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Coherences in mutually unbiased bases of states of an isolated quantum system follow a complementarity
relation. The nonlocal advantage of quantum coherence (NAQC), defined in a bipartite scenario, is a situation in
which the average quantum coherences of the ensembles of one subsystem, effected by a measurement performed
on the other subsystem, violate the complementarity relation. We analyze two criteria to detect NAQC for
bipartite quantum states. We construct a more generalized version of the criterion to detect NAQC that is better
than the standard criterion as it can capture more states exhibiting NAQC. We prove the local unitary invariance
of these NAQC criteria. Further on, we focus on investigating the monogamy properties of NAQC in the tripartite
scenario. We check for monogamy of NAQC from two perspectives, differentiated by whether or not the nodal
observer in the monogamy relation performs the measurement for the nonlocal advantage. We find in particular
that in the case where the nodal observer does not perform the measurement, a strong monogamy relation—an
exclusion principle—is exhibited by NAQC.
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I. INTRODUCTION

In recent years, quantum coherence (QC) [1] has emerged
as a key notion of nonclassicality. The underlying concept
of QC is the wave-like nature of systems which allows
two distinct pure states of a system to interfere coherently
with each other, forming a quantum superposition. QC is
crucial in areas such as quantum information theory [1],
metrology [2,3], quantum biology [4–8], and quantum ther-
modynamics [9–12]. In the literature, there exist different
measures of QC, and the resource theory of QC has also
been developed [13–20]. However, understanding about the
ability to manipulate and utilize QC as a resource is far from
complete, especially in the multipartite setting.

There exists a complementarity relation for coherences of
an isolated qubit system in that the sum of quantum coher-
ences of its states in mutually unbiased bases (MUBs) [21–24]
is nontrivially bounded from above [25,26]. The notion of
nonlocal advantage of quantum coherence (NAQC) was in-
troduced in the bipartite scenario to detect steerability, as
captured by coherence [26]. That is, the average coherence
of the ensemble of states of one of the parties, affected by
the measurement on the other party, was shown to violate the
complementarity bound for quantum coherence of an isolated
system. While a state that shows NAQC is steerable, the con-
verse is not always true, making the set of states exhibiting
NAQC strictly smaller than the set of steerable states [27].

Unlike its classical counterpart, nonclassical correlations
of multipartite systems have restricted sharability and are re-
ferred to as the monogamous property [28], for the quantum
state and the nonclassical shared physical quantity con-
sidered. For research on monogamy of entanglement, see

Refs. [28–33], and for that of quantum discord, see [34,35].
See Refs. [36] and [37,38] for reviews of entanglement and
quantum discord, and Refs. [39,40] for their monogamy prop-
erties.

The current work focuses on investigating the monogamy
properties of NAQC, as an integral part of characterizing it as
a nonclassical correlation. We consider two criteria of NAQC
and refer to them as the standard and generalized NAQC
criteria. The standard criterion includes measurements only in
bases belonging to an arbitrary MUB on one of the subsystems
of the bipartite system, while the generalized version includes
measurements belonging to an arbitrary set of bases on a sub-
system. Both criteria involve optimizations over the relevant
sets of projective measurements (MUBs for standard criterion
and an arbitrary set of bases for generalized criterion) and
the set of MUBs for quantum coherence measurement, which
makes both the NAQC functionals local unitary invariant. We
show that the generalized NAQC criterion allows to capture
more states that exhibit NAQC. We also provide a lower bound
of both the NAQC functionals for any bipartite system.

Next, we check the monogamy properties of NAQC which
is motivated by the following consideration. The phenomenon
of NAQC and its quantifications utilize a single-site quantum
characteristic, viz. quantum coherence, to create a two-body
physical quantity, which exhibits certain “nonlocal” aspects.
Typical quantum correlations are often connected with nonlo-
cality, and are almost universally observed to exhibit certain
monogamy properties [39,40]. With this motivation, we con-
sider the monogamy properties of NAQC, for the set of pure
three-qubit states in two separate scenarios. The first case
corresponds to the situation where the ensemble-generating
measurements are performed on different subsystems of
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the tripartite system, while we switch parties to define the
monogamy relation. The measurements are therefore per-
formed on the “non-nodal” parties in this case. We show
that the generalized NAQC is strongly monogamous in this
scenario. Indeed, there appears an exclusion principle in this
case. In the second scenario, the nodal party performs the
ensemble-generating measurements. The strong monogamy is
no more valid here.

