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A set of orthogonal multipartite quantum states is said to be distinguishability-based genuinely nonlocal (also
genuinely nonlocal, for abbreviation) if the states are locally indistinguishable across any bipartition of the
subsystems. This form of multipartite nonlocality, although more naturally arising than the recently popular
“strong nonlocality” in the context of local distinguishability, receives much less attention. In this work, we study
the distinguishability-based genuine nonlocality of a typical type of genuine multipartite entangled states—the
d-dimensional Greenberger-Horne-Zeilinger (GHZ) states, featuring systems with local dimension not limited
to two. In the three-partite case, we find the existence of small genuinely nonlocal sets consisting of these
states: we show that the cardinality can at least scale down to linear in the local dimension d , with the linear
factor l = 1. Specifically, the method we use is semidefinite programming and the GHZ states to construct
these sets are special ones which we call “GHZ lattices”. This result might arguably suggest a significant gap
between the strength of strong nonlocality and the distinguishability-based genuine nonlocality. Moreover, we
put forward the notion of (s, n)-threshold distinguishability and, utilizing a similar method, we successfully
construct (2,3)-threshold sets consisting of GHZ states in three-partite systems.
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I. INTRODUCTION

Quantum nonlocality is one of the most surprising
properties in quantum mechanics. The most well-known man-
ifestation of nonlocality—Bell nonlocality [1–3], which is
revealed by violation of Bell-type inequalities [3–8]—can
only arise from entangled states. Apart from Bell nonlocal-
ity, there are also other forms of nonlocality. Among them,
the distinguishability-based nonlocality, which concerns the
problem of locally distinguishing a certain set of orthogonal
quantum states, has attracted much attention. It serves to ex-
plore the fundamental question about locally accessing global
information and also the relation between entanglement and
locality, which are of central interest in quantum information
theory. Unlike Bell nonlocality, however, entanglement is not
necessary for this kind of nonlocality. In [9], Bennett et al.
presented the first example of orthogonal product states that
are indistinguishable when only local operations and classical
communications are allowed, which was known as “quantum
nonlocality without entanglement”. From then on, such nonlo-
cality based on distinguishability has been studied extensively
(see [9–39] for an incomplete list). Moreover, the local dis-
crimination of quantum states has been practically applied in
a number of distributed quantum protocols such as quantum
data hiding [40–43] and quantum secret sharing [44–50].

Although not necessary for distinguishability-based nonlo-
cality, evidences have been found showing that entanglement
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can somehow raise difficulty in quantum state discrimination
in many occasions. To what extent entanglement is responsi-
ble for indistinguishability has been one of the main focuses
[14–17]. In [15], Hayashi et al. observed that the number
of pure states that can be perfectly distinguished locally is
bounded above by the total dimension over the average en-
tanglement of the states. This result quantitatively shows that
states with more entanglement will generally (while not al-
ways) be more difficult to be distinguished. Meanwhile, lots
of studies had focused on local distinguishability of the max-
imally entangled states [19–25], as opposed to studying the
distinguishability of product states. Notably, it can be deduced
directly from the results of Hayashi et al. [15] that any k > d
orthogonal maximally entangled states in Cd ⊗ Cd are not
locally distinguishable. This fact was actually first revealed
by Nathanson, who also showed that any three orthogonal
maximally entangled states in C3 ⊗ C3 are locally distin-
guishable [26]. In spite of these quantitative results indicating
the maximal number of perfectly distinguishable states, we
have, on the other hand, little idea on the minimal number
of locally indistinguishable states. What is known to us is
that any two orthogonal pure states can always be locally
distinguished, no matter whether the states are entangled or
not [11]. Frustratingly, whether there exist three locally indis-
tinguishable maximally entangled states in system Cd ⊗ Cd

for d > 3 remains unknown today. Therefore, efforts had been
paid in seeking sets of k � d orthogonal maximally entangled
states that are not perfectly distinguishable by local operations
and classical communication (LOCC) [26–33]. The best result
so far is due to Yu and Oh [33], who showed that the cardi-
nality of indistinguishable sets of maximally entangled states
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in Cd ⊗ Cd can asymptotically scale down to 3d/4 when d is
large.

Not long ago, Halder et al. [51] introduced the concept
of local irreducibility, which is a stronger form of local in-
distinguishability. A set of orthogonal multipartite quantum
states is said to be locally irreducible if one cannot eliminate
one or more states from the whole set, with the restriction
that only orthogonality-preserving local measurements are al-
lowed. They revealed the phenomenon of “strong nonlocality
without entanglement”, which is a nontrivial generation of
Bennett’s nonlocality without entanglement [9]. Strong nonlo-
cality of a set of orthogonal multipartite quantum states refers
to local irreducibility of these states through every bipartition
of the subsystems and the authors of [51] presented the first
examples of strong nonlocal sets of product states in C3 ⊗
C3 ⊗ C3 and C4 ⊗ C4 ⊗ C4. After that, much attention has
been paid to study the strong nonlocality of multipartite
quantum states [52–62]. In [56], the authors constructed
6(d − 1)2 orthogonal product states in three-partite systems
Cd ⊗ Cd ⊗ Cd that is strongly nonlocal. Soon after, Wang
et al. successfully constructed strongly nonlocal sets with
genuine multipartite entanglement [57]. The strongly nonlocal
sets they constructed consist of GHZ states in the three-
partite systems Cd ⊗ Cd ⊗ Cd (d � 3) and have cardinality
d3 − (d − 2)3 [d3 − (d − 2)3 + 2] when d is odd (even).
Shi et al. gave more general results in (Cd )⊗N (N � 3),
showing the existence of strongly nonlocal orthogonal en-
tangled sets with size dN − (d − 1)N + 1 [58]. They also
constructed 18 strongly nonlocal genuine multipartite entan-
gled states in C3 ⊗ C3 ⊗ C3, outperforming the former result
of 19 strongly nonlocal unextendible product basis in the same
tripartite system [59].

