optimization efficiency. Once
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optimization concludes, the corresponding U for generating
predictions is retrieved from B.

To see how to compute the cost function C(B) =
− log2 PB(x0:L ) directly from B, first consider a model with
Kraus operators A = {Ax} initialized in state ρ0 at t = 0.
The probability it outputs x at t = 1 is then given by
P(x|ρ0)|A = Tr(Axρ0(Ax )†), whereby the state transitions to
ρ1 = Axρ0(Ax )†. As such, repeated iterations of the model will
output x0:L with probability

P(x0:L|ρ0)|A = Tr
(
Ax0:L ρ0A†

x0:L

)
, (7)

where Ax0:L = AxL−1 · · · Ax0 . In addition, if ρ0 is the stationary
memory state averaged over all histories of the process, we
obtain the probability of output sequence x0:L when averaged
over all pasts. We can then write this likelihood directly in
terms of Bx by applying Eq. (6),

PB(x0:L ) = Tr
(
Bx0:L ρ̃Bx0:L

†V
)
/λL, (8)

where ρ̃ = W −1ρ̄W −1† is the leading eigenmatrix of EB.
We finally remark on the costs of computing the cost

function. Consider the scaling in the length of the time-series
data L and the memory dimension d̂q. The computational
complexity of computing the cost function with a classical
computer, as undertaken in this paper via the Kraus operators
and matrix product state methods, is �(Ld̂3

q ). This is because
there are L steps of matrix multiplication, which is known to
have a worst-case complexity going as N3 for N-dimensional
matrices. In present contexts, since we are interested in finding
quantum models with small fixed dq which can simulate a
target process with reduced distortion, this computational cost
is not a significant constraint.

D. Training process

Here we specify the details of the training process to
minimize the cost function C(B) = − log2 PB(x0:L ). At this
stage, any number of different optimization techniques could
be employed. Specifically, we used Adam optimization [31].
The Adam method is a sophisticated form of gradient descent.
Recall that standard gradient descent involves computing ∇C,
the partial derivatives with respect to each degree of free-
dom in B (referred to as a free parameter), and updating B
according to B′ = B − η∇C, where η > 0 is an adjustable
learning rate. The Adam method fine tunes this by using
individual adaptive learning rates for each free parameter,
computed using estimates of the first and second moments of
the gradients ∇C [31]. Due to the capacity to relate the cost
function directly to B [see Eq. (8)], this can be done without
ever needing to write out the quantum circuit itself.

In each run of the training process, we begin with a random
B. The update process is then repeated until the decrease
of updated cost function is below a chosen threshold. Like
nearly all gradient descent variants, Adam can converge to
local minima. However, in our training we found roughly
three quarters of all runs give the same minimal value for the
negative log-likelihood C of Eq. (5), and no further gains were
made after taking the optimal of three runs (see Appendixes D
and E). The result of this algorithm for the examples discussed
in this article is given in Appendix E.

VI. PERFORMANCE OF QUANTUM MODELS

We are now in a position to explore the question: when
can memory-constrained quantum models exhibit improved
accuracy? First, we illustrate provable quantum accuracy ad-
vantage in two settings: (1) cases where classical models
cannot avoid distortion, while quantum models can avoid
distortion entirely, and (2), cases where both quantum and
classical models have nonzero distortion, but quantum mod-
els can achieve less distortion than any classical counterpart.
We then conclude via a case study of modeling a family of
discrete-time renewal processes, a stochastic generalization
of discrete-time clocks aforementioned. We only consider the
cases where the dimensionality of the approximate quantum
models d̂q > 1, such that there is a nontrivial memory. For
a trivial memory (d̂q = 1) the outputs are sampled from the
same distribution at each time and any given distribution can
be realized by both a quantum and classical model, so there
can be no quantum accuracy advantage.

A. Quantum models with zero distortion

There are stochastic processes with quantum models whose
memory dimension dq < dc. Consider any process with clas-
sical topological complexity dc. We know then that if we
constrain memory dimension to some d̂c < dc, then no classi-
cal model can achieve zero distortion. Thus, provided we can
find a quantum model of dimension d̂q with zero distortion,
we can establish a setting in which quantum models have a
provable accuracy advantage. Such settings have been discov-
ered [15–20,32].

We illustrate the quantum advantage in memory size using
simple asymmetric processes. Each process in this family has
three causal states [see its optimal predictor in Fig. 2(a)],
which means dc = 3. On the other hand, a quantum model
can generate statistically identical predictions using a single
qubit as memory [33]. Thus, if we limit our models to have
a memory dimension of two, quantum models can maintain
zero distortion—an impossible feat for any classical coun-
terpart. In Fig. 2(b), we show minimal classical distortion
(computed using our causal coarse-graining algorithm). The
bound is exact since the process is Markovian. We observe
that the normalized KL-divergence exceeds 0.05 for much
of the parameter space. Therefore, quantum models have a
definite accuracy advantage.

To determine if we can infer models with an accuracy
advantage from finite training data, we apply our quantum
inference algorithm to a data string containing a sample of the
process over several time-steps (e.g., 1000). We indeed see
in Fig. 2(b) an order of magnitude reduction in the distortion
relative to the best possible approximate classical model. This
is remarkable given that the quantum model was learned from
finite data. In fact, there are families of processes—such as
dual-Poisson processes (see Appendix I)—whose exact classi-
cal models require a memory dimension dc that grows without
bound, while d̂q remains finite.

B. Finite quantum distortions

Previous discussion focused on analytically tractable cases
where quantum models had zero distortion. However, in many
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(a)

(b)

FIG. 2. Example: The asymmetric process. (a) ε machine for the
asymmetric process, parametrized by p, q ∈ (0, 1). The nodes are the
causal states s0, s1, and s2. The arrows indicate transitions between
states, where each label x|P(x) indicates output x is produced with
probability P(x). (b) Classical vs quantum distortion. Distortion in
the two-dimensional models for the asymmetric process across a
range of process parameters p, q. The left-hand-side shows the op-
timal approximate classical model’s distortion. The right-hand-side
shows the distortion of the most accurate quantum model found by
our algorithm.

realistic scenarios, both quantum and classical models in-
evitably introduce distortions (e.g., when the model memory
is constrained to some dimension that is less than the min-
imal dimension for exact simulation, or when models are
learned from finite data). Indeed, dimensional quantum ad-
vantage for exact modeling is rare. For instance, for most
of the parameters p and δ in the model described below in
Fig. 3(a), the quantum models found do not have strictly zero
distortion, which would in fact require memory dimension
three. Thus, for quantum models to be useful in practical
settings, we need to go beyond exact quantum models and
determine situations where quantum models have an advan-
tage in distortion-memory trade-of, and demonstrate that this
advantage is much more generic.