II. PRELIMINARIES

We begin by introducing some of the key elements essen-
tial for analyzing the monogamy of NAQC. The central notion
of this work is quantum coherence (QC). QC, assuredly a
basis-dependent notion, is the underlying concept of quantum
entanglement and other quantum phenomena. It arises from
coherent superposition of states of a quantum system. Several
measures can be opted for measuring QC, such as relative
entropy of quantum coherence [14], l1-norm of quantum co-
herence [14], geometric quantum coherence [41], etc.

For the current work, we will opt for the l1-norm of quan-
tum coherence [14], which, for any quantum state ρ, is defined
as the sum of absolute values of all nondiagonal elements of
the state corresponding to a chosen basis M, i.e., CM (ρ) :=∑

i �= j |ρi j |, where ρi j represents the component of the state
ρ for the ith row and jth column, in the computational basis.
The l1-norm of coherence of ρ in a given basis is zero if all the
nondiagonal elements of the state in the corresponding basis
are zero, and such states are termed incoherent states for that
basis, in the resource theory of coherence.

The subsequent key ingredient to define NAQC is the
concept of mutually unbiased bases [21–24]. Let {{|ea

i 〉}a}i

represent a set of bases, where the subscript i indicates dif-
ferent bases and a indicates different elements of a basis. If
for a set of orthonormal bases on the Hilbert space H with
dimension d , the elements of any two bases satisfy the relation
| 〈ea

i | eb
j〉|2 = 1

d , for i �= j and all a, b ∈ {1, 2, ..., d}, then this
set of bases is said to form a set of MUBs. There can be at
most three bases forming a set of MUBs in a two-dimensional
complex Hilbert space. The set of eigenbases of σx, σy, and
σz (Pauli) matrices is an example. We will exclusively be
considering MUBs in the qubit Hilbert space.

At this point, we are ready to set forth the quantum co-
herence complementarity relation for a single-qubit system,
presented in Refs. [25,26], which states that the sum of quan-
tum coherences for any qubit, over a set of three bases forming
a set of mutually unbiased bases, has the following nontrivial
upper bound:

3∑
i=1

CMi �
√

6. (1)

Here, CMi denotes the value of quantum coherence of the
corresponding state measured in the basis Mi, where {Mi, i =
1, 2, 3} forms a set of MUBs. This bound is nontrivial as the
maximum value of the l1-norm of coherence of a qubit over
all bases is unity.

This sets the stage for us to briefly recapitulate the notion
of nonlocal advantage of quantum coherence. Consider two
spatially separated parties, Alice and Bob, sharing a two-qubit

state ρAB. Alice performs measurements on her part of the
shared state, resulting in ensembles of states of Bob’s sub-
system. As Alice communicates her measurement outcomes
to Bob, the average quantum coherence of the ensembles
of states at Bob’s end may violate the quantum coherence
complementarity relation given in (1), exhibiting a “nonlocal
advantage” of QC. Formally, NAQC can be defined as follows.

Definition 1 (Nonlocal advantage of quantum coher-
ence [26]). Violation of the quantum coherence complemen-
tarity relation for average quantum coherences of one of the
subsystems of a bipartite system by measurements on the
other subsystem is defined as the nonlocal advantage of quan-
tum coherence.

It has been established that only entangled bipartite states
can exhibit NAQC [26], and indeed, nonsteerable states can-
not show NAQC, so the set of states providing NAQC is a
subset of the set of steerable states [27]. For states on C2 ⊗
C2 with diagonal correlation matrix, NAQC also captures
stronger quantum correlation than “Bell nonlocality” [42].

Lastly, we mention the standard form of the three-qubit
pure state that will be used in this work. In the computational
basis, any three-qubit pure state |�〉ABC , up to local unitaries,
can be written as

|�〉ABC = λ0 |000〉 + λ1eiβ |100〉 + λ2 |101〉 + λ3 |110〉
+ λ4 |111〉 , (2)

where λi � 0,
∑4

i=0 λ2
i = 1, β ∈ [0, π ] [43–45]. Equation (2)

represents W-class states when λ4 = 0 and β = 0.