In [63], Rout et al. first studied the concept of
distinguishability-based genuine nonlocality (there the au-
thors named it genuine nonlocality simply; we also adopt
this abbreviation here sometimes when no ambiguity occurs):
a set of orthogonal multipartite quantum states is said to
be (distinguishability-based) genuinely nonlocal if the states
are locally indistinguishable across any bipartition of the
subsystems. Later, in [64,65], the authors constructed sets
of multipartite product states which are genuinely nonlocal.
Namely, they found genuine nonlocality without entangle-
ment. This concept of multipartite nonlocality is weaker but
more natural than strong nonlocality in the context of dis-
tinguishability. It is obvious that strong nonlocality always
implies genuine nonlocality [51], yet to what extent the former
is stronger than the latter, little is known.

In this paper, we are to study the distinguishability-based
genuine nonlocality of a typical type of genuine multipartite
entangled states—the (d-dimensional) Greenberger-Horne-
Zeilinger (GHZ) states on qudit systems. More explicitly,
we focus on the three-partite case, where three-qudit GHZ
states are maximally entangled in the sense that they are
maximally entangled in all bipartitions. Similar to the bipartite
case when maximally entangled states are studied, one can
derive from the result of Hayashi et al. [15] that any k > d2

three-qudit GHZ states are genuinely nonlocal. However, we
have yet no idea about the minimal number of such states
having the property of genuine nonlocality. Here, we make
a step forward by showing the existence of certain genuinely

nonlocal sets of GHZ states that have rather small cardinal-
ity. We find that the cardinality can at least scale down to
d + 3, for the cases when local dimension d are powers of
2. The method we use here is inspired by Cosentino [30,31],
and the special kind of GHZ states to construct these sets
is referred to as “GHZ lattices” by us. Until now, since no
existing strongly nonlocal sets that have been constructed
have such small magnitude, it is reasonable for us to argue
that there might exist a substantial difference between the
strength of strong nonlocality and the distinguishability-based
genuine nonlocality. Furthermore, we put forward the notion
of (s, n)-threshold distinguishability in n-partite systems as
an extension of genuine nonlocality. Adopting the similar
method of semidefinite programming in our former discus-
sion, we successfully construct (2,3)-threshold sets consisting
of GHZ states in three-partite systems.

The rest of this paper is organized as follows: In Sec. II, we
present some necessary notations and definitions. In Sec. III,
we study the genuine nonlocality of the GHZ states in
three-partite system Cd ⊗ Cd ⊗ Cd . Taking advantage of the
structure of “GHZ lattices” and also the method of semidef-
inite programming, we construct genuinely nonlocal sets of
these states with conspicuously small cardinality. In Sec. IV,
we extend the notion of genuine nonlocality to the more gen-
eral (s, n)-threshold distinguishability in multipartite systems
and we construct (2,3)-threshold sets consisting of GHZ lat-
tices in three-partite systems. Finally, we draw our conclusion
and present some related problems in Sec. V.

II. PRELIMINARIES

Genuine multipartite entanglement. In bipartite systems
HA ⊗ HB, a pure state |�〉AB is called entangled if it cannot be
written as the tensor product of two pure states of the two sub-
systems. Namely, it is not of the form |�〉AB = |α〉A ⊗ |β〉B.
For pure state |�〉A1···An in multipartite system HA1 ⊗ · · · ⊗
HAn , it is called genuinely multipartite entangled if it is entan-
gled for any bipartition of the subsystems {A1, . . . , An}. The
most well-known kind of genuinely (three-partite) entangled
states are the GHZ states and the W states in three-qubit
systems C2 ⊗ C2 ⊗ C2. They are in fact the only two types
of genuine tripartite entangled states in C2 ⊗ C2 ⊗ C2 up to
stochastic LOCC (SLOCC) equivalence [66,67].

d-dimensional GHZ states [68]. In the n-partite system
Cd ⊗ Cd ⊗ · · · ⊗ Cd , the states of the form

1√
d

d−1∑
k=0

∣∣ξ (1)
k ξ

(2)
k · · · ξ (n)

k

〉
(1)

are called d-dimensional GHZ states, where each {|ξ (i)
k 〉}d−1

k=0 is
any set of orthogonal basis for the ith subsystem. These states
can be proved to be genuinely entangled and they have been
considered generic resources in many quantum information
processing tasks [44–50,69–71].

Local distinguishability. A set of orthogonal (pure) mul-
tipartite quantum states, which is priorly known to several
spatially separated parties, is said to be locally distinguishable
if the parties are able to tell exactly which state they share
through some protocol, provided only local measurements
and classical communications are allowed. In the literature,

022405-2



DISTINGUISHABILITY-BASED GENUINE NONLOCALITY … PHYSICAL REVIEW A 108, 022405 (2023)

since the mathematical structure of LOCC measurement is
rather complicated, it is usually the separable measurement
or the positive-partial-transpose (PPT) measurement that is
considered [72–76].

Local irreducibility. A set of multipartite orthogonal quan-
tum states is said to be locally irreducible if it is not possible
to locally eliminate one or more states from the set while
preserving orthogonality of the postmeasurement states. Typ-
ical examples of locally irreducible sets include the two-qubit
Bell basis and the three-qubit GHZ basis [51]. While a locally
irreducible set must be locally indistinguishable, the opposite
is generally not true.

Distinguishability-based genuine nonlocality and strong
nonlocality. A set of orthogonal multipartite quantum states
is called (distinguishability-based) genuinely nonlocal if the
states are locally indistinguishable across every bipartition of
the subsystems. Furthermore, if the states are locally irre-
ducible across every bipartition, then they are called strongly
nonlocal. Straightforwardly, a strongly nonlocal set must be
also genuinely nonlocal, while the converse is not true. As
it is shown immediately in the next section, while the three-
qubit GHZ basis (2) failed to be strongly nonlocal [51], it is
genuinely nonlocal obviously.

