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The quantum fusion technique enables the bonding of two cluster states together, and therefore provides a
promising method to grow large-scale cluster states. Quantum fusion was first proposed in a discrete-variable
regime. In terms of the resource usage, quantum fusion can be divided into two categories, which are type-I and
type-II fusions. Type-I fusion consumes one qubit in the fusion procedure, while type-II consumes two qubits.
However, for continuous-variable (CV) analogs, concrete schemes for realizing quantum fusions of cluster
states with arbitrary topologies have not been shown yet. In this paper, we present the CV analog of quantum
fusion schemes. We show that CV type-I fusion can be realized by an ancilla and two quantum nondemolition
interactions, and CV type-II fusion can be realized by an entanglement swapping scheme. With finite squeezing
considered, we analyze the extra errors added by the fusion procedures in CV cluster-state quantum computation.
Our schemes are universal and can be generalized to fuse cluster states with arbitrary topologies.

DOI: 10.1103/PhysRevA.108.022406

I. INTRODUCTION

The cluster state, a specially prepared multipartite entan-
gled state, provides the ability to perform one-way quantum
computation (QC) [1]. To drive the cluster-state QC, quantum
information is encoded onto the cluster and then is processed
and read out by a sequence of local single-qubit projective
measurements [2]. Due to the essential role of measurement,
the cluster-state QC is inherently irreversible, and thus is
called a one-way QC. Such cluster-state QC is promising
because it constitutes a simplification over the standard circuit
model of QC where unitary evolution and coherent control
of individual qubits are required [3,4]. Due to its powerful
application in QC, considerable efforts have been devoted to
the study of the cluster state in recent decades [5–12].

While QC is typically performed in the discrete-variable
(DV) regime, the continuous-variable (CV) cluster state shows
distinct advantages over its discrete analog [13]. The main
advantage is that the CV cluster state can be generated deter-
ministically by using only off-line squeezed states and linear
optics; this is in contrast to the DV linear-optics schemes,
where the cluster states are created probabilistically. The CV
cluster state can be efficiently described by mathematical
graphs composed of a set of vertices and links. Two vertices
are called neighbors if they are connected by a link. Each
vertex represents one optical mode (qumode) of the cluster
state, while the link stands for the interaction between two
neighboring vertices. So far, various methods for generating a
CV cluster state have been theoretically proposed [14–19] and
experimentally realized [20–30].

Although CV cluster states are promising in QC, there
are two outstanding challenges in realizing reliable, practi-
cal cluster-state QC. The first challenge is the computational
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errors caused by the finite squeezing of the CV cluster state,
and the second one is the scalability.

In the practical implementation, the CV cluster state can
never be perfect due to the finite squeezing of the initial modes
in Gaussian cluster-state preparation. Such imperfection will
give rise to extra quantum noise and thus the computational
errors. However, it has been demonstrated that these errors
can be corrected by a Gottesman-Kitaev-Preskill (GKP) qubit
[31–33], which leads to a fault-tolerant cluster-state QC with
a 15–17 dB squeezing threshold [34]. Recently, the GKP state
has been successfully produced in superconducting resonators
[35–37] and trapped-ion mechanical oscillators [38,39].

In addition to the computational errors, scalability is an-
other important factor that should be considered for a CV
cluster state. To meet computational universality, the CV
cluster state must be of large scale and possess at least two-
dimensional topology [27,28]. Given initial CV cluster states
with small sizes and fixed topologies, quantum bonding tech-
niques are necessary to bond them to become a larger one
with any desired topology. In terms of the resource usage
of qumodes (qubit in DV regime), there are three different
types of bonding operations that are controlled-Z (CZ), type-I,
and type-II fusion operations, respectively. The application
scenarios of the above three bonding schemes are different,
and all of them are of importance in the quantum bonding
techniques. For two initial CV cluster states with qumodes
{C1, C2, . . . , Cn} and {C�

1, C�
2, . . . , C�

m}, the qumode sizes of
the output cluster state after CZ, type-I fusion, and type-II
fusion operations are n + m, n + m − 1, and n + m − 2, re-
spectively. The CZ operation builds an interaction between
any two qumodes Ci and C�

j of the two cluster states, and thus
the sum of the qumode is unchanged. In the implementation,
the CZ operation can be realized by using squeezing resources
and linear optics [23]. Different from the CZ operation, type-I
and type-II fusion operations consume one and two qumodes,
respectively. Figure 1 shows an example of the action of
type-I and type-II fusion operations. A fusion operation has its
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FIG. 1. Diagrammatic sketch of fusion operations between a
four-mode square and three-mode linear cluster states. (a) Type-I
fusion. (b) Type-II fusion.

unique advantages in constructing a cluster state with a large
scale, compared to the method using CZ operations alone.
For example, in Ref. [33] it has been shown that a type-II
fusion gate with postselected measurement could prevent the
error from propagating during the construction of a three-
dimensional (3D) cluster state from finite-energy approximate
GKP qubits; by contrast, the conventional method, which
employs CZ gates alone to generate a 3D cluster state, yields
more error probability. Thus, fusion operations are of great
significance in scalable cluster-state QC. Type-I and type-II
fusions of a cluster state were first proposed in Refs. [40] and
[41] in the DV regime. For CV analogs, it has been pointed out
that Gaussian projections are required to perform the qumode
fusions for CV cluster states [42]. In addition, we also note
that the entanglement swapping scheme can be used to realize
the type-II fusion of two CV cluster states with some special
topologies, such as line, square, and star shapes [43–45].
However, concrete schemes for realizing qumode fusions of
CV cluster states with arbitrary topologies are still missing.

In this paper, we focus on the qumode fusion for CV cluster
states. We show that a CV analog of type-I fusion can be re-
alized by an ancilla squeezer and two quantum nondemolition
(QND) interactions, while a CV analog of type-II fusion can
be realized by an entanglement swapping scheme. Our results
are universal and can be adequate to fuse CV clusters with
arbitrary topologies. In addition, we also analyze the effect
of finite squeezing on the extra errors added in the qumode
fusion procedures in the cluster-state QC.

II. BACKGROUND OF CV CLUSTER STATE

An n-mode CV analog of an unweighted cluster state
with qumodes {C1, C2, . . . , Cn} can be described by the
nullifier operators given as σ̂ j = ( p̂c

j − ∑
k∈Nj

x̂c
k ) → 0 ( j =

1, 2, . . . , n). Here, x̂c
j and p̂c

j are quadrature-amplitude and
quadrature-phase operators of the qumode Cj. The qumode Cj

is a vertex in the graph of the cluster state, and Nj denotes the
index assemble of the vertices neighbored to Cj. The cluster

state requires that the variance of each nullifier approaches
zero, in the limit of infinite squeezing. To prepare such a CV
cluster, an alternative method is to employ squeezers and CZ
gates [13]. We first prepare a set of quadrature-phase squeezed
states denoted as x̂ j = er x̂(0)

j and p̂ j = e−r p̂(0)
j , where r is the

squeezing degree and the superscript (0) denotes the vacuum
mode. Then, we use CZ gates to build the links between
the initially prepared squeezers, according to the graph of
the desired cluster. The CZ gate, which corresponds to the
operator eix̂ j⊗x̂k , transforms as

x̂ j → x̂ j, p̂ j → p̂ j + x̂k,

x̂k → x̂k, p̂k → p̂k + x̂ j . (1)

Therefore, an n-mode CV cluster state with arbitrary topology
can be written as

x̂c
j = x̂ j,

p̂c
j = p̂ j +

∑
k∈Nj

x̂k, j = 1, 2, . . . , n. (2)

Obviously, such a cluster state satisfies the condition of the
nullifier (i.e., σ̂ j → 0), when the squeezing degree is infinite.
Note that a perfect CV cluster is unachievable in the practical
implementation due to the finite squeezing. Finite-squeezing-
induced errors will be accumulated in the cluster-state QC.
However, these computational errors can be corrected by
the GKP proposal [31,32], which is experimentally challeng-
ing but still achievable using current techniques [35–39].
In addition to the canonical method mentioned above using
squeezing resources and CZ gates, a CV cluster state can
also be produced using other schemes, such as linear-optics
methods [15,20], single optical parametric oscillator methods
[46,47], and temporal-mode encoding methods [27,28,48].