To do this, we consider the minimal distortion caused when
we constrain both classical and quantum models to a fixed
memory dimension d . We achieve this by introducing coarse-
graining, a technique that allows us to bound the minimal
distortion we must suffer when constrained to d-dimensional
classical models (Box 1). We then use our quantum inference
protocol (Box 2) to design quantum models that surpass this
bound and establish a provable quantum accuracy advantage.

We illustrate this technique on a family of generalized
three-state quasicycles [see Fig. 3(a)]. Quasicycles are for ex-
ample of interest in thermodynamics—certain quasicycles are
valid thermal operations in that they preserve the Gibbs’ ther-
mal state, but interestingly without respecting detailed balance
[34]. They constitute a two-parameter family of processes
where zero-distortion models generally require both quantum

(a)

(b)

FIG. 3. Example: Quasicycle process. (a) ε machine for the
three-state quasicycle parametrized by p ∈ (0, 1), δ ∈ (0, 1 − p].
The nodes are the causal states s0, s1, and s2. The arrows indicate
transitions between states, where each label x|P(x) indicates output
x is produced with probability P(x). (b) Classical vs quantum distor-
tion comparison. Distortion in the two-dimensional models for the
quasicycle, across a range of process parameters p, δ. The left-hand-
side shows the optimal approximate classical model’s error. The
right-hand-side shows the distortion of the most accurate quantum
model found by our algorithm.

and classical models to have three-dimensional memories—
save for a one-dimensional subfamily that can be exactly
modeled by quantum models of memory dimension two [35].
The resulting error of our inferred quantum model (see Ap-
pendix E) is compared with that of the classical limit in
Fig. 3(b). In contrast, there is a broad area of process pa-
rameters (p, δ) which can be accurately approximated by a
compressed quantum model. Thus, our results unveil that
quantum models exhibit an accuracy advantage in a much
broader class of processes once we drop requirements of exact
simulation.

C. Modelling renewal processes

We now apply our inference algorithm to the family of
discrete-time renewal processes—a family of progressively
more non-Markovian processes that generalize the aforemen-
tioned ticking clock. This family of models allows us to
investigate the quantum accuracy advantage for varying num-
bers of causal states. At each time step, the process may emit
one of two outputs: 0, representing no tick, and 1, representing
a tick. Their probability of ticking at each time step depends
only on k, the number of time steps since their previous tick
[36]. In the event that the system is guaranteed to tick for a
particular value of k, we have a period clock. In the other ex-
treme case where the probability is independent of k, we have
a memoryless Poissonian process whose topological (classical
or quantum) complexity is zero. Most physical clocks interpo-
late between these extremes [37].
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(a)

(b)

FIG. 4. Example: The uniform renewal process. (a) The
memory-minimal classical model of N-step uniform renewal pro-
cess with zero distortion. The resulting model has N memory states
(denoted s0, . . ., sN−1). Arrows indicate the transition probability
between states, where each label x|P(x) indicates that output x is pro-
duced with probability P(x). Any model with a memory dimension
of less than N would necessarily feature distortion. Panel (b) plots
a lower bound on this distortion for all possible classical models
for various max-periodicity N and memory dimension d̂ . This is
compared with the distortion achieved by quantum models delivered
by our inference algorithm. We see that the quantum models achieve
distortions significantly below classical limits in certain parameter
regimes (e.g., when N = 4 and d̂ = 3).

Here we consider a class of period-N uniform renewal pro-
cesses UN . These represent processes where the number of 0s
between each two neighboring ticks is uniformly distributed
between 0 and N − 1. As N scales, the process becomes
progressively more non-Markovian. Indeed, its topological
complexity is N , following similar reasoning to the case of
the periodic clock [see corresponding ε machine in Fig. 4(a)].
Reducing the number of distinct memory configurations to
d̂c < N results in unavoidable distortion.

Using causal state coarse-graining, we can establish a
provable lower bound to this distortion for classical mod-
els for various d̂c and N up to 5 [Fig. 4(b)]. As expected,
classical models achieve zero distortion only when d̂c � N .
Simultaneously, we plot the distortions of quantum models
delivered by our discovery algorithm [Fig. 4(b)] using train-
ing data with 40 000 data points. Even though the learned
quantum models have the additional handicap of being trained
on finite-length data, we see that quantum models outper-
form optimal classical counterparts away from the zero-error
regime.

To examine the resilience of the quantum accuracy advan-
tage on present-day noisy devices, we implement the quantum
model on one of IBM’s quantum systems (“ibmq athens”) for
the case of d̂q = 2, N = 3 (see Appendix H). Error bars for
computing distortion were estimated by running the model
inference algorithm over 50 independent batches of data. We
see that our quantum models can still exhibit a statistically
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FIG. 5. Accuracy advantage on present-day quantum hardware.
We executed a learned quantum model on ibmq-athens. To demon-
strate a statistically significant accuracy advantage, 40 000 runs were
divided into 50 batches and the distortion evaluated for each batch.
Despite inherent noise in ibmq-athens, our quantum model achieves a
distortion 2.12 standard deviations below our proven classical limit.
For comparison, the blue bar shows the expected distortion of the
learned quantum model without experimental noise. See Appendix H
for details.

significant accuracy advantage (of 2.12 standard deviations)
over the classical bound, as shown in Fig. 5.

The intuition behind this accuracy advantage is that ex-
tra degrees of freedom are afforded by coherence in the
quantum memory. Specifically, recall that ε machines, the
classical optimal predictive models of zero distortion, operate
by assigning a distinct memory to each equivalence class
of pasts with statistically identical futures. Quantum models
can replicate their statistical predictions exactly, while stor-
ing these memory states in nonmutually orthogonal states
within the quantum memory [15]. While these memory states
are typically independent and thus there are no immediate
savings in memory dimension, this nonorthogonality does
generally imply that the memory costs of exact modeling
are reduced according to entropic measures. That is, certain
subspaces within the memory of such quantum models can
have significantly reduced occupation probability compared
with classical counterparts. When we impose a dimensional
memory constraint, removing such subspaces could result
in less distortion compared with classical counterparts. Fur-
thermore, since differences in entropic memory advantage of
quantum models can scale without bound for generic classes
of problems [38], we anticipate that accuracy advantages can
persist in certain situations even when the quantum models
have much more stringent dimensional constraints than clas-
sical counterparts.