III. DETECTION OF NONLOCAL ADVANTAGE OF
QUANTUM COHERENCE

In this section, we present and analyze two criteria to
detect NAQC. In the standard criterion to detect NAQC,
Alice performs measurements only in the bases belonging
to a set of MUBs, {{�a

i }a}i. She then communicates her
measurement settings and outcomes to Bob, creating three
ensembles of states, Ei ≡ {p(ρB|�a

i
), ρB|�a

i
}a, at Bob’s end,

where p(ρ) is the probability of getting the state ρ, in
the relevant measurement (at Alice). Now consider an in-
dependent set of MUBs, viz. {Mi}i, and Bob measures the
quantum coherence of the ensemble Ei in the basis Mi, so
that the average coherence of ensemble Ei in the basis Mi

is given by
∑

a p(ρB|�a
i
)CMi (ρB|�a

i
). Notice that the average

of coherences is taken over the outcomes (at Alice) for a
given measurement setting i (at Bob). Finally, we sum these
average quantum coherences over all values of i to obtain∑

i,a p(ρB|�a
i
)CMi (ρB|�a

i
). This sum is to be compared with

the left-hand side of the complementarity relation (1). This
sum can be maximized over the choice of the sets of MUBs,
{�i}i ≡ {{�a

i }a}i and {Mi}i, to obtain

N→(ρAB) := max
{Mi}i,{�i}i

∑
i,a

p
(
ρB|�a

i

)
CMi

(
ρB|�a

i

)
, (3)

where the → indicates that the (ensemble-generating) mea-
surement is done at party A and quantum coherence is
measured by party B. We now formally state the standard
criterion for detecting NAQC as follows.
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Criterion 1. [Standard criterion for NAQC detection] Any
two-qubit state ρAB exhibits advantage in quantum coherence
“nonlocally” if

N→(ρAB) >
√

6. (4)

We refer to N→(ρAB) as an NAQC functional. The above
NAQC detection criterion is only a sufficient criterion, and not
a necessary one, since Alice performs a measurement only in
the bases contained in a set of MUBs, {�a

i }a, to detect NAQC.
For the criterion to become necessary and sufficient, one needs
to perform optimization over all possible measurements on
Alice’s side.

Next, in order to capture a larger set of states exhibiting
NAQC, we consider a generalized version of the standard
NAQC criterion. In the generalized criterion, Alice is not
restricted to performing measurements only in bases forming
a set of MUBs. That is, she may choose a set of arbitrary three
bases which, in general, may not form a set of MUBs, for
measurement on her subsystem.

Criterion 2. [Generalized criterion for NAQC detection]
Any two-qubit state ρAB shows advantage in quantum
coherence “nonlocally” if

N→(ρAB) := max
{Mi}i,{	i}i

∑
i,a

p
(
ρB|	a

i

)
CMi

(
ρB|	a

i

)
>

√
6, (5)

where {{	a
i }a}i are a set of three arbitrary projective measure-

ments, while {Mi}i are an arbitrary set of MUBs.
This criterion is potentially also sufficient and not neces-

sary since not all measurements are spanned on Alice’s side.
But nevertheless, by construction, it is no less strong than the
standard criterion, i.e.,

N→(ρAB) � N→(ρAB). (6)

We will explicitly show below that the generalized criterion
can detect the nonlocal advantage of quantum coherence of
states which are not detected by the standard criterion.

Let us now demonstrate a useful property of invariance of
the functionals, N→(ρAB) and N→(ρAB), under the action of
local unitaries on the state in their arguments.

Theorem 1. The NAQC functionals, N→(ρAB) and
N→(ρAB), are invariant under the action of local unitaries for
any quantum state, ρAB.

Proof. Consider the transformation ρ ′
AB = (U ⊗

V )ρAB(U † ⊗ V †), where U and V are arbitrary unitary

operators. We first want to show that N→(ρAB) = N→(ρ ′
AB).

Let {{�a
i }a}i and {Mi}i be sets of MUBs responsible for

the maximization in (3) for the state ρAB. Let ρB|�a
i

be the
conditional states at Bob’s end, after Alice’s measurements.