III. GENUINE NONLOCALITY FOR THE
THREE-QUDIT GHZ STATES

In three-qudit system Cd ⊗ Cd ⊗ Cd , the d-dimensional
GHZ states are maximally entangled in the sense that all their
reductions to � 3

2�-qudit are maximally mixed. Here in this
section, we discuss the genuine nonlocality of this typical kind
of genuine three-partite entangled state. Roughly speaking,
a set of more states might often appear harder for distin-
guishing while a set with less states is usually more likely
to be distinguishable. For example, all supersets of an indis-
tinguishable set are always indistinguishable, while, on the
other hand, all subsets of a distinguishable one are certainly
also distinguishable. Therefore, one is interested in both the
maximal number of states that might be distinguishable and
also the minimal number of states that are indistinguishable
(in our case, genuinely nonlocal). The following lemma that
can be derived from Hayashi et al. [15] shows that the number
of d-dimensional GHZ states in Cd ⊗ Cd ⊗ Cd that are not
genuinely nonlocal is at most d2.

Lemma 1 ([15]). In three-partite systems Cd ⊗ Cd ⊗ Cd ,
any set of s > d2 orthogonal d-dimensional GHZ states is
genuinely nonlocal.

Here, however, we will mainly focus on seeking small
number of these states that are genuinely nonlocal. We first
discuss the simplest situation when d = 2, namely, the three-
qubit case. In C2 ⊗ C2 ⊗ C2, the following eight orthogonal
states,

|ψ0,7〉 = |000〉 ± |111〉√
2

, |ψ1,6〉 = |001〉 ± |110〉√
2

,

|ψ2,5〉 = |010〉 ± |101〉√
2

, |ψ3,4〉 = |011〉 ± |100〉√
2

, (2)

consist a set of orthogonal basis. Here, we place the conjugate
pairs together and assign them subscript indices which sum

FIG. 1. A three-dimensional schematic picture for local distin-
guishability of the three-qubit GHZ basis (2) in all bipartitions. Each
vertex of the tetrahedron represents one conjugate pair of the basis.
Four states on one edge are locally equivalent to the two-qubit Bell
basis {|00〉 ± |11〉, |01〉 ± |10〉}, within the bipartition shown by the
color of that edge. For instance, in bipartition A|BC, the four states
of A1 are locally equivalent to the Bell basis and the same holds
for A2. These two sets lie on the opposite edge of the tetrahedron
colored blue, and states from different sets can be told apart if
BC perform a two-outcome joint measurement {P(BC)

1 = |00〉〈00| +
|11〉〈11|, P(BC)

2 = |01〉〈01| + |10〉〈10|}.

up to 23 − 1. They are referred to as the three-qubit GHZ
basis and are important in a number of quantum information
processing scenarios. In [51], the authors showed that these
states are not strongly nonlocal. Namely, when certain two of
the three parties are allowed to join together, it is possible to
locally eliminate one or more states from the whole set while
preserving the orthogonality of the postmeasurement states.
Here, instead of discussing the reducibility, we focus on the
bipartite distinguishability problem of the three-qubit GHZ
basis. It is immediate from Lemma 1 that any s � 5 states
of the three-qubit GHZ basis (2) are distinguishability-based
genuinely nonlocal. For the other side, results of [17] showed
that this bound is tight, in the sense that there exist four states
among the three-qubit GHZ basis (2) that are not genuinely
nonlocal. Here, we further show that any four states among the
three-qubit GHZ basis are not genuinely nonlocal. We give an
elegant and visible way to demonstrate this fact.

Proposition 1. Any four states of the three-qubit GHZ ba-
sis (2) can be locally distinguished by at least one of the
bipartition A|BC, B|CA, or C|AB. That is, they are not gen-
uinely nonlocal.

Proof. We demonstrate this fact with the aid of a schematic
picture shown by Fig. 1. The four conjugate pairs are
represented by four vertices of the tetrahedron and the col-
ored edges represent different bipartitions. Obviously, the
four states to be distinguished must be located on no less
than two vertices of the tetrahedron in Fig. 1. If the four
states are located on four vertices of the tetrahedron, they
can obviously be distinguished across all the bipartitions.
For example, in bipartition A|BC, the qubit holders BC
can first perform local measurement {P(BC)

1 = |00〉〈00| +
|11〉〈11|, P(BC)

2 = |01〉〈01| + |10〉〈10|} to reduce the states
into two disjoint sets, with each being a 2-ary subset of
{|ψ0〉, |ψ7〉, |ψ3〉, |ψ4〉} and {|ψ1〉, |ψ6〉, |ψ2〉, |ψ5〉} respec-
tively. Since any two states are always locally distinguishable
[11], the four states can be locally distinguished across
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bipartition A|BC. The same holds for B|CA and C|AB. If
the four states to be distinguished are distributed on three
vertices, they must be located on a certain face of the tetrahe-
dron. Without loss of generality, suppose that these states are
{|ψ0〉, |ψ7〉, |ψ1〉, |ψ2〉}. In this case, only in bipartition A|BC
can they be distinguished, for in B|CA (C|AB), the subset
{|ψ0〉, |ψ7〉, |ψ2〉} ({|ψ0〉, |ψ7〉, |ψ1〉}) is locally equivalent to
three states among the Bell basis, which are known to be
locally indistinguishable. If the four states to be distinguished
are on two vertices, they must be located on a certain edge. As
an example, for {|ψ0〉, |ψ7〉, |ψ3〉, |ψ4〉}, they are not locally
distinguishable through A|BC while they can be distinguished
through B|CA and C|AB. To sum up, any four states of the
three-qubit GHZ basis (2) can be distinguished through at
least one of the three bipartitions, i.e., they are not genuinely
nonlocal. �

Despite the nonexistence of genuinely nonlocal subsets of
the three-qubit GHZ basis with cardinality s < 22 + 1, in sys-
tems of higher local dimension, we are using them to construct
genuinely nonlocal sets of three-partite GHZ states with small
cardinality—much smaller than the trivial cardinality d2 + 1
(indicated by Lemma 1). What we are to discuss here are the
special cases where the local dimension d = 2t , and the GHZ
states are “lattice-type” ones, which are tensor products of the
three-qubit GHZ basis (2). The idea here is primarily inspired
by [30], where small indistinguishable sets in bipartite sys-
tems were constructed using lattice-type maximally entangled
states. Let −→v = (v1, . . . , vt ) ∈ {0, 1, . . . , 7}t be a t-element
vector (t � 1). Then the t-level lattice-type GHZ state with
index −→v in the three-partite system C2t ⊗ C2t ⊗ C2t

is de-
fined by |�−→v 〉 = |ψv1〉 ⊗ · · · ⊗ |ψvt 〉. One can easily check
that these 8t states are 2t -dimensional GHZ states and they
make up a set of orthogonal basis in C2t ⊗ C2t ⊗ C2t

. For
abbreviation, here and after we also call this form of GHZ
states “GHZ lattices”. It turns out when the multipartite states
to be distinguished are all GHZ lattices, the special structure
of these states enables us to discuss their genuine nonlocality
with much less effort.