VII. DISCUSSION

Modeling complex processes requires memory, allowing
us to generate correct future behavior. As processes be-
come more complex, so does the amount of memory they
require—necessitating a trade-off between model accuracy
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and available memory. Here, we derived a minimal bound
on this unavoidable distortion that applies to all classical
models of a given stochastic process with a mixed memory
dimension (i.e., the number of distinct past sequences it can
reliably store). We then demonstrated that quantum models
with the same memory dimension can surpass this bound and
furthermore, such models can be learned from finite data.
Thus, quantum information processing enables a more ad-
vantageous trade-off between accuracy and memory cost. We
witnessed this advantage using an IBM quantum computer,
where it generated predictions featuring a two sigma reduction
in distortion beyond classical limits.

Taken together, these results significantly advanced our
present understanding of quantum-enhanced predictive mod-
eling. Previously, all works in minimizing model memory
concerned the task of exact simulation—where the dimen-
sional memory requirements of quantum and classical models
are compared in the context of requiring zero distortion
[33,35,38]. In this context, a quantum advantage was estab-
lished. However, the stochastic processes involved needed to
be finely tuned. The only general memory advantage occurred
in the independent and identically distributed (i.i.d.) scenario,
where N � 1 processes were simulated in unison. Here, we
see that by considering the general cost of memory-distortion
trade-offs, the advantage of quantum models is much more
general.

We note also that this article was concerned with quan-
tum advantage in the execution of a model. The algorithm
for learning such models is entirely classical and as such, it
scales (1) inefficiently with the number of qubits in quantum
memory, (2) does not produce an explicit gate sequence for
the discovered quantum models. This limits their applicability
to scenarios where very low-dimensional quantum models
can outperform very high-dimensional classical counterparts
(e.g., renewal processes [38]). To go beyond such constraints,
hybrid learning approaches will be necessary. One approach
is to parametrize the unitary U using a shallow circuit ansatz,
such that a suitable cost function is evaluated quantum-
mechanically and optimized through variational means [39].
Such an algorithm can then leverage quantum computers to
ensure that any models inferred can be directly implemented.

Doing so could have exciting algorithmic benefits. Observe
that our quantum models can generate a superposition of all
possible futures over L time steps weighted by their likelihood
of occurrence, with circuit complexity scaling linearly with
L. The resulting circuit is then a fundamental primitive for
various data analytics protocols (e.g., amplitude amplifica-
tion, Grover’s search, value at risk, and importance sampling)
[7,40,41]. Indeed, exact quantum models have already been
deployed in quantum-enhanced stochastic analysis [6]. More
fundamentally, recent results show that the less information a
candidate model stores about past data, the greater its capac-
ity to generalize [5]. This yields an exciting possibility: that
quantum models may be fundamentally better for learning in
regimes where training data are sparse.

ACKNOWLEDGMENTS

We are grateful for discussions with Thomas Elliott, Jim
Crutchfield, and Kelvin Onggadinata. This research is sup-

ported by the National Research Foundation, Singapore, and
Agency for Science, Technology and Research (A*STAR)
under its QEP2.0 program (NRF2021-QEP2-02-P06), The
Singapore Ministry of Education Tier 1 Grants RG77/22 and
RG146/20, the QEP1.0 Grant QEP-SF3, Grant No. FQXI
R-710-000-146-720 (Are quantum agents more energetically
efficient at making predictions?) from the Foundational Ques-
tions Institute and Fetzer Franklin Fund (a donor-advised
fund of Silicon Valley Community Foundation), the Quantum
Engineering Program QEP-SP3. N.T. acknowledges support
by the Griffith University Postdoctoral Fellowship Scheme,
the Australian Research Council (ARC) Centre of Excellence
CE170100012, and by the Alexander von Humboldt Founda-
tion. O.D. acknowledges support from the National Natural
Science Foundation of China (Grants No. 12050410246, No.
1200509, and No. 12050410245), a collaborative HiSilicon
project, and City University of Hong Kong (Project No.
9610623).

Codes associated with this work are available online [42].

APPENDIX A: PROOF OF COMPLETENESS

Here we prove that for each model parametrized by B =
{Bx}x, the set A = {Ax}x is complete. This follows from∑

x

A†
xAx =

∑
x

1

λ
(W −1)†Bx

†W †W BxW
−1

= 1

λ

(
W †)−1

(∑
x

Bx
†W †W Bx

)
W −1

= (W †)−1W †WW −1 = I, (A1)

where we use (W †)−1 = (W −1)†.

APPENDIX B: BUILDING UNITARY CIRCUITS

Once we have the Kraus operators Ax that describe a model,
standard techniques enable construction of a full unitary cir-
cuit. Specifically, we need to find a |X |d̂q × |X |d̂q unitary
operator U such that

〈x|U |0〉 = Ax. (B1)

As a result, some of the elements of the unitary operators are
predefined, i.e.,

〈 j|〈x|U |k〉|0〉 = Ax, jk . (B2)

These predefined elements form d̂q columns of the unitary
operators, i.e., |φk0〉 := U |k〉|0〉. Such columns |φk0〉 are mu-
tually orthogonal quantum states, due to the completeness
relation of Ax. Since an operator U is unitary if and only if
its columns form an orthogonal basis, the remaining task is to
find the complementary quantum states |φkx〉 so that they form
orthogonal states. This can be done by the Gram-Schmidt
process [43].

APPENDIX C: INITIAL CONFIGURATION
OF THE QUANTUM MODEL

We now describe how the initial state is picked when
executing the learned model. The initial configuration of the
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quantum model is a pure quantum state |σ←−x 〉, associated with
the past, ←−x . This is required because the model is trained to
work with the memory being in |σ←−x 〉 states. We now describe
how we extract such a state |σ←−x 〉 from the Kraus operators Ai

resulting from the training.
Consider first models with finite Markov order κ where

only the latest κ steps of a given past ←−x affect the future
statistics, i.e., P(

−→
X |←−x ) ≡ P(

−→
X |x−κ:0 ).

Then,

P(−→x |←−x ) = P(−→x |0∞, x−κ:0 ), (C1)

where 0∞ := . . . , 0, 0, 0. The equality would also hold if 0∞
were replaced with other well-defined sequences of outcomes
x. Recall we denote A0 = 〈0|U |0〉 as the Kraus operator as-
sociated with outcome 0. Thus A∞

0 is associated with the
outcome 0∞. In our simulations we used the leading eigen-
vector of A0, |σ0〉, as |σ0∞〉. When there is a unique leading
eigenvector |σ0〉, which we generally expect when A0 is the
result of a learning process, then for any far distant past state
|ψ〉, A∞

0 |ψ〉 = |σ0〉 up to normalization.
A subtlety is that, although in our simulations the leading

eigenvector of A0, a somewhat messy learned matrix, has
always been observed to be unique, one could manufacture
degenerate cases where this is not the case. The uniqueness
could then be recovered by adding a small perturbation to
A0. Moreover, degenerate models are unlikely to be the result
of training because any of the degenerate initial configura-
tions would exhibit the same outcome probabilities for all
sequences of outcomes [44] and in that sense make trivial
use of the memory. There are in fact two cases of quantum
processes: (1) most of sequences of length L of Kraus opera-
tors Ax−L−κ:−κ

have a unique leading eigenvector for sufficiently
large L and the memory is used, or (2) the process makes
trivial use of the memory [44].