Now, consider the set of measurements, {{�′a
i }a}i =

{{U�a
i U

†}a}i, performed by Alice, and {M ′
i }i =

{V MiV †}i, used by Bob on the state ρ ′
AB to obtain∑

i,a p(ρ ′
B|�′a

i
)CM ′

i
(ρ ′

B|�′a
i

). Note that the reduced states at
Bob’s end, created due to measurements, {{�′a

i }a}i, by
Alice on ρ ′

AB are V ρB|�a
i
V † and its occurrence probability,

p(V ρB|�a
i
V †) = p(ρB|�a

i
). Also note that

CMi (χ ) = CV MiV † (V χV †), (7)

where χ is a single-qubit density matrix. Thus, for the mea-
surements, {{�′a

i }a}i and {M ′
i }i, which are sets of MUBs as

their parents were so,∑
i,a

p
(
ρ ′

B|�′a
i

)
CM ′

i

(
ρ ′

B|�′a
i

) = N→(ρAB).

⇒ N→(ρ ′
AB) � N→(ρAB). (8)

Now, ρAB = (U † ⊗ V †)ρ ′
AB(U ⊗ V ), where U † and V † are

also unitary, and thus a similar treatment as above leads to

N→(ρAB) � N→(ρ ′
AB). (9)

Therefore, (8) and (9) prove that

N→(ρ ′
AB) = N→(ρAB), (10)

and thus we have proven invariance under local unitaries, of
N→.

Notice that the above proof can be repeated without re-
quiring the measurements to belong to sets of MUBs, proving
that the generalized NAQC functional, N→(ρ ′

AB), is also unaf-
fected by local unitary action on the states. �

Now we present a lemma providing a lower bound of the
quantity N→(ρAB), and thus a lower bound of the quantity
N→(ρAB).

Lemma 1. The NAQC functional of an arbitrary state ρAB

of two qubits is lower bounded by the sum of the quantum
coherences of the reduced state, TrA[ρAB] of ρAB, measured in
an arbitrary set of mutually unbiased bases.

Proof. Let {Mi}i be an arbitrary set of mutually unbiased
bases and {�a

i }a be another. Then, the NAQC functional for
any bipartite state ρAB can be expressed as

N→(ρAB) := max
Mi,�

a
i

∑
i,a

p
(
ρB|�a

i

)
CMi

(
ρB|�a

i

)

= max
Mi,�

a
i

∑
i,a

p
(
ρB|�a

i

)
CMi

(
TrA

[〈
�a

i ⊗ 1B

∣∣ ρAB

∣∣�a
i ⊗ 1B

〉
p
(
ρB|�a

i

)
])

� max
Mi,�

a
i

∑
i

CMi

(∑
a

p
(
ρB|�a

i

)
TrA

[〈
�a

i ⊗ 1B

∣∣ ρAB

∣∣�a
i ⊗ 1B

〉
p
(
ρB|�a

i

)
])

= max
Mi

∑
i

CMi (TrA[ρAB]) = max
Mi

∑
i

CMi (ρB),

⇒ N→(ρAB) � max
Mi

∑
i

CMi (ρB),
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where the first inequality is due to the convexity of quantum
coherence [14] and the following equality is due to the fact
that any measurement on any subsystem of a system cannot
disturb the average state of the other subsystems.

We have used the notation ρB := TrA[ρAB] for the reduced
density matrix of the state ρAB in the B part. This completes
the proof. �

Consider now an arbitrary set of mutually unbiased bases,
{Mi}i, for i ∈ {1, 2, 3}, of a single qubit, for which the ele-
ments of the bases can be expressed as follows:

{|M±
1 〉} =

{
cos

θ ′

2
|0〉 + eiφ′

sin
θ ′

2
|1〉 ,

× sin
θ ′

2
|0〉 − eiφ′

cos
θ ′

2
|1〉

}
, (11)

|M±
2 〉 = |M+

1 〉 ± |M−
1 〉√

2
, (12)

|M±
3 〉 = |M+

1 〉 ± i |M−
1 〉√

2
, (13)

where |0〉 , |1〉 are eigenvectors of the σz matrix, and θ ′, φ′
are azimuthal and polar angles in spherical polar coordinates.
Quantum coherences of a general single-qubit state in these
bases are obtained in Appendix A. These are important for
evaluation of the NAQC functionals later in the paper.