Since LOCC distinguishability is difficult to tackle math-
ematically, here instead we study the PPT distinguishability
of the multipartite states, for different bipartition, respec-
tively. For bipartite system HA ⊗ HB, if a set of orthogonal
states is locally distinguishable, the states must be also PPT
distinguishable. To be more precise, the orthogonal bipar-
tite states {|φ1〉, . . . , |φs〉} (here and after, it is also denoted
as {φ1, . . . , φs} where φi = |φi〉〈φi|’s are the corresponding
density operators) are PPT distinguishable if and only if the
semidefinite program

α = max
P1,...,Ps

1

s

s∑
k=1

Tr(Pkφk )

such that P1 + · · · + Ps = IAB ,

P1, . . . , Ps � 0,

TA(P1), . . . , TA(Ps) � 0, (3)

has optimal value α = 1 [30]. Here we also apply this
semidefinite program to construct genuinely nonlocal sets on
multipartite systems. For a set of orthogonal quantum states
S = {|�1〉, . . . , |�s〉} on three-partite systems HA ⊗ HB ⊗
HC , a sufficient condition for their genuine nonlocality is that
across each bipartition these states are PPT indistinguishable.
More explicitly, consider the family of semidefinite programs

αX = max
P(X )

1 ,...,P(X )
s

1

s

s∑
k=1

Tr
(
P(X )

k �k
)

such that P(X )
1 + · · · + P(X )

s = IABC ,

P(X )
1 , . . . , P(X )

s � 0,

TX
(
P(X )

1

)
, . . . , TX

(
P(X )

s

)
� 0, (4)

where X = A, B or C represents that we are dealing with the
bipartition A|BC, B|CA or C|AB respectively. If for a specific
set S we have αX < 1(∀X ∈ {A, B,C}), namely, PPT indistin-
guishable through all the bipartitions, then the set is genuinely
nonlocal. For convenience of calculation, we further consider
the dual problems

βX = min
Y (X ) ,Q(X )

1 ,...,Q(X )
s

1

s
Tr(Y (X ) )

such that Y (X ) − �k � TX
(
Q(X )

k

)
,

Q(X )
k � 0 (1 � k � s), (5)

where X ∈ {A, B,C}. By the Slater condition, we know that
strong duality holds: αX = βX (X ∈ {A, B,C}). Therefore,
given a set S = {|�1〉, . . . , |�s〉} of orthogonal three-partite
states, once we found that βX < 1(∀X ∈ {A, B,C}), then the
genuine nonlocality of S will be concluded.

To use these semidefinite programs to construct genuinely
nonlocal sets of GHZ lattices, notice that for subsystems X ∈
{A, B,C}, TX1···Xt (�−→v ) = TX1 (ψv1 ) ⊗ · · · ⊗ TXt (ψvt ), where
ψvi = |ψvi〉〈ψvi | (�−→v = |�−→v 〉〈�−→v |) are the corresponding
density operators of the three-qubit GHZ basis (t-level GHZ
lattices). The subscripts “X1 · · · Xt ” indicate that t qubits are
being held by X = A, B, or C and we sometimes abbrevi-
ate it as “X” when no ambiguity occurs. We should also
note that the partial-transpose operations TX are linear maps
on L(HA ⊗ HB ⊗ HC ), the space of all linear operators on
HA ⊗ HB ⊗ HC . Moreover, when GHZ lattices are consid-
ered, we have the following property about TA, TB, and TC

that is crucial for all subsequent discussions.
Lemma 2. In the linear space L(C2 ⊗ C2 ⊗ C2) of all lin-

ear operators on C2 ⊗ C2 ⊗ C2, the linear maps TA, TB and
TC act invariantly on the subspace spanned by {ψ0, . . . , ψ7}.
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Moreover, on this subspace they have matrix representations:

TA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0

ψ7

ψ3

ψ4

ψ1

ψ6

ψ2

ψ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2

− 1
2

1
2

1
2

1
2

0

0

1
2

1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2

− 1
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0

ψ7

ψ3

ψ4

ψ1

ψ6

ψ2

ψ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

TB

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0

ψ7

ψ2

ψ5

ψ3

ψ4

ψ1

ψ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2

− 1
2

1
2

1
2

1
2

0

0

1
2

1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2

− 1
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0

ψ7

ψ2

ψ5

ψ3

ψ4

ψ1

ψ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

TC

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0

ψ7

ψ1

ψ6

ψ2

ψ5

ψ3

ψ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2

− 1
2

1
2

1
2

1
2

0

0

1
2

1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2− 1

2
1
2

1
2

− 1
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0

ψ7

ψ1

ψ6

ψ2

ψ5

ψ3

ψ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

The proof is straightforward by routine calculation, which
is shown in the Appendix. Now starting from the case t = 1,
consider the subset S5 = {ψ0, ψ1, ψ2, ψ3, ψ4} of the three-
qubit GHZ basis, namely, �k = ψk−1 (k = 1, . . . , 5). By the
matrix representations (6) in Lemma 2, one can check that
what we list in the following is a set of feasible solutions
to the family of dual problems (5) [namely, the constraints
Y (X ) − �k � TX (Q(X )

k ) are satisfied for 1 � k � 5 and X ∈
{A, B,C}]:

Y (A) = 1
2ψ0 + ψ1 + ψ2 + 1

2ψ3 + 1
2ψ4 + 1

2ψ7,

Q(A)
1 = ψ4, Q(A)

2 = Q(A)
3 = 0, Q(A)

4 = ψ7, Q(A)
5 = ψ0;

Y (B) = ψ0 + 1
2ψ1 + ψ2 + 1

2ψ3 + 1
2ψ4 + 1

2ψ6,

Q(B)
1 = 0, Q(B)

2 = ψ4, Q(B)
3 = 0, Q(B)

4 = ψ6, Q(B)
5 = ψ1;

Y (C) = ψ0 + ψ1 + 1
2ψ2 + 1

2ψ3 + 1
2ψ4 + 1

2ψ5,

Q(C)
1 = Q(C)

2 = 0, Q(C)
3 = ψ4, Q(C)

4 = ψ5, Q(C)
5 = ψ2.