When the process has infinite Markov order, perfect ini-
tialization of the machine would require an observation of
the entire process history. However, one can approximate the
perfect initialization by taking a long but finite string, which
will have exponentially diminishing error with the length of
the string [45]. As such, the above choice of |σ0〉 remains
valid.

APPENDIX D: HYPERPARAMETERS

The length of the sample in the first two examples was
1000, while that of the third example was 5000. The third
example—the renewal process—has more causal states, and
training quantum models with higher d̂q also requires more
data. For all of the three examples, the learning rate η is 0.1
and the optimizer is Adam [31]. We repeat the training three
times and choose the quantum model of minimal cost.

The evaluation of the error De(P, P̂) relies on computing
the KL-divergence DKL(P(X0:L|←−x )||P̂(X0:L|ε(←−x ))). Here,
the length of the past ←−x is five and the length of the future
L is one (see Appendix G). This amounts to assuming that the
Markov order of the process is less than or equal to five, which
is true by construction for our examples. The update process
is then repeated until �C is less than 0.1.

FIG. 6. Example: Asymmetric process—encoded states. Quan-
tum states produced by the learned d̂q = 2 encoding map for the
asymmetric process with p = 0.3, q = 0.8, represented on a Bloch
sphere (viewed sideways and top-down). Each point represents a
pure state mapped to by one history (of length five), and the
color represents the history’s associated causal state. For larger
points (representing the most probable 99% of histories), the area is
proportional to the probability of that history. For smaller points (rep-
resenting the next 0.999% of histories), the opacity is proportional to
the probability.

APPENDIX E: LEARNED QUANTUM MODELS

Here we present details of the quantum models produced
by our model inference algorithm. We show the Kraus opera-
tors together with the corresponding encoding quantum states.
As d̂q is set to 2, each encoding quantum state is represented
by a point in a Bloch sphere.

Case 1: The asymmetric process. For a d̂q = 2 model of the
asymmetric process [recall Fig. 2(a)] with p = 0.3, q = 0.8,
we found the Kraus operators:

A0 =
[

0.676 0.317

0.316 0.150

]
,

A1 =
[−0.264 0.534

−0.336 0.729

]
,

A2 =
[−0.241 −0.095

0.449 0.227

]
. (E1)

For the asymmetric processes, real amplitudes are sufficient
to train a quantum model with d̂q = 2 to good accuracy [32].

The quantum states |σ←−x 〉 associated with encodings of
pasts of length five are plotted in Fig. 6. The more likely
quantum states lie in three clusters. This coincides with our
expectation from the classical ε machine, which has three
causal states—but here, this has been discovered directly from
the sample during training. Moreover, the location of these
states aligns with our expectation from the theoretical optimal
quantum states ascertained in Ref. [32]: two clusters (pink and
blue) approximately correspond to orthogonal quantum states,
while the third (green) lies biased between the two.

Case 2: The quasicycle. For the quasicycle, we show the
case where p = 0.5, δ = 0.1. The Kraus operators found for
d̂q = 2 are

A0 =
[

0.021 − 0.077i −0.104 + 0.084i

−0.277 + 0.236i 0.656 + 0.098i

]
,
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FIG. 7. Example: Quasicycle—encoded states. Quantum states
produced by the learned d̂q = 2 encoding map for a quasicycle with
p = 0.5, δ = 0.1, represented on a Bloch sphere. The diagram is
interpreted as in Fig. 6.

A1 =
[

0.508 + 0.135i −0.233 + 0.465i

0.279 − 0.171i 0.073 + 0.277i

]
,

A2 =
[

0.371 + 0.271i 0.304 + 0.010i

−0.209 + 0.473i 0.055 + 0.308i

]
. (E2)

The quantum states |σ←−x 〉 are plotted in Fig. 7. As shown in
Fig. 7, most of the states (weighted by probability of oc-
currence) lie in three distinct clusters—but here, no pair of
clusters is orthogonal.

Case 3: The uniform renewal process. For the discrete
renewal process [Fig. 4(a)] we show the results for N = 3,
d̂q = 2. The Kraus operators found are

A0 =
[

0.064 + 0.170i 0.043 + 0.246i

−0.196 + 0.825i 0.499 − 0.079i

]
,

A1 =
[

0.490 − 0.053i 0.304 + 0.753i

0.005 − 0.068i 0.048 − 0.142i

]
. (E3)

The associated encoded states are plotted in Fig. 8.

APPENDIX F: BOUNDING THE MINIMAL DISTORTION
OF CLASSICAL MODELS

Here we derive Theorem 1, a lower bound on the minimal
distortion of classical models with a given memory dimension
d̂c. In principle, such a bound could be found by exhaus-

FIG. 8. Example: Renewal process—encoded states. Quantum
states produced by the learned d̂q = 2 encoding map for an N = 3
discretization of the uniform renewal process, represented on a Bloch
sphere. The diagram is interpreted as in Fig. 6.

FIG. 9. Proof overview. Sets of models of a given memory di-
mension d̂c are depicted. In a premodel the internal state update
is not generally defined. If the memory state is updated entirely
as a function of the output and the memory state, the model is
termed unifilar. An exact original model with dimension dc > d̂c can
be coarse-grained by clumping together memory states, to create a
lower-dimensional model. We prove that the set of coarse-grained
models contains models realizing minimal distortion relative to the
original model (for the given d̂c).

tive search over all permitted classical models, but this is
not tractable since the freedom in the transition probabilities
grows as O(d̂ |X |+1

c ), where |X | is the alphabet size. We solve
this problem by proving that an intuitively natural method for
creating a tractable set of approximate models is optimal in the
sense of realizing minimal distortion: clump together some of
dc original states to create a model of memory size d̂c < dc.
There is a subtlety in that this clumping together, a type of
coarse-graining, may remove the unifilarity of the model, such
that it may be in a wider set of models we shall call premodels.
The task then becomes to prove that the minimal distortion,
over all premodels, of the original model, can be realized by a
coarse-grained model, as depicted in Fig. 9.