III. TYPE-I FUSION

A. Protocol

In the following, we show that a CV analog of type-I
fusion can be realized by an ancilla squeezer and two QND
interactions. Before introducing our scheme, we first give a
brief introduction for the QND interaction. The QND interac-
tion [49] is defined as Ĥjk = eip̂ j⊗x̂k , which has the following
transformations:

x̂ j → x̂ j − x̂k, p̂ j → p̂ j,

x̂k → x̂k, p̂k → p̂k + p̂ j . (3)

The QND interaction allows one to obtain sufficient informa-
tion about one quadrature of the measured optical field, while
still keeping this quadrature undisturbed. The efficiency of the
QND interaction is dependent on the quantum resources that
are employed, such as squeezing degree of the squeezers and
the gain of parametric amplifiers [50]. An alternative method
to realize the QND interaction is to use off-line squeezers,
homodyne detectors, and feedforward modulations [51,52].

Now we consider the quantum bonding of two arbitrary
CV clusters using a type-I fusion operation. The initial
qumodes of the two clusters are denoted as {C1, C2, . . . , Cn}
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and {C�
1, C�

2, . . . , C�
m}, respectively. And their quadratures

{x̂c
j , p̂c

j} and {x̂�c
k , p̂�c

k } yield the condition of a cluster state
given in Eq. (2), respectively. In the type-I fusion procedure,
we assume that the qumodes Ca and C�

b are fused together to
become a new qumode denoted as CA; the initial neighboring
qumodes of Ca and C�

b becomes neighbored to the qumode
CA and the corresponding links are created [see Fig. 1(a) for a
detailed example for the action of a type-I fusion operation].
In our scheme, two steps are required to realize the type-I
fusion operation as mentioned above.

In step 1, we first prepare an ancilla squeezer CA with
its quadrature amplitude and quadrature phase denoted as
x̂A = er x̂(0)

A and p̂A = e−r p̂(0)
A . Then, we entangle qumode CA

with Ca using the QND interaction ĤaA, which leads to the
following transformations:

x̂c
a → x̂c

a − x̂A = x̂a − x̂A, (4)

p̂c
a → p̂c

a = p̂a +
∑
j∈Na

x̂ j, (5)

x̂A → x̂A, (6)

p̂A → p̂A + p̂c
a = p̂A + p̂a +

∑
j∈Na

x̂ j . (7)

Afterward, the output qumode Ca is sent to the homodyne
detector to perform the feedforward modulations, which will
be introduced in step 2. The other output qumode CA is
seeded into the second QND interaction ĤbA combined with
the qumode C�

b, which leads to the following transformations:

x̂�c
b → x̂�c

b − x̂A = x̂�
b − x̂A, (8)

p̂�c
b → p̂�c

b = p̂�
b +

∑
k∈Nb

x̂�
k, (9)

x̂A → x̂A, (10)

p̂A → p̂A + p̂�c
b = p̂A + p̂a + p̂�

b +
∑
j∈Na

x̂ j +
∑
k∈Nb

x̂�
k . (11)

At the end of step 1, we achieve three output modes Ca, C�
b,

and CA, and their quadratures are given by Eqs. (4), (5), and
(8)–(11).

In step 2, we employ homodyne detection to measure
the quadrature amplitude x̂c

a (x̂�c
b ) of the mode Ca (C�

b). The
measurement outcome of the observable x̂c

a is fed forward to
each neighboring qumode of Ca as a displacement operation,
exp[−i x̂c

a ⊗ x̂c
Na(l)]. Here, x̂c

Na (l ) is the quadrature amplitude
of the qumode CNa(l), and CNa(l) is the lth neighboring
qumode of Ca (l = 1, 2, . . . , εa), with εa being the number
of corresponding neighbors. Note that similar feedforward
modulation is also performed on each neighboring qumode
of C�

b. The quadratures of each qumode CNa(l) can be written
as

x̂c
Na(l ) = x̂Na(l ),

p̂c
Na(l ) = p̂Na(l ) +

∑
j∈NNa (l )

x̂ j, l = 1, 2, . . . , εa, (12)

where NNa(k) denotes the index assemble of the qumodes
neighbored to CNa(l). These quadratures yield the following
transformations after the displacement operation:

x̂c
Na(l ) → x̂c

Na(l ) = x̂Na (l ),

p̂c
Na(l ) → p̂c

Na(l ) − x̂c
a

= p̂Na(l ) + x̂A − x̂a +
∑

j∈NNa (l )

x̂ j

= p̂Na(l ) +
∑

j∈N [a→A]
Na (l )

x̂ j, l = 1, 2, . . . , εa, (13)

where N [a→A]
Na(l ) ≡ [NNa (l )\a] ∪ A indicates the index assemble

NNa (l ) with its element a replaced with A. In the derivation
of Eq. (13), we have used the fact that a ∈ NNa (l ) because the
qumodes CNa(l) and Ca are adjacent. Similar to the feedfor-
ward scheme as mentioned above, we use the measurement
outcome of the observable x̂�c

b to modulate the neighboring
qumodes of C�

b. The mth neighboring qumode C�
Nb(m) follows

the transformations as

x̂�c
Nb(m) → x̂�c

Nb(m) = x̂Nb(m),

p̂�c
Nb(m) → p̂�c

Nb(m) − x̂�c
b

= p̂�
Nb(m) +

∑
k∈N [b→A]

Nb (m)

x̂k, m = 1, 2, . . . , εb, (14)

where εb is the number of the neighboring qumodes of C�
b.

Now let us see the actions of the two steps as discussed
above. First, there are two qumodes Ca and C�

b consumed
in the fusion procedure. Meanwhile, a new qumode CA is
inserted into the cluster state, and its quadratures are given
by Eqs. (10) and (11). It can be simply found that the qumode
CA is linked to all the qumodes {CNa(1), CNa(2), . . . , CNa(εa )}
and {C�

Nb(1), C�
Nb(2), . . . , C�

Nb(εb )} that are initially neighbored

to Ca and C�
b, respectively. From the perspective of these

neighboring qumodes CNa(l) and C�
Nb(m) as shown in Eqs. (13)

and (14), their links connected with Ca and C�
b are cut off, and

all of them become neighbored to the qumode CA, after the
fusion procedure. In addition, the variance of each nullifier
σ̂ j approaches zero in the limit of infinite squeezing, where
j = Na(1), Na(2), . . . , Na(εa), Nb(1), Nb(2), . . . , Nb(εb) and
A. Therefore, the type-I fusion of two CV cluster states
{C1, C2, . . . , Cn} and {C�

1, C�
2, . . . , C�

m} is realized. Note that
in the above discussions, we make no special assumptions
about the topologies of the initial clusters, as well as the fusion
qumodes Ca and C�

b. Thus, our scheme is universal and thus
can be generalized to perform a type-I fusion operation for
arbitrary CV cluster states.

B. Error analysis

In the above discussions, we have shown that the type-I
fusion for CV cluster states can be realized by using an ancilla
squeezer and two QND interactions. However, our discussions
are based on the infinite squeezing, which is unachievable in
real practice. The finite-squeezing-induced errors can affect
the efficiency of cluster-state QC [15], and therefore should
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FIG. 2. CV analog of type-I fusion between two two-mode cluster states. (a) Action of type-I fusion. (b) Diagrammatic sketch of type-I
fusion scheme using an ancilla squeezer and two QND interactions. (c) Detailed experimental scenario. ν1 and ν3: quadrature-amplitude
squeezed modes; ν2 and ν4: quadrature-phase squeezed modes; AM: amplitude modulation; PM: phase modulation. The transmissivities of the
beam splitters {BS1, BS5}, {BS4, BS8}, and {BS2, BS3, BS6, BS7} are 1/(1 + T ), T/(1 + T ), and T .