It has been realized that nonsteerable bipartite states can
never exhibit nonlocal advantage of quantum coherence [27],
and thus the same follows for the standard NAQC as well
as the generalized NAQC functionals (see Appendix B).
Therefore, separable states will never exhibit NAQC, as in-
dicated by using the standard NAQC and generalized NAQC
functionals [26].

A classical (probabilistic) mixture of two Bell states, say,
|φ+〉 (:= 1√

2
[|00〉 + |11〉]) and |ψ+〉 (:= 1√

2
[|10〉 + |01〉]),

can be represented as

ρAB = p |φ+〉 〈φ+| + (1 − p) |ψ+〉 〈ψ+| , (14)

with p ∈ [0, 1]. Using this set of states, we find that the gen-
eralized NAQC criterion detects strictly more two-qubit states
exhibiting NAQC than the standard NAQC criterion. This is
shown in Fig. 1. As another example, consider the two-qubit
Werner states,

ρW = p |φ+〉 〈φ+| + (1 − p)

4
1, (15)

with p ∈ [0, 1] and 1 representing the identity operator on the
C2 ⊗ C2 Hilbert space. It is known that two-qubit Werner
states are entangled if p > 1

3 [46,47] and steerable if p >
1
2 [48]. Interestingly, we observe in Fig. 2 that there exist
entangled and steerable states which do not exhibit nonlocal
advantage of quantum coherence when the standard NAQC
or the generalized NAQC functionals are taken into account.
So, the set of states showing NAQC, using both the NAQC
functionals, is still a strict subset of the set of entangled states,
as well as that of the set of steerable states.

IV. MONOGAMY OF NAQC

Since a NAQC functional of a bipartite system in-
volves quantum measurements on one of the subsystems and

1.4

1.8

2.2

2.6

3

0 0.1 0.2 0.3 0.4 0.5

N
A
Q
C

p

1.4

1.8

2.2

2.6

3

0 0.1 0.2 0.3 0.4 0.5

N
A
Q
C

p

1.4

1.8

2.2

2.6

3

0 0.1 0.2 0.3 0.4 0.5

N
A
Q
C

p

FIG. 1. NAQC for probabilistic mixtures of two Bell states. We
plot the NAQC functionals (vertical axis) for mixtures of two Bell
states, parametrized by the mixing parameter p (horizontal axis).
Pink triangles and blue circles denote the standard and generalized
NAQC functionals, respectively, whereas the green line represents
the upper bound beyond which NAQC occurs in a two-qubit system.
We find that the states with p � 0.144 exhibit NAQC using the stan-
dard criterion, whereas all states with p � 0.5 exhibit NAQC using
the generalized criterion. This shows that the generalized criterion
detects more two-qubit states exhibiting NAQC than the standard
criterion. All quantities used are dimensionless.

quantum coherence of reduced states on the other subsystem,
monogamy of NAQC for tripartite state ρABC can be seen from
two different perspectives. In one of them, quantum coherence
is measured on a fixed subsystem, A, while measurements for
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FIG. 2. Nature of NAQC for two-qubit Werner states. All con-
siderations are the same as in Fig. 1 except that here the states under
discussion are two-qubit Werner states. They exhibit NAQC for the
mixing parameter, p � 0.815, using both the NAQC functionals con-
sidered in this paper.
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FIG. 3. Exclusion principle for NAQC in three-qubit system. We
analyze here the nature of monogamy of the generalized NAQC
functional when the reduced states of the fixed subsystem A are
subjected to coherence measurement for any pure three-qubit state of
ABC. We plot N←(ρAC ) along the horizontal axis and N←(ρAB ) along
the vertical axis. GHZ- and W-class genuine three-qubit entangled
pure states are represented by pink and dark blue circles, respectively,
while the condition N←(ρAC ) + N←(ρAB) = 2

√
6 is denoted by the

orange straight line. All quantities used are dimensionless.

creating ensembles at A are performed on one of the remaining
subsystems, viz. B and C, so that the quantity under study is

N←(ρAB) + N←(ρAC ). (16)