The derivation of Theorem 1 is structured into three parts:
(1) Model definitions, (2) Calculating the distortion, and (3)
Bounding the minimum distortion. Finally, we make addi-
tional stronger statements for a special case, showing in
particular that for Markov processes the coarse-grained pro-
cesses are unifilar.

1. Model definitions

We now give relevant definitions of models which shall be
used in the proof.

Let
←−
X be the set of all possible observable histories of

some process P, and R be a countable set of possible model
memory states. A partition of histories or encoding E is then
a function E :

←−
X → R. We refer to the number of distinct

values in R taken by E [excluding those that occur with mea-
sure zero with respect to P(

←−
X )] as the model dimension of E ,

which we write as d̂c for approximate classical models and dc

for exact classical models. That is, each E effectively divides
the set of histories into d̂c mutually exclusive partitions. To
use this encoding as a model, we must also supply a second
map F : R → −→

X from memory states to a set of statistics
over the future of the process known. The Fs are termed the
future morphs of the memory states because they represent
the “shape” (morph in Greek) of the future [8]. Together,
the composition of E and F defines a conditional probability
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distribution P̂(
−→
X |E (←−x )), of the model which emulates the

process’s conditional probability distribution P(
−→
X |←−x ) for

each history ←−x . Finally, a model may also have a rule en-
abling running a simulation over several time steps: an action
P that updates the memory state conditional on the output and
the last memory state. It is often demanded that the action P
is time-independent such that the simulation corresponds to a
stationary process.

We shall find it convenient to also consider “underdefined”
models, such that brute force searches over models become
more tractable. In particular we term models defined via the
couple (E,F ) alone (without necessarily specifying the ac-
tion P) premodels M. Such premodels arise naturally when
considering coarse-grainings of exact models. As an example,
a predictive model that has no distortion if one uses three
causal states (s1, s2, s3), may be approximated by a model
with just two causal states, such as (s1, s2) where s2 can be the
encoded state for the case of the output associated with s3 in
the exact model. Suppose the exact model has a well-defined
memory-updating action P; this still leaves many choices for
the memory-updating action of the coarse-grained model and
one may consider leaving that undefined. We shall be par-
ticularly interested in premodels that are coarse-grainings of
exact models and output some finite number K of time series
outputs in one go, without a need to specify the update of the
memory state. We will use the distortion of such premodels
on the K outputs as a lower bound to the distortion of any
approximate admissible model with the tightness of the bound
in general changing with K . Checking the distortion of these
coarse-grained premodels involves checking possible coarse-
grainings which is much more tractable than considering all
memory-updating actions.

For technical reasons we introduce a class of models that
are intermediate between the K-output coarse-grained pre-
models and the unifilar models we are seeking to approximate
(recall unifilar models have a unique memory state update
for a given output and previous memory state). We term a
premodel K-unifilar if it has a memory-updating action P that
deterministically decides the updated memory state based on
the last memory state and an output of K time steps:

Definition 1. (K-unifilar premodel). For K ∈ Z+, a K-
unifilar premodel is the triple (E,F ,PK ) consisting of
a premodel (E,F ) with a deterministic map satisfying
the consistency condition PK : R × X⊗K → R such that
PK(E (←−x ), x0:K ) = E (←−x x0:K ) for all x0:K and all ←−x .

We write the set of all K-unifilar premodels of maximum
dimension d as Md

K . We write the set of premodels with
maximum dimension d and infinite future lengths as Md

∞.
Crucially, the valid morphs of K-unifilar premodels are

highly constrained:
Lemma 1. A K-unifilar premodel (E,F ,PK ) can always

be specified by the triple (E,FK ,PK ) where FK is a map from
R to probability distributions over words of length K .

Proof. First, let r := E (←−x ) and note that the definitions
of PK and F imply that F (E(←−x x0:K )) = F (PK (E(←−x ), x0:K ))
allowing for any substitutions of the form (for any L > K):

P(XK :L = xK :L|rx0:K ) = P(X0:L−K = xK :L|PK (r, x0:K )), (F1)

since if this was not the case then F would not consistently
assign the correct future morph for some memory states.

For notational brevity, we recursively define the set of
functions {rn : R × X nK → R}n as

rn(r, x0:nK ) = PK (rn−1(r, x0:(n−1)K ), x(n−1)K :nK ) (F2)

for n � 1, and r0 = r. For any M ∈ Z+, we can thus expand
the probability distribution

P(X0:MK = x0:MK |r)

= P(X0:K = x0:K |r)P(XK :KM = xK :MK |rx0:K )

= P(X0:K = x0:K |r0)P(X0:(M−1)K = xK :MK |r1(r, x0:K ))

= P(X0:K = x0:K |r0)P(X0:K = xK :2K |r1(r, x0:K ))

× P(XK :(M−1)K = x2K :MK |r1(r, x0:K )xK :2K )

= P(X0:K = x0:K |r0)P(X0:K = xK :2K |r1(r, x0:K ))

× P(X0:(M−2)K = x2K :MK |r2(r, x0:2K ))

= · · ·

=
M−1∏
i=0

P(X0:K = xiK :(i+1)K |ri(r, x0:iK )). (F3)

Here, Bayesian expansion allows us to make the first and third
equalities, and K unifilarity [via Eqs. (F1) and (F2)] allows us
to make the substitutions for the second and fourth equalities.
Thus, we can use this to generate a future morph for words
of any length KM as a function of the probability distribution
over the next K symbols. (Probabilities over words of length
that are not multiples of K can always be found by taking
marginals of a longer word that is a multiple of K .)

The contrapositive implies that if F does not assign prob-
abilities in this way, then it cannot satisfy Eq. (F1), and hence
is not a K-unifilar premodel. �

An immediate corollary of Lemma 1 is that a one-unifilar
premodel is exactly a unifilar hidden Markov model. It also
immediately follows that any K-unifilar premodel for K ∈ Z+
is also an NK-unifilar premodel for N ∈ Z+—and, particu-
larly, unifilar models are K-unifilar premodels for all K ∈ Z+.
For any maximum dimension d , this sets up the hierarchy
Md

1 ⊆ Md
K ⊆ Md

∞.

2. Calculating the distortion De

In this section we derive certain lemmas relating different
quantifications of distortion that we shall use in the proof of
the bound.