be considered. In this section, we will analyze the effect of
finite squeezing on our CV analog of a type-I fusion scheme.
We find that the extra noise added by our type-I fusion scheme
consists of two parts. The first part comes from the two
qumodes (i.e., the qumodes Ca and C�

b in Sec. III A) that are
to be fused together in the fusion procedure. The second part
comes from the squeezers employed in the QND interactions.
For a better understanding, in what follows we consider a
simple example as shown in Fig. 2(a), where two two-mode
clusters are fused together. The diagrammatic sketch of the
corresponding type-I fusion scheme and its detailed experi-
mental scenario are shown in Figs. 2(b) and 2(c), respectively.
Our error model can also be extended to the fusion of cluster
states with any other topologies.

It is well known that the efficiency of the QND interactions
is dependent on the squeezing resources that are employed.
Finite squeezing will unavoidably give rise to extra noise in
the QND interaction and thus degrade the efficiency of our
type-I fusion scheme. Using the QND interaction proposed
in Ref. [51], we show our type-I fusion scheme in Fig. 2
with a detailed example considered. For two two-mode cluster
states denoted as {C1, C2} and {C3, C4}, our goal is to realize
the type-I fusion of them by fusing the qumodes C2 and C3

together to become a new qumode CA. As shown by the

dashed boxes in Fig. 2(c), each QND interaction introduces
two squeezers, i.e., the two modes ν1 and ν2 for the first QND,
and the two modes ν3 and ν4 for the second QND. Here, we
assume that the modes ν1 and ν3 are quadrature-amplitude
squeezed, and the modes ν2 and ν4 are quadrature-phase
squeezed. Their quadratures are denoted as x̂ν1 = e−r x̂(0)

ν1 ,
p̂ν1 = er p̂(0)

ν1 , x̂ν3 = e−r x̂(0)
ν3 , p̂ν3 = er p̂(0)

ν3 , x̂ν2 = er x̂(0)
ν2 , p̂ν2 =

e−r p̂(0)
ν2 , x̂ν4 = er x̂(0)

ν4 , and p̂ν4 = e−r p̂(0)
ν4 , respectively.

Now we follow the type-I fusion scheme as discussed in
Sec. III A. To perform the first QND interaction as shown by
the left dashed box in Fig. 2(c), we first mix the qumode C2

and an ancilla squeezer CA on a linear beam splitter BS1 with
transmissivity 1/(1 + T ). Afterward, the mode C2 (CA) is
coupled with the squeezer ν1 (ν2) using another beam splitter
BS3 (BS2) with transmissivity T . After the linear coupling, the
quadrature phase (quadrature amplitude) of the squeezer ν1

(ν2) is measured by a homodyne detector. The measurement
outcomes of the observable p̂ν1 (x̂ν2) are then fed forward
to the qumode ν1 (ν2) using phase (amplitude) modulation
with gain of g1 = −√

(1 − T )/T . After this postcorrection
procedure, the qumodes C2 and CA are mixed again on a
beam splitter BS4 with transmissivity T/(1 + T ), and their
corresponding output qumodes are denoted as C′

2 and C′
A. The

input-output relationship of the first QND interaction is given
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by

x̂′
2 = x̂c

2 −
(

1√
T

−
√

T

)
x̂A +

√
T

√
1 − T√

1 + T
x̂ν1,

p̂′
2 = p̂c

2 −
√

1 − T√
1 + T

p̂ν2,

x̂′
A = x̂A +

√
1 − T√
1 + T

x̂ν1,

p̂′
A = p̂A +

(
1√
T

−
√

T

)
p̂c

2 +
√

T
√

1 − T√
1 + T

p̂ν2. (15)

By adjusting the parameter T , the above transformations can
be equivalent to the QND interaction as given in Eqs. (4)–(7),
but with extra noise added into each quadrature. When the
initial squeezers ν1 and ν2 are of finite squeezing, the errors
caused by such extra noise will be accumulated in the follow-
ing steps of the type-I fusion procedure. After the first QND
interaction, we couple the modes C3 and C′

A using the second
QND interaction, and their corresponding outputs are denoted
as C′