(7)

Here as an example, we check only the inequality constraints
for bipartition A|BC, and the others are similar by routine

calculation:

TA
(
Q(A)

1

) = − 1
2ψ0 + 1

2ψ7 + 1
2ψ3 + 1

2ψ4

< − 1
2ψ0 + 1

2ψ7 + 1
2ψ3 + 1

2ψ4 + (ψ1 + ψ2)

= Y (A) − ψ0,

TA
(
Q(A)

2

) = 0 < 1
2ψ0 + ψ2 + 1

2ψ3 + 1
2ψ4 + 1

2ψ7

= Y (A) − ψ1,

TA
(
Q(A)

3

) = 0 < 1
2ψ0 + ψ1 + 1

2ψ3 + 1
2ψ4 + 1

2ψ7

= Y (A) − ψ2,

TA
(
Q(A)

4

) = 1
2ψ0 + 1

2ψ7 − 1
2ψ3 + 1

2ψ4

< 1
2ψ0 + 1

2ψ7 − 1
2ψ3 + 1

2ψ4 + (ψ1 + ψ2)

= Y (A) − ψ3,

TA
(
Q(A)

5

) = 1
2ψ0 + 1

2ψ7 + 1
2ψ3 − 1

2ψ4

< 1
2ψ0 + 1

2ψ7 + 1
2ψ3 − 1

2ψ4 + (ψ1 + ψ2)

= Y (A) − ψ4. (8)

The target values for the three bipartitions are 4/5, 4/5 and
4/5, respectively. Therefore, the set S5 is genuinely nonlocal,
which is consistent with with our former discussion. Now with
these, we give a simple construction of a genuinely nonlocal
set of GHZ lattices in C4 ⊗ C4 ⊗ C4, of which the cardinality
is considerably smaller than 42 + 1 (which is a trivial cardi-
nality by Lemma 1).

Proposition 2. In C4 ⊗ C4 ⊗ C4, the following set of or-
thogonal lattice-type GHZ states:

S10 = {ψ0 ⊗ ψ0, ψ1 ⊗ ψ0, ψ2 ⊗ ψ0, ψ3 ⊗ ψ0, ψ4 ⊗ ψ0,

ψ0 ⊗ ψ7, ψ1 ⊗ ψ7, ψ2 ⊗ ψ7, ψ3 ⊗ ψ7, ψ4 ⊗ ψ7},
is genuinely nonlocal.

Proof. Notice that by matrix representations (6), we have
TX (ψ0 + ψ7) = ψ0 + ψ7 ∀X ∈ {A, B,C}. From the above
discussion, the constraints Y (X1 ) − ψk−1 � TX1 (Q(X1 )

k ) are sat-
isfied for 1 � k � 5 and X1 ∈ {A1, B1,C1}, so we have

Y (X1 ) ⊗ (ψ0 + ψ7) − ψk−1 ⊗ (ψ0 + ψ7)

� TX1

(
Q(X1 )

k

) ⊗ (ψ0 + ψ7)

= TX1X2

[
Q(X1 )

k ⊗ (ψ0 + ψ7)
]
.

If we set Y (X1X2 ) = Y (X1 ) ⊗ (ψ0 + ψ7) and Q(X1X2 )
k = Q(X1X2 )

k+5 =
Q(X1 )

k ⊗ (ψ0 + ψ7) (1 � k � 5), then

Y (X1X2 ) − � j > TX1X2

(
Q(X1X2 )

j

)
( j = 1, . . . , 10)

also satisfy the inequality constraints of dual problems (5),
where

� j =
{
ψ j−1 ⊗ ψ0, 1 � j � 5
ψ j−6 ⊗ ψ7, 6 � j � 10

are just elements of S10. Since Tr(Y (A) ) = Tr(Y (B) ) =
Tr(Y (C) ) = 8, all the minimums βX (X ∈ {A, B,C}) are
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smaller than 1. This means that S10 = {|�1〉, . . . , |�10〉} is
genuinely nonlocal. �

The reader may be curious of the above construction
procedure about S5 and S10, for the feasible solutions to
semidefinite programs (5) we have presented (the Y (X )’s and
the Q(X )

k ’s) are all lattice-type operators (diagonal in the basis
{|ψ0〉, . . . , |ψ7〉} or their tensor products). To explain why, we
present the following lemma that is an analog to Theorem 2
of [30]. It turns out that when GHZ lattices are considered,
any set of feasible solutions to the semidefinite programs (5)
corresponds to a set of lattice-type ones that have the same
target values.

Lemma 3. If the states |�1〉, . . . , |�s〉 to be distinguished
are all GHZ lattices, then the semidefinite programs (5) [and
(4) likewise] can be reduced to linear programs.

Proof. We check here the dual problem case and the primal
case is similar. First, note that the set of three-qubit GHZ
basis (2) is the common eigenbasis of the following set of
commutative product operators on C2 ⊗ C2 ⊗ C2:

C = {III, XXX, IZZ, ZIZ, ZZI, XYY, YXY, YYX},
where {X, Y, Z} are the one-qubit Pauli operators. More ex-
plicitly, they have spectral decomposition:

III = ψ0 + ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7,

XXX = ψ0 + ψ1 + ψ2 + ψ3 − ψ4 − ψ5 − ψ6 − ψ7,

IZZ = ψ0 − ψ1 − ψ2 + ψ3 + ψ4 − ψ5 − ψ6 + ψ7,

ZIZ = ψ0 − ψ1 + ψ2 − ψ3 − ψ4 + ψ5 − ψ6 + ψ7,

ZZI = ψ0 + ψ1 − ψ2 − ψ3 − ψ4 − ψ5 + ψ6 + ψ7,

XYY = −ψ0 + ψ1 + ψ2 − ψ3 + ψ4 − ψ5 − ψ6 + ψ7,

YXY = −ψ0 + ψ1 − ψ2 + ψ3 − ψ4 + ψ5 − ψ6 + ψ7,

YYX = −ψ0 − ψ1 + ψ2 + ψ3 − ψ4 − ψ5 + ψ6 + ψ7.