Consider two processes P and P̂, and for calculational
convenience, define the arguments within the limit of Eqs. (2)
and (3) as

DL(P, P̂) =
∑
←−x

P(←−x )DL(P, P̂|←−x ), (F4)

such that Eq. (3) may be written as

De(P, P̂) = lim
L→∞

DL(P, P̂). (F5)

Lemma 2. For stationary processes P and P̂:

De(P, P̂) = DK (P, P̂) = D1(P, P̂) ∀ K ∈ Z+. (F6)
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Proof. According to Bayesian rules, for L > 1:

P(x0:L|←−x ) = P(x0|←−x )P(x1:L|←−x x0). (F7)

Then (expanding the definition of KL divergence),

LDL(P, P̂) =
∑
←−x

P(←−x )
∑
x0:L

P(x0:L|←−x ) log2
P(x0:L|←−x )

P̂(x0:L|←−x )

=
∑
←−x

P(←−x )
∑

x0

P(x0|←−x ) log2
P(x0|←−x )

P̂(x0|←−x )

+
∑
←−x

P(←−x )
∑
x0:L

P(x0:L|←−x ) log2
P(x1:L|←−x x0)

P̂(x1:L|←−x x0)
.

(F8)

Since P and P̂ are stationary, we can substitute P(x1:L|←−x x0) =
P(x0:L−1|←−x ), and hence for L > 1:

LDL(P, P̂) = D1(P, P̂) + (L − 1)DL−1(P, P̂). (F9)

Then, inductively

DL(P, P̂) = D1(P, P̂) ∀ L � 1, (F10)

and hence also the limit

De(P, P̂) = lim
L→∞

DL(P, P̂) = D1(P, P̂). (F11)

�
Similarly, this enables a shortcut to calculate the distortion

between a process and a K-unifilar premodel:
Lemma 3. Let P be some stationary process, and

(E,FK ,PK ) be a K-unifilar premodel whose future morph is
generated by P̂(X0:K |E (←−x )). Then,

De(P, P̂) = DK (P, P̂). (F12)

Proof. We can group each word of K contiguous symbols from
process P over alphabet X into a single symbol of process Q
with alphabet Y := X K , such that the distributions over the
two processes are related by

Q(. . . , y0, y1, . . . ) = P(. . . , x0:R, xR:2R, . . . ). (F13)

We similarly group P̂ into Q̂. Since (E,F ,PK ) is a K-unifilar
premodel for P̂, it immediately defines a unifilar model for
Q̂ with encoding EQ :

←−
Y → R satisfying EQ(←−y ) = E (←−x )

where ←−y is the grouping of ←−x . Such combination has
no effect on the KL divergence and hence the distortion
satisfies

De(Q, Q̂) = KDe(P, P̂). (F14)

Meanwhile, using Lemma 2,

De(Q, Q̂) = D1(Q, Q̂)

=
∑
←−y

Q(←−y )D1(Q, Q̂|←−y )

=
∑
←−x

P(←−x )KDK (P, P̂|←−x )

= KDK (P, P̂). (F15)

And hence De(P, P̂) = DK (P, P̂). �

FIG. 10. P represents the given stochastic process. For a given
model dimension d , Md

∞ represent all premodels, Md
K represents

all K-unifilar premodels, and Md
1 represents all unifilar models.

3. Bounding the minimum distortion

We now build further on the definitions and lemmas
of the two previous sections to show that coarse-grained
(pre-) models can indeed achieve a distortion that lower-
bounds that of any other permissible classical model of
the given memory dimension. The proof is illustrated
in Fig. 10.

A consequence of the above lemmas (Lemmas 2 and 3) is
to make it easier to calculate bounds that minimize K-unifilar
premodels and unifilar models:

Lemma 4. Let P be a stationary process and let K, N ∈ Z+.
Then, for every dimension d ,

min
M∈Md

K

De(P, M ) � min
M∈Md

KN

DK (P, M ). (F16)

Proof. First, Lemma 3 tells us that for any K-unifilar premodel
De(P, M ) = DK (P, M ) and hence minM∈MK De(P, M ) =
minM∈MK DK (P, M ). Next, the hierarchy of models
Md

K ⊆ Md
KN , and hence a minimization over Md

KN
lower-bounds a minimization over Md

K . This proves
Eq. (F16). �

Why might we choose some finite number of outputs K
rather than minimizing the distortion De over generic (K =
∞) premodels, i.e., the set M∞ ? M∞ is so permissive that it
is possible to achieve no distortion. Consider any (stationary,
aperiodic) process, and let us assign a one-dimensional model,
but whose single future morph defines probabilities arbitrarily
far into the future, with statistics that increasingly match those
of P (e.g., by assigning a weighted average of P’s causal
state’s future morphs). For such a (highly nonunfilar) model,
De → 0, saturating the arithmetically obvious bound. Second,
the parameter space of P(

−→
X |E (←−x )) is a priori infinite, and

the above lemmas allow us to greatly reduce the relevant
parameter space of future morphs in our calculations to prob-
ability distributions over words of finite length K .

Although the above lemmas (Lemma 4 in particular) allow
us to reduce the dimensionality of F assigned to each memory
state, there still remains the problem that there are infinitely
many possible partitions of the past E . We will argue, with the
next set of lemmas, that for exploring minimum bounds, we
can restrict ourselves to the finite set of coarse-grainings over
the causal states.
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First, we note that the problem of finding a minimum dis-
tortion model is trivial if we allow models with high enough
dimension:

Lemma 5. For a process P with topological complexity
dc, then for all model dimensions d̂c � dc, there is a zero-
distortion unifilar model M such that

DK (P, M ) = 0 ∀ K ∈ Z+. (F17)

Proof. Such a minimum distortion model can be realized by
the ε machine of P, which has zero distortion. By definition
of causal states, P(X0:K |←−x ) = P(X0:K |ε(←−x )) for all K and ←−x ,
and hence DKL(P(X0:K |←−x )||P(X0:K |ε(←−x ))) = 0 for all L and←−x . This implies that all DK (P, P̂) = 0. �

Lemma 6. For any process P, for every dimension d , and
for every K ∈ Z+, if two pasts ←−y and ←−z have identical
future morphs in P, then there exists a premodel (Ed

min,F ) that
minimizes DK and satisfies

Ed
min(←−y ) = Ed

min(←−z ). (F18)

Proof. If d � dc, the ε machine has the minimum distor-
tion (see Lemma 5) and the causal state partition ε satisfies
Eq. (F18) by definition. Likewise, if dc = 1, there is only
one encoding onto a single state and so Eq. (F18) is triv-
ially satisfied. Thus, it remains only to prove the cases where
1 < d < dc.