3 and C′′
A, respectively. In the end of the type-I fusion, the

quadrature amplitude of the modes C′
2 and C′

3 is measured by
homodyne detectors, respectively; the measurement outcomes
of the observables x̂2 and x̂3 are fed forward to the modes
C1 and C4 using phase modulation with gain of g2 = 1. The
output state from the type-I fusion is given by

x̂′′
A = x̂A +

√
1 − T√
1 + T

(x̂ν1 + x̂ν3),

p̂′′
A = p̂A +

(
1√
T

−
√

T

)
( p̂2 + p̂3 + x̂1 + x̂4) +

√
T

√
1 − T√

1 + T
( p̂ν2 + p̂ν4),

x̂′
1 = x̂1,

p̂′
1 = p̂1 +

(
1√
T

−
√

T

)
x̂A −

√
T

√
1 − T√

1 + T
x̂ν1,

x̂′
4 = x̂4,

p̂′
4 = p̂4 +

(
1√
T

−
√

T

)
x̂A + (1 − T )

3
2√

T
√

1 + T
x̂ν1 −

√
T

√
1 − T√

1 + T
x̂ν3. (16)

Obviously, the two initial two-mode cluster states {C1, C2}
and {C3, C4} have now been fused together to become a three-
mode linear cluster state {C′

1, C′′
A, C′

4} after our type-I fusion
scheme. Meanwhile, extra noise is added. In the following, we
analyze the finite-squeezing-induced errors in the cluster-state
QC.

A single-qubit teleportation circuit lies at the heart of
the cluster-state QC [13]. For the CV analog, here we
consider the quantum teleportation of an unknown single-
mode quantum state through the cluster state generated by
our type-I fusion scheme. Using the linear cluster state
{C′

1, C′′
A, C′

4}, an unknown input mode (its quadratures are
denoted as x̂in and p̂in) is teleported from the qumode
C′

1 to C′
4. To perform such teleportation, the input mode

is first coupled with the qumode C′
1 using the CZ gate

eix̂in⊗x̂′
1 , which yields the transformations in Eq. (1). Then,

quadrature-phase measurements are performed on the input
mode and two qumodes C′

1 and C′′
A, and the corresponding

results are denoted as sin, s1 and sA. These measurement
outcomes are used to perform the postcorrection proce-
dure, and the corresponding correction operation is given by
X̂A(−ξsin )X̂4(−s1)Ẑ4(−ξ−1sA)F̂ †

4 . Here, the displacement op-
erators X̂ j (sk ) = eisk x̂ j and Ẑ j (sk ) = e−isk p̂ j yield the transfor-
mations that X̂ †

j (sk )x̂ j X̂ j (sk ) = x̂ j , X̂ †
j (sk ) p̂ j X̂ j (sk ) = p̂ j + sk ,

Ẑ†
j (sk )x̂ j Ẑ j (sk ) = x̂ j+sk , Ẑ†

j (sk ) p̂ j Ẑ j (sk ) = p̂ j , and ξ=(1−T )/

√
T . The inverse Fourier transform operator F̂ †

j transforms as
x̂ j → p̂ j and p̂ j → −x̂ j , i.e., −π/2 rotation in phase space.
After the above postcorrection procedure, the qumode C′

4
becomes

x̂′
4 → x̂in + p̂1 − p̂4 −

√
1 − T√

T
√

1 + T
x̂ν1 +

√
T

√
1 − T√

1 + T
x̂ν3,

p̂′
4 → p̂in − p̂2 − p̂3 −

√
T

1 − T
p̂A − T√

1 − T 2
( p̂ν2 + p̂ν4).

(17)

In the above derivation, we have used the fact that the dis-
placement operators X̂ j (sk ) and Ẑ j (sk ) are equivalent to the
controlled-logical gate operators X̂ j ( p̂k ) and Ẑ j ( p̂k ). This
is because the feedforward circuit, i.e., executing displace-
ment after measurement, is equivalent to the circuit where
the measurement is performed after a controlled-logical
gate.