(9)

Consider the quantum operation

	(ρ) = 1

|C|
∑
Ui∈C

UiρU †
i (10)

that acts on system C2 ⊗ C2 ⊗ C2. Substituting (9) into (10),
one can check that all the cross terms in expression are elim-
inated and hence 	 acts as the dephasing operation under the
three-qubit GHZ basis:

	(ρ) =
7∑

i=0

|ψi〉〈ψi|ρ|ψi〉〈ψi|. (11)

It is obvious that 	 is positive and trace preserving. What is
more, it commutes with the partial transpose operations TX ’s
(X ∈ {A, B,C}). To see this, just write 	 in the form (10), and
check if each TX commutes with each term UiρU †

i . This is
routine; for example,

TB(YYX · ρ · YYX) = YYTX · TB(ρ) · YYTX

= (−YYX) · TB(ρ) · (−YYX)

= YYX · TB(ρ) · YYX, (12)

and so on. Hence, TX [	(ρ)] = 	[TX (ρ)] for X ∈ {A, B,C}.
Now let � = 	⊗t , that is,

�(γ ) =
7∑

i1=0

· · ·
7∑

it =0

γi1···it · ∣∣ψi1 · · · ψit

〉〈
ψi1 · · · ψit

∣∣,
where γ is any state in the tripartite system C2t ⊗ C2t ⊗ C2t

and γi1···it = 〈ψi1 · · · ψit |γ |ψi1 · · · ψit 〉. It also acts as the de-
phasing operation under the basis {|ψi1〉 ⊗ · · · ⊗ |ψit 〉}i1,...,it
and has the same property as 	(·). Since this operation is
invariant on the GHZ lattices �k = ψk1 ⊗ · · · ⊗ ψkt , by acting
it on any specific feasible solution of (5), one can achieve
another feasible solution consisting only of diagonal operators
while the target values stay still. That is to say, the semidefinite
programs (5) reduce to linear programs,

βX = min
1

s

7∑
l1=0

· · ·
7∑

lt =0

(
−→
y(X ) )l1···lt

such that (
−→
y(X ) )i1···it −

∑
l1···lt

(T (X ) )⊗t
i1···it ,l1···lt · (−→

q(X )
k

)
l1···lt

� δi1···it ,k1···kt ,

(
−→
q(X )

k )i1···it � 0

(i1, . . . , it ∈ {0, . . . , 7}; 1 � k � s),
(13)

where X ∈ {A, B,C}. Therein, “δ” is the Kronecker delta
and we suppose that the GHZ lattices |�k〉 have index

k1, . . . , kt (1 � k � s). The (
−→
y(X ) )’s and (

−→
q(X )

k )’s (1 � k �
s, X ∈ {A, B,C}) are 8t × 1 vectors representing the diagonal
elements of Y (X )’s and Q(X )

k ’s in problem (5), respectively
(which are the optimization variables); T(X )’s (X ∈ {A, B,C})
are the transformation matrices of linear maps TX ’s under
basis {ψ0, . . . , ψ7}, as shown by (6) in Lemma 2 (but with
the basis rearranged in ascending order). �

This result greatly reduces the complexity of the problem,
for all operators we need to consider now are just diago-
nal (lattice-type) ones. We should also point out here that
the feasible solutions we presented in the case S5 are actu-
ally optimal. Moreover, by running the linear programs (13)
numerically, we found the existence of genuinely nonlocal
subsets of S10 with cardinality down to 7. In other words, the
genuine nonlocality of S10 can actually be derived from its
subset.

Theorem 1. In C4 ⊗ C4 ⊗ C4, the following 7-ary subset
of S10:

S7 = {ψ0 ⊗ ψ0, ψ1 ⊗ ψ0, ψ2 ⊗ ψ0,

ψ3 ⊗ ψ0, ψ4 ⊗ ψ0, ψ3 ⊗ ψ7, ψ4 ⊗ ψ7},
already has the property of genuine nonlocality (ψ0 ⊗
ψ7, ψ1 ⊗ ψ7, ψ2 ⊗ ψ7 from S10 have been excluded).

The proof is placed in the Appendix, where we present a
set of feasible solutions to the dual problems (5) with target
values smaller than 1. Notably, although these solutions come
out of numerical evaluation, it turns out that they can also be
constructed inductively from the feasible solutions (7) for S5.
This inspires us to further construct such genuinely nonlocal
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sets inductively when t > 2, simply duplicating the procedure
from S5 to S7. That is to say, in C8 ⊗ C8 ⊗ C8 we will
achieve

S11 = {ψ0 ⊗ ψ0 ⊗ ψ0, ψ1 ⊗ ψ0 ⊗ ψ0, ψ2 ⊗ ψ0 ⊗ ψ0,

ψ3 ⊗ ψ0 ⊗ ψ0, ψ4 ⊗ ψ0 ⊗ ψ0, ψ3 ⊗ ψ7 ⊗ ψ0,

ψ4 ⊗ ψ7 ⊗ ψ0, ψ3 ⊗ ψ0 ⊗ ψ7, ψ4 ⊗ ψ0 ⊗ ψ7,

ψ3 ⊗ ψ7 ⊗ ψ7, ψ4 ⊗ ψ7 ⊗ ψ7}
[see (16) in the proof of Theorem 2] and more generally, the
following theorem.

Theorem 2. In three-partite systems Cd ⊗ Cd ⊗ Cd ,
where d = 2t (t � 1), there exist genuinely nonlocal sets of
lattice-type GHZ states with cardinality d + 3.