In the other one, monogamy of NAQC is studied in the situa-
tion where quantum measurements for generating ensembles
are performed on a fixed subsystem A of the multipartite sys-
tem, and quantum coherence of states is measured by switch-
ing the remaining subsystems, i.e., the quantity studied is

N→(ρAB) + N→(ρAC ). (17)

Here, ρAB and ρAC denote reduced states of ρABC by tracing
out parties C and B, respectively. We now note that 2

√
6

would be a nontrivial upper bound for the above sums, for
monogamy of NAQC in the tripartite system ABC. The
inequalities would then suggest that if the pair AB shows
NAQC, then the pair AC will not exhibit NAQC, and vice
versa. Such monogamy has previously been observed for Bell
correlations [49–52] and for quantum dense coding [53].

A. Monogamy when coherence is measured
on a fixed subsystem

We examine here monogamy of the generalized NAQC
functional for three-qubit pure states ρABC , where quantum co-
herence is measured on the fixed subsystem, A. We therefore
focus on the expression in (16).

Note that the upper bound of (16) that can be achieved, by
fully separable pure three-qubit states, is 2

√
6. For all bisep-

arable pure three-qubit states, the maximum of N←(ρAB) +
N←(ρAC ) is also (2

√
6). By employing a nonlinear opti-

FIG. 4. Sharing of nonlocal advantage of quantum coherence,
when ensemble-generating measurements are performed on a fixed
party. We plot N→(ρAB) on the vertical axis against N→(ρAC ) rep-
resented on the horizontal axis, for Haar-uniformly generated pure
genuine three-qubit entangled states, viz. the states of the GHZ
and W classes. GHZ- and W-class states are denoted by pink and
dark blue points, respectively, whereas the orange line represents
the equation of the straight line, N→(ρAC ) + N→(ρAB) = 2

√
6. All

quantities used are dimensionless.

mization routine, we numerically analyze monogamy of the
generalized NAQC functional for all GHZ- and W-class three-
qubit pure states. We find that the expression in (16) can reach
a maximum of N←(ρAB) + N←(ρAC ) ≈ 4.899 ≈ 2

√
6. Since

the upper bound of N←(ρAB) + N←(ρAC ) for all three-qubit
pure states is 2

√
6, we therefore have a strong monogamy—an

exclusion principle—for such states, as if ρAB exhibits NAQC,
ρAC does not, and vice versa, where the quantum coherence
measurements in both cases are at the party A. In Fig. 3,
we also plot a scatter diagram of N←(ρAB) versus N←(ρAC )
for Haar-uniformly generated Greenberger-Horne-Zeilinger–
(GHZ-) [54,55] and W-class [44,56] three-qubit pure states.

B. When ensemble-preparing measurement
is performed on a fixed subsystem

Finally, we analyze monogamy properties of the general-
ized NAQC functional for any three-qubit pure state under
the assumption that the ensemble-generating projective mea-
surements are performed on a fixed subsystem of the tripartite
system.

We notice that the maximum of (17), for all fully sepa-
rable and biseparable three-qubit pure states, would be 2

√
6

and (3 + √
6), respectively. We also observe that, unlike the

previous case, a generic pure three-qubit state may not always
satisfy the strong monogamy—the exclusion principle—for
the generalized NAQC, when the ensemble-generating pro-
jective measurements are performed on a fixed subsystem.
In other words, there exist genuine three-party entangled
pure states that violate the inequality, N→(ρAC ) + N→(ρAB) �
2
√

6. This is demonstrated in Fig. 4 by plotting N→(ρAB)
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with respect to N→(ρAC ) for Haar uniformly generated pure
three-qubit states.

V. CONCLUSION

Nonlocal advantage of quantum coherence captures a
form of “steerability” of bipartite quantum states in terms
of quantum coherence. There exists a quantum coherence
complementarity relation for an isolated single-qubit system,
stating that the sum of quantum coherences in any set of mu-
tually unbiased bases is nontrivially bounded from above. A
two-qubit state can exhibit NAQC if for some measurements
on one of the subsystems, the sum of the average quantum
coherences of the other subsystem violates the isolated single-
qubit complementarity relation.