To study the extra noise added by our type-I fusion scheme,
we consider employing a standard three-mode linear cluster
{C1, CA, C4}, which yields the cluster condition in Eq. (2), to
perform the quantum teleportation. Using a similar method
as we have discussed in the derivation of Eq. (17), it can
be simply demonstrated that the output quadratures of the
quantum teleportation through a standard three-mode linear
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cluster state are given by

x̂c
4 → x̂in + p̂1 − p̂4,

p̂c
4 → p̂in − p̂A. (18)

By comparing Eq. (17) with Eq. (18), it can be found that the
extra noise added by our type-I fusion scheme comes from
two parts. The first part is the two qumodes C2 and C3. In
our scheme, these two qumodes are detected, and the mea-
surement results are fed forward to the qumodes C1 and C4.
In this postcorrection procedure, the quadrature phase p̂2 and
p̂3 cannot be canceled, which gives rise to finite-squeezing-
induced noise of 2e−2r in p̂′

4. The second part is the squeezers
ν1, ν2, . . . , ν4, which are employed in the QND interactions.
The extra noise added by these squeezers is e−2r (1 − T )(1 +
T 2)/[T (1 + T )] in x̂′

4 and 2e−2rT 2/(1 − T 2) in p̂′
4. In addi-

tion, we also note that p̂A is scaled as
√

T /(1 − T ) in Eq. (17).
Considering a unity-gain case where T = (3 − √

5)/2, the
extra noise added by our type-I fusion scheme is 3e−2r/

√
5

in x̂′
4 and e−2r (5 + 3

√
5)/5 in p̂′

4. Note that the above error
analysis can be extended to the type-I fusion of cluster states
with arbitrary topologies. We find that for any two cluster
states, the sum of the extra noise added to both the quadrature
amplitude and quadrature phase by our type-I fusion scheme
is e−2r (6 + √

5)/
√

5 in the unity-gain case.

IV. TYPE-II FUSION

Different from the type-I fusion operation, type-II fusion
of two cluster states consumes two qumodes. For two cluster
states {C1, C2, . . . , Cn} and {C�

1, C�
2, . . . , C�

m}, we assume
that the qumodes Ca and C�

b are to be fused together. Type-
II fusion requires that both of these qumodes are removed
from the output cluster state. Meanwhile, each neighbor of
the qumode Ca becomes neighbored to all the neighboring
qumodes of C�

b, and vice versa. Note that in some special
cases, the type-II fusion scheme can replace type-I fusion, but
with some extra operations involved. Take the case shown in
Fig. 2(a) as an example. To realize the type-I fusion operation
between two two-mode cluster states, we can first use a type-II
fusion scheme to bond the qumodes C1 and C4. Afterward, we
cut off the bonding with the help of the bond erasing operation
[53], and then use CZ operations to build new bonds between
the qumodes C1, C4 and an ancillary mode CA. In Ref. [44],
it has been shown that the CV analog of type-II fusion can be
realized by an entanglement swapping scheme. However, the
type-II fusion scheme is only focused on the cluster states with
some special topologies, such as line-, square- and star-shape
clusters. A general description of a CV analog of type-II
fusion between two cluster states with arbitrary topologies
has not been shown yet. In this section, we will solve this
issue. For simplification, we omit the mathematical forms of
the initial qumodes of Ca and C�

b, as well as their neighboring
qumodes in the following discussions, which can be referred
to in Eqs. (2) and (12).

To realize the CV analog of type-II fusion, two steps are
required. In step 1, we first apply an inverse Fourier trans-
formation on the qumode C�

b, which transforms as x̂�c
b → p̂�c

b

and p̂�c
b → −x̂�c

b . Afterward, the qumodes Ca and C�
b are mixed

onto a balanced beam splitter, leading to the following trans-
formations:

x̂c
a → 1√

2

⎛
⎝x̂a − p̂�

b −
∑
k∈Nb

x̂�
k

⎞
⎠,

p̂c
a → 1√

2

⎛
⎝p̂a +

∑
j∈Na

x̂ j + x̂�
b

⎞
⎠,

x̂�c
b → 1√

2

⎛
⎝−x̂a − p̂�

b −
∑
k∈Nb

x̂�
k

⎞
⎠,

p̂�c
b → 1√

2

⎛
⎝−p̂a −

∑
j∈Na

x̂ j + x̂�
b

⎞
⎠. (19)