Proof. Inspired by the proof of Theorem 1, we explic-
itly construct these sets S (t ) by mathematical induction on
t . For t = 1, 2, they are just S5, S7 in the main text.
Now assume that S (t ) = {η1, . . . , η2t +3}, together with the
Y (X1···Xt ), Q(X1···Xt )

j (1 � j � d + 3 where d = 2t ), have been
constructed, such that

Y (A1···At ) − η2 − η3

� 0 = TA
(
Q(A1···At )

2

) = TA
(
Q(A1···At )

3

)
,

Y (B1···Bt ) − η1 − η3

� 0 = TB
(
Q(B1···Bt )

1

) = TB
(
Q(B1···Bt )

3

)
,

Y (C1···Ct ) − η1 − η2

� 0 = TC
(
Q(C1···Ct )

1

) = TC
(
Q(C1···Ct )

2

)
, (14)

and

Y (A1···At ) − η2 − η3 � TA
(
Q(A1···At )

j

)+η j

(1 � j � d + 3, j �= 2, 3),

Y (B1···Bt ) − η1 − η3 � TB
(
Q(B1···Bt )

j

)+η j

(1 � j � d + 3, j �= 1, 3),

Y (C1···Ct ) − η1 − η2 � TC
(
Q(C1···Ct )

j

)+η j

(1 � j � d + 3, j �= 1, 2).

(15)

Moreover, assume that Tr[Y (A1···At )] = Tr[Y (B1···Bt )] =
Tr[Y (C1···Ct )] = 2t + 2 = d + 2. It can be seen from (7),
(8), and also the proof of Theorem 1 that these assumptions
hold for t = 1.

Now, we let S (t+1) = {χ1, . . . , χ2t+1+3}, where

χ j =
{
η j ⊗ ψ0, 1 � j � d + 3
η j−d ⊗ ψ7, d + 4 � j � 2d + 3.

(16)

Meanwhile, we set

Y (A1···At+1 ) = Y (A1···At ) ⊗ (ψ0 + ψ7) − η2 ⊗ ψ7 − η3 ⊗ ψ7,

Y (B1···Bt+1 ) = Y (B1···Bt ) ⊗ (ψ0 + ψ7) − η1 ⊗ ψ7 − η3 ⊗ ψ7,

Y (C1···Ct+1 ) = Y (C1···Ct ) ⊗ (ψ0 + ψ7) − η1 ⊗ ψ7 − η2 ⊗ ψ7,

and

Q(X1···Xt+1 )
j =

{
Q(X1···Xt )

j ⊗ (ψ0 + ψ7), 1� j�d + 3

Q(X1···Xt )
j−d ⊗ (ψ0 + ψ7), d + 4� j � 2d+3,

where X ∈ {A, B,C}. Acting ⊗(ψ0 + ψ7) on the right-hand
sides of (14) and (15), we get

Y (A1···At+1 ) − χ2 − χ3

� 0 =TA
(
Q(A1···At+1 )

2

) = TA
(
Q(A1···At+1 )

3

)
,

Y (B1···Bt+1 ) − χ1 − χ3

� 0 =TB
(
Q(B1···Bt+1 )

1

) = TB
(
Q(B1···Bt+1 )

3

)
,

Y (C1···Ct+1 ) − χ1 − χ2

� 0 =TC
(
Q(C1···Ct+1 )

1

) = TC
(
Q(C1···Ct+1 )

2

)
,

and

Y (A1···At+1 ) − χ2 − χ3

� TA
(
Q(A1···At+1 )

j

) + η j ⊗ ψ0(
also TA

(
Q(A1···At+1 )

j

) + η j ⊗ ψ7
)

(1 � j � d + 3, j �= 2, 3),

Y (B1···Bt+1 ) − χ1 − χ3

� TB
(
Q(B1···Bt+1 )

j

) + η j ⊗ ψ0(
also TB

(
Q(B1···Bt+1 )

j

) + η j ⊗ ψ7
)

(1 � j � d + 3, j �= 1, 3),

Y (C1···Ct+1 ) − χ1 − χ2

� TC
(
Q(C1···Ct+1 )

j

) + η j ⊗ ψ0(
also TC

(
Q(C1···Ct+1 )

j

) + η j ⊗ ψ7
)

(1 � j � d + 3, j �= 1, 2).

That is, assumptions (14) and (15) also hold for S (t+1).
Besides, Tr[Y (A1···At+1 )] = Tr[Y (B1···Bt+1 )] = Tr[Y (C1···Ct+1 )] =
2(d + 2) − 2 = 2t+1 + 2 < 2t+1 + 3. Since the constraints
of the dual problems (5) are all satisfied for any S (t ) (t � 1),
these sets are consequently genuinely nonlocal. �

This result is somewhat unexpected, for the size of such
genuinely nonlocal sets can scale down to linear in the local
dimension d , conspicuously with a small linear factor l = 1.
In sharp contrast, when strong nonlocality is considered, all
existing nonlocal sets that have been constructed in three-
partite systems Cd ⊗ Cd ⊗ Cd have cardinality �(d2) (with
the leading coefficient c > 1), to our best knowledge [56–60].
This comparison might arguably imply a substantial differ-
ence between strong nonlocality and distinguishability-based
genuine nonlocality.

IV. CONSTRUCTING (2,3)-THRESHOLD
SETS IN THREE-PARTITE SYSTEMS

In the previous section, we studied the genuine nonlocality
of the GHZ states on three-qudit systems. Namely, the distin-
guishability when only two of the three parties A, B and C are
allowed to combine. In the n-partite scenario, if the system
is in one of a priorly known set of quantum states that are
genuinely nonlocal, then the actual state of the system cannot
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be revealed perfectly unless all n parties are joined together
to make global measurements. It is then natural and inter-
esting to extend this notion of multipartite distinguishability
to the more general case: a set of orthogonal states in the
n-partite system is called (s, n)-threshold distinguishable if
the states are distinguishable when any s or more parties are
combined (s � n), but indistinguishable when at most s − 1
parties can combine. Such sets are called (s, n)-threshold sets
here and genuinely nonlocal sets are just (n, n)-threshold sets
in this sense. This notion of multipartite distinguishability is
an analog to the resembling notion in quantum secret sharing
(QSS), where an (s, n)-threshold QSS scheme means that the
secret has been distributed into n shares and any group of s or
more shares can collaboratively reconstruct the secret while
no group of fewer than s shares can [47–50].