Suppose ←−y and ←−z have identical future morphs in P,
and we have a premodel (E,F ) where encoding E (←−y ) �=
E (←−z ). Then without loss of generality (by switching the
labels of ←−y and ←−z if necessary) the implied statistics P̂
satisfy

DK (P, P̂|←−y ) � DK (P, P̂|←−z ), (F19)

where DK (P, P̂|←−x ) is defined in Eq. (F4).
We can then construct a new premodel with identical F ,

but with a new mapping E ′ identical to E in every way, except
it now maps ←−z to E(←−y ) instead of E(←−z ). This has implied
statistics P̂′, and

DK (P, P̂′|←−z ) = DK (P, P̂|←−y ) � DK (P, P̂|←−z ). (F20)

Hence DK of (E ′,F ) satisfies

DK (P, P̂′)

= P(←−z )DK (P, P̂′|←−z ) +
∑

←−x �=←−z
P(←−x )DK (P, P̂′|←−x )

= P(←−z )DK (P, P̂′|←−z ) +
∑

←−x �=←−z
P(←−x )DK (P, P̂|←−x )

� P(←−z )DK (P, P̂|←−z ) +
∑

←−x �=←−z
P(←−x )DK (P, P̂|←−x )

= DK (P, P̂). (F21)

It then follows that for any premodel where ←−y and ←−z with
identical future morphs map to different memory states, there
is another premodel of the same (or lower) dimension such
that ←−y and ←−z map to the same memory state, and this
premodel has the same or lower distortion. Hence, among
the minimum distortion premodels of a given process, there

will always be a premodel where ←−y and ←−z map to the same
memory state. �

The above lemma implies the following:
Lemma 7. For a process P with topological complexity dc,

for every dimension d < dc, and every K ∈ Z+ there is a
premodel M that minimizes DK (P, M ) whose encoding Ed

min
is a map onto a coarse graining of the causal states S .

Proof. This follows from Lemma 6 by noting that pasts
in the same causal state have the same future morph by
definition. �

Such coarse-grained models admit a computational short-
cut for calculating their distortion: we can define πi :=∑

←−x ∈si
P(←−x ) for each causal state si ∈ S , such that the dis-

tortion is

DK (P, P̂) =
dc∑

i=1

πiDK (P, P̂|si), (F22)

where for each si, DK (P, P̂|si) := DK (P, P̂|←−x ) for one arbi-
trary choice of ←−x ∈ si (since by definition the value is the
same for all such choices).

Crucially, the above lemma enables an exhaustive search
for DK -optimal premodels for any process with finite topo-
logical complexity—instead of having to consider an infinite
number of possible partitions, we can iterate through the var-
ious combinations of causal states.

Lemma 8. For a process P, for every dimension d , and
every K ∈ Z+ there is premodel M = (Ed

min,Fd
min) ∈ Md

∞ that
minimizes DK (P, M ) such that every memory state ri whose
entire pre-image [except for a measure zero subset with re-
spect to P(←−x )] is mapped to the causal state si′ , has the future
morph Fd

min(ri ) = P(
−→
X |si′ ).

Proof. Again, we consider the case where model dimension
d < dc since the case d � dc is trivially satisfied by the ε ma-
chine (Lemma 5). From Lemma 7 we may restrict ourselves
to coarse-grainings of ε machines.

Let si be the causal states of the process, indexed such
that i = 1, . . . , k correspond to states that are not merged,
and i = k + 1, . . . , dc are merged into states r1, . . . , rd−k (i.e.,
the states of the model are R = {s1, . . . , sk, r1, . . . , rd−k}). As
the lemma’s claim is vacuously true if k = 0, we consider
the cases when k � 1. Then, using the coarse-graining struc-
ture, and choosing an arbitrary past ←−x i ∈ si for each causal
state,

DK (P, P̂) =
k∑

i=1

πiDK (P, P̂|←−x i ) +
d∑

i=k+1

πiDK (P, P̂|←−x i ).

(F23)

If for any i ∈ [1, k] we have DK (P, P̂|←−x i ) > 0, we can instead
form a new premodel that assigns the future morph F (si) =
P(

−→
X |si). Then, in this new premodel Dk (P, P̂′|←−x i ) = 0 for all

such si. Thus,

DK (P, P̂′) =
d∑

i=k+1

πiDK (P, P̂|si ) � DK (P, P̂). (F24)

�
In simpler words: when we look for a DK -optimal pre-

model by merging states of an ε machine, we should not alter
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the future morphs of any “unmerged” states from how they are
in the ε machine.

Theorem 1. Let P be any stationary process. Then, for
every model dimension d̂c, the algorithm in Box 1 produces
a bound on the minimum distortion De of a unifilar model by
considering all possible mergers of causal states, and search-
ing over the next K output statistics.

Proof. Lemma 7 tells us that a DK -optimal premodel exists
that is formed by merging causal states but says nothing as
to whether such a premodels is unifilar. However, Lemma
4 implies that such a DK -optimized premodel bounds the
De–optimized unifilar models. Moreover, DK , as a function of
P̂(X0:K |E (←−x )), depends only on the next K output statistics.
As such, to find this minimum bound, we can iterate through
the various coarse-grainings of causal states of a given di-
mension and search through finite parameter space of P̂ to
minimize DK . The minimum found here will lower bound the
lowest value of De achievable by a unifilar model. �

4. Minimum-distortion approximations of Markov processes

For Markov processes, the bound of Theorem 1 is tight.
First:

Lemma 9. Let P be a process with Markov order κ . Then,
every encoding map E formed by coarse-graining the causal
states of P admits a κ-unifilar premodel. At least one such
κ-unifilar premodel minimizes Dκ (P, P̂).

Proof. Let ε be the encoding map onto causal states, and C :
S → R be the coarse–graining map from causal states S to
memory states R, such that E = C ◦ ε. We must demonstrate
that there exists a Pκ such that Pκ (E(←−x ), x0:κ ) = E(←−x x0:κ ) for
all ←−x and all x0:κ . Since P has Markov order κ , there exists
an ε̃ : X⊗κ → S that acts on only the final κ symbols of the
history to identify the causal states, and for every ←−x that ends
in the same x−κ:0, ε(←−x ) = ε̃(x−κ:0 ). We thus have an Ẽ = C ◦
ε̃ that maps to the same memory state as E for every x−κ:0 and
every ←−x that ends in x0:κ .

Thus, now consider Pκ (E(←−x ), x0:κ ) = E(←−x x0:κ ) =
Ẽ (x0:κ ). A candidate Pκ can be defined such that it is
completely independent of its first argument (the current
machine state r ∈ R) and instead takes exactly the same
value as Ẽ applied to its second input (the recently output
word x0:κ ∈ X κ ). Thus, there exists a κ-unifilar premodel for
any such E .