In step 2, we employ homodyne detectors to measure the
quadrature amplitude x̂c

a of the qumode Ca and the quadrature
phase p̂�c

b of the qumode C�
b, and the corresponding results

are denoted as sa and sb, respectively. Afterward, the mea-
surement outcome sa (sb) is fed forward to each neighboring
qumode of Ca (C�

b) using phase modulation with gain of
√

2.
The corresponding feedforward modulations transform as

x̂c
Na (l ) → x̂c

Na (l ) = x̂Na(l ),

p̂c
Na (l ) → p̂c

Na (l ) − x̂c
a = p̂Na(l ) + p̂�

b +
∑

j∈N
[a→Nb]
Na (l )

x̂ j,

x̂�c
Nb(m) → x̂�c

Nb(m) = x̂Nb(m),

p̂�c
Nb(m) → p̂�c

Nb(m) − p̂�c
b = p̂�

Nb(m) + p̂a +
∑

k∈N [b→Na ]
Nb (m)

x̂�
k, (20)

where l = 1, 2, . . . , εa and k = 1, 2, . . . , εb, εa in which εb

denote the number of the neighboring qumodes of Ca and Cb.
As shown in Eq. (20), the two cluster states

{C1, C2, . . . , Cn} and {C�
1, C�

2, . . . , C�
m} have now been

fused together by the entanglement swapping scheme, which
is of the topology as follows. First, the links between the
qumode Ca (as well as Cb) and its neighboring qumodes are
cut off. The qumodes Ca and Cb are removed from the cluster
state. Second, each neighboring qumode of Ca becomes
neighbored to all the neighboring qumodes of Cb, and vice
versa. Therefore, type-II fusion of the CV clusters is realized.

Considering the finite squeezing case, the extra noise added
by the CV analog of type-II fusion is caused by the two
qumodes Ca and Cb. As seen in Eq. (20), an extra term
p̂�

b ( p̂a) is added in p̂c
Na (l ) ( p̂�c

Nb(m)). To teleport an unknown
single-mode quantum state using the cluster state generated
from the type-II fusion scheme, it can be simply demonstrated
that extra noise of e−2r will be added in both the quadrature
amplitude and quadrature phase of the output mode.

In addition, the CV analog of type-II fusion can also be
applied to construct a 3D cluster state based on finite-energy
approximate GKP encodings [33,45]. It has been shown that
the error probability in generating a 3D cluster state results
from two independent errors, where one error originates from
the GKP qubit itself and the second error occurs during the

022406-6
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fusion gates. Comparing with the conventional method in
generating a 3D cluster state which only uses CZ gates be-
tween neighboring nodes, it has been shown that a fusion
gate with postselected measurement can efficiently avoid the
accumulation of errors during the construction process of a 3D
cluster state at the price of determinacy, and therefore relaxes
the squeezing level required by the fault-tolerant QC.

V. CONCLUSION

In summary, quantum fusion is of great significance in
cluster-state QC. It bonds two cluster states together to be-
come a larger one, and therefore improves the scalability of
the quantum network based on a cluster state. In terms of
the resource usage, there are two types of quantum fusion
operations, which are type-I and type-II fusions. In the DV
regime, the qubits’ fusion schemes have been proposed in
Refs. [40,41] using nondeterministic gates. However, concrete

schemes for realizing qumode fusions of CV cluster states
with arbitrary topologies have not been shown yet. In this
paper, we have solved this issue. We have demonstrated that
the CV analog of type-I fusion can be realized by an ancilla
squeezer and two QND interactions, and the type-II fusion
can be realized by an entanglement swapping scheme. We
have also analyzed the finite-squeezing-induced errors added
by the quantum fusion operations in a CV cluster-state QC.
The CV analog of quantum fusion schemes, as well as their
error models, presented in this paper can be generalized to the
cluster states with arbitrary topologies. Our results may pave
the way to construct large-scale CV cluster states in practice.
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