In this paper, we have considered detection of NAQC by
using two criteria. The first one is referred to as the standard
criterion, which allows measurements in a arbitrary set of
MUBs on one of the subsystems of the bipartite system, for
creating ensembles. The second criterion is termed the gener-
alized criterion, as the restriction of the ensemble-generating
measurement bases to be a set of MUBs is relaxed. In both the
criteria, an optimization of the NAQC functionals over all the
relevant measurement bases is considered, which makes both
the NAQC functionals local unitarily invariant over the states.
We also explicitly demonstrated that the generalized NAQC
criterion performs better than the standard NAQC criterion,
in that the former can capture a greater number of bipartite
states exhibiting nonlocal advantage of quantum coherence.
In addition, we provided a lower bound on both the NAQC
functionals for bipartite systems in terms of the quantum
coherence of a reduced state.

Lastly, we examine the monogamy of NAQC in tripartite
systems in two different cases: first, when coherence of states
of a fixed subsystem of the tripartite system is measured, and
second, when the ensemble-generating projective measure-
ments are carried out on a fixed subsystem of the tripartite
system. In the first case, it is shown that all three-qubit pure
states follow a strong monogamy—an exclusion principle—of
NAQC. However, in the second case, the strong monogamy of
NAQC may or may not be followed for general pure three-
qubit states.
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APPENDIX A: QUANTUM COHERENCE OF A QUBIT

We provide here the quantum coherence of a qubit state
with respect to a basis chosen from an arbitrary set of MUBs
on the qubit Hilbert space. A single-qubit state, ρ, expressed
in the σz basis, will have the form

ρ :=
(

ρ00 ρ10

ρ01 ρ11

)
.

The l1-norm of quantum coherence with respect to the
bases in Eqs. (11), (12), and (13) will be

CM±
1

= 2

∣∣∣∣1

2
sin θ ′ρ00 − 1

2
sin θ ′ρ11 − eiφ′

cos2 θ ′

2
ρ01

+e−iφ′
sin2 θ ′

2
ρ10

∣∣∣∣, (A1)

CM±
2

= | cos θ ′ρ00 − cos θ ′ρ11 + eiφ′
(1 + sin θ ′)ρ01

− e−iφ′
(1 − sin θ ′)ρ10|, (A2)

CM±
3

= |ρ00 − ρ11 + ieiφ′
ρ01 + ie−iφ′

ρ10|. (A3)

APPENDIX B: PROOF OF NONEXHIBITION OF
GENERALIZED NAQC BY ANY NONSTEERABLE

TWO-QUBIT STATE

In quantum information tasks, steerability [57] is a signifi-
cant quantum resource. Let us assume that Alice and Bob are
situated in two distant labs, and share a state, ρAB, between
them. Suppose that Alice makes a measurement in the setting
“x” and obtains the outcome “a.” Let the conditional state ob-
tained thereby at Bob be ρ(a|x). Assume also that there exists
a hidden variable λ, distributed as pλ, such that there exists
a “hidden” state, σB(λ) at Bob and a conditional probability
p(a|x, λ) with

ρ(a|x) =
∑

λ

pλ p(a|x, λ)σB(λ).

Then we call the state ρAB nonsteerable if the above relation is
available for every setting x and every outcome a. Otherwise,
it is steerable.

The NAQC for any nonsteerable bipartite state can be
determined as

N→(ρAB)

:= max
Mi,�

a
i

∑
i,a

p
(
ρB|�a

i

)
CMi

(
ρB|�a

i

)

= max
Mi,�

a
i

∑
i,a

p
(
ρB|�a

i

)
CMi

(∑
λ pλ p

(
a|�a

i , λ
)
σB(λ)

p
(
ρB|�a

i

)
)

� max
Mi,�

a
i

∑
i,a,λ

pλ p
(
a|�a

i , λ
)
CMi [σB(λ)],

= max
Mi

∑
i,λ

pλCMi [σB(λ)]

�
∑
i,λ

pλ

√
6 =

√
6,

where the first and second inequalities are obtained, respec-
tively, by utilizing the convexity of quantum coherence and
the coherence complementarity relation of single-qubit sys-
tems.

Hence, any nonsteerable two-qubit state will never exhibit
NAQC. Analogously, it can be proved for the generalized
NAQC functional.
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