Now, from Lemma 7, we know that the Dκ optimal (∞-
unifilar) premodel (E,F ) is formed by merging causal states,
but a priori we have not demonstrated that such a model is
κ-unifilar. To calculate Dκ , we need only evaluate the proba-
bilities associated with the first κ outputs. Thus, we can define
Fκ as per Lemma 1 such that Fκ and F perfectly agree on
the statistics of the first word of length κ in the morph. Then,
taking the encoding map of E from this premodel, we form
a κ-unifilar model (E,Fκ ,Pκ ) where Pκ is defined as above.
Since Dκ only depends on the first κ steps of the future, min-
imizing the value of Dκ (P, P̂) provides the optimal κ-unifilar
premodel. As such, we have formed a minimum-distortion
κ-unifilar premodel. �

When the process is Markovian, these lemmas then give
us a systematic method for finding the minimum distortion
unifilar hidden Markov model.

FIG. 11. Approximate model for asymmetric process. The ap-
proximate classical model for the asymmetric example with p = 0.3
and q = 0.8. s0 and s1 of the original asymmetric process are merged
into r0, with transition probabilities identified by a minimization. s2

is mapped to r1 with an unchanged future morph.

Theorem 2. Let P be a Markov process. Then, for every
model dimension d , we can find a minimum distortion unifilar
model by merging causal states, and searching over the next–
output statistics.

Proof. If d � dc, this encoding is the ε machine (Lemma
5). In the case d < dc, we use Lemma 7, to find a Ed

min that is
a coarse–graining of causal states. Then Lemma 9 specialized
to κ = 1 implies that this model can be made unifilar. �

APPENDIX G: CLASSICAL MINIMUM DISTORTION
MODELS: EXAMPLES

As illustrative examples, we present the minimum–
distortion approximate classical model for the asymmetric
process with p = 0.3, q = 0.8 in Fig. 11 and for quasicycle
with p = 0.5, δ = 0.1 in Fig. 12.

For the third example, we evaluate DN as a lower bound
on the error of the optimal classical model for any discrete
renewal process with N states, as shown in Fig. 4(b).

APPENDIX H: IMPLEMENTATION OF QUANTUM
MODELS FOR THE DISCRETE RENEWAL

PORCESS ON IBM’s DEVICES

To investigate the real-world performance of the models
found by the algorithm, we implement one of the discovered
quantum models for the discrete renewal process on IBM’s
superconducting cloud quantum computer. We consider the
case of d̂q = 2, N = 3 and decompose the quantum model into
a quantum circuit consisting of single qubit gates and CNOT

gates, as shown in Fig. 13. The IBM device used was “ibmq
athens.” We ran the circuit 40 000 times for each input quan-
tum state and obtained the output probabilities by measuring
the output register.

Figure 5 compares the distortion realized on the IBM de-
vice with the optimal classical bound for d̂c = 2 and the ideal
realization of the learned quantum model. The 40 000 runs

FIG. 12. Approximate model for quasicycle. The approximate
classical model for the quasicycle example with p = 0.5 and δ = 0.1.
s0 and s1 of the original quasicycle process are merged into r0. The
transition probability is minimized by going through the probability
vector space. s2 is mapped to r1 with an unchanged future morph.
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FIG. 13. Circuit diagram for a single step output. The upper line
represents the memory qubit while the lower line represents the
output register. The circuit involves eight single qubit gates [U (θi )]
and three CNOT gates. Each single qubit gate is specified by three real
parameters. U (θ1) encodes the input memory state.

were divided into 50 batches, and the distortion was calculated
for each batch. The error bar depicts the standard deviation in
distortion of those 50 batches. Our quantum model maintains
a statistically significant accuracy advantage even in a noisy
environment: there is a 2.12 standard deviations gap between
the experimental quantum distortion and our lower bound on
the best classical distortion.

Figure 14 compares the conditional probability distribution
realized on “ibmq athens” with the corresponding noiseless
distribution of the learned quantum model.

FIG. 14. Comparison of experimental (orange) and theoretical
(blue) realizations of the learned quantum model to the true process.
Each datum represents the difference between the model’s condi-
tional probability for a given past, and the true process’s conditional
probability.

FIG. 15. ε machine for dual Poisson processes.

APPENDIX I: DUAL POISSON PROCESSES

Here we consider a process whose quantum models outper-
form classical models. Consider a system that consists of two
Poissonian channels with rates γ1 and γ2. At any time, only
one of the two channels is turned on, undergoing Poissonian
decay events. Once an event occurs, both of the two channels
are turned off. Then the system randomly turns on one of the
two channels with probability p and 1 − p, respectively. An
observer measures the system at discrete time intervals �t ,
recording a 1 when an event occurs, and 0 otherwise. The
series of zeros and ones form a stochastic process, called a
dual Poisson process. Many important features of dual Pois-
son processes can be characterized by the so-called survival
probability �(k), which is the probability of observing a con-
tiguous string of zeros (book-ended by ones) of at least length
k:

�(k) = pqk
1 + (1 − p)qk

2, (I1)

where qi = exp(−γi�t ).
The ε machine of the dual Poisson process consists of

infinitely many causal states {Sk}, as shown in Fig. 15. Each
causal state Sk represents the class of the pasts ←−x , which con-
tains k contiguous zeros since the last one when tracking back
the past ←−x (e.g., S2 = {· · · 100}). The transition probability
between causal states Sk can then be induced from the survival
probability,

P(Sk+1, 0 | Sk ) = �(k + 1)

�(k)
,

P(S0, 1 | Sk ) = 1 − �(k + 1)

�(k)
. (I2)

Quantum models exhibit unbounded memory advantages
for exact simulation of the dual Poisson processes [17].
Specifically, quantum models achieve such a significant mem-
ory compression by encoding the causal states Si into quantum
states |σi〉, which lie in a Hilbert space with dimension two:

|σk〉 =
√

pqk
1 + ig

√
p̄qk

2√
�(k)

|0〉 + i
√

(1 − g2) p̄qk
2√

�(k)
|1〉, (I3)

where

p̄ = 1 − p, g =
√

(1 − q1)(1 − q2)

1 − √
q1q2

. (I4)
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There exists unitary operator U that carries out the transition dynamics between quantum states |σi〉

U |σk〉|0〉 =
√

�(k + 1)

�(k)
|σk+1〉|0〉 +

√
1 − �(k + 1)

�(k)
|σ0〉|1〉. (I5)

When the memory resource is limited, any classical models will inevitably introduce distortion whereas the simulations of
quantum models are exact.
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