In this section, we consider the problem of constructing
(2,3)-threshold sets consisting of GHZ states in three-partite
systems, as a complement to our studies of (3,3)-threshold
sets in Sec. III. It is routine to first consider the simplest
case of three-qubit systems. Unfortunately, it turns out that
(2,3)-threshold sets consisting of states from the three-qubit
GHZ basis do not exist.

Proposition 3. In systems C2 ⊗ C2 ⊗ C2, there exists no
(2,3)-threshold set consisting of states from the three-qubit
GHZ basis (2).

Proof. Suppose that T is a (2,3)-threshold set consisting
of states from the three-qubit GHZ basis; namely, it is dis-
tinguishable across all bipartitions A|BC, B|CA and C|AB but
indistinguishable when the three parties are fully separated.
Now if T contains a certain conjugate pair, one can easily
see from the schematic picture in Fig. 1 that the set cannot
contain a third state, for otherwise T will be indistinguishable
across one of the bipartitions. However, all conjugate pairs
are distinguishable by the three fully separated parties. As an
example, for |ψ0,7〉 = 1√

2
(|000〉 ± |111〉), since

|000〉 + |111〉√
2

= | + ++〉 + | + −−〉 + | − +−〉 + | − −+〉
2

and

|000〉 − |111〉√
2

= | + +−〉 + | + −+〉 + | − ++〉 + | − −−〉
2

(
|+〉 = |0〉 + |1〉√

2
, |−〉 = |0〉 − |1〉√

2

)
,

the three parties can do local positive operator valued mea-
sure (POVM) {|+〉〈+|, |−〉〈−|} on their own subsystems and
tell them apart by classical communications. Therefore, T
must not contain any conjugate pair. Unfortunately, when
no conjugate pair exists in T , the three fully separated par-
ties can distinguish the set by simply doing local POVM
{|0〉〈0|, |1〉〈1|} on their subsystems and communicating clas-
sically. As a result, no (2,3)-threshold set exists in this case.�

Although such (2,3)-threshold sets consisting of GHZ
states do not exist in C2 ⊗ C2 ⊗ C2, it is natural to further
consider their existence in systems of higher local dimension.
Fortunately, by applying the method of semidefinite program
similarly as before, we find the existence of (2,3)-threshold
sets consisting of lattice-type GHZ states. If a set of or-

thogonal quantum states S = {|�1〉, . . . , |�s〉} in three-partite
systems HA ⊗ HB ⊗ HC is locally distinguishable across the
A|B|C (fully separated) partition, then the semidefinite pro-
gram

αA|B|C = max
P1 ,...,Ps

1

s

s∑
k=1

Tr(Pk�k )

such that P1 + · · · + Ps = IABC ,

P1, . . . , Ps � 0,

TA(Pk ), TB(Pk ), TC (Pk ) � 0 (1 � k � s) (17)

must have optimal value αA|B|C = 1. To obtain an upper bound
of αA|B|C , it is natural to consider its dual problem which we
present in the following lemma.

Lemma 4. The dual problem of semidefinite program (17)
has the form

βA|B|C = min
Y,Q(A)

k ,Q(B)
k ,Q(C)

k

1

s
Tr(Y )

such that Y − �k � TA(Q(A)
k ) + TB(Q(B)

k ) + TC (Q(C)
k ),

Q(A)
k , Q(B)

k , Q(C)
k � 0 (1 � k � s). (18)

For consideration of readability, we place the proof in
the Appendix. Since αA|B|C � βA|B|C (actually αA|B|C = βA|B|C
by Slater’s condition), once we find a feasible solution to
the dual problem (18) with target value smaller than 1, the
indistinguishability of S = {|�1〉, . . . , |�s〉} across the A|B|C
partition will be deduced immediately. For the distinguisha-
bility across the 2 − 1 bipartitions, a necessary condition is
that the family of semidefinite programs (5) have optimal
values βX = 1 for X ∈ {A, B,C} (αX = βX by strong dual-
ity). These facts indicate that we can search for sets T such
that βA|B|C < 1 and βX = 1 (X ∈ {A, B,C}) as candidates for
(2,3)-threshold sets in three-partite systems (we should further
check their distinguishability across the 2 − 1 partitions as
PPT distinguishability is just a necessary condition). In our
case where GHZ lattices are considered, these semidefinite
programs reduce to linear programs by Lemma 2 and Lemma
3, and the complexity will be greatly reduced. By running nu-
merical search, we find plenty of such sets in C4 ⊗ C4 ⊗ C4

and we present here only one of them with the smallest cardi-
nality.

Theorem 3. In system C4 ⊗ C4 ⊗ C4, the 5-ary set

T (2,3)
5 = {ψ0 ⊗ ψ1, ψ0 ⊗ ψ6, ψ0 ⊗ ψ3, ψ3 ⊗ ψ0, ψ4 ⊗ ψ0}

consisting of three-partite lattice-type GHZ states is a (2,3)-
threshold set.

Proof. First, we prove that T (2,3)
5 is indistinguishable in the

1 − 1 − 1 partition. This can be done by presenting a feasible
solution to the dual problem (18), with target value smaller
than 1 (19/20 in this case):

Y = 1
2ψ0 ⊗ (ψ1 + ψ6) + ψ0 ⊗ ψ3 + 1

2 (ψ3 + ψ4) ⊗ ψ0

+ 1
4ψ1 ⊗ (ψ0 + ψ7) + 1

4ψ6 ⊗ (ψ0 + ψ7)

+ 1
4ψ7 ⊗ (ψ3 + ψ4) + 1

4ψ0 ⊗ ψ4,
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Q(A)
1 = Q(A)

2 = Q(A)
3 = 0,

Q(A)
4 = 1

2ψ0 ⊗ ψ4 + 1
2ψ7 ⊗ ψ3,

Q(A)
5 = 1

2ψ0 ⊗ ψ3 + 1
2ψ7 ⊗ ψ4,

Q(B)
1 = 1

2 (ψ0 + ψ7) ⊗ ψ4,

Q(B)
2 = 1

2 (ψ0 + ψ7) ⊗ ψ3, Q(B)
3 = 0,

Q(B)
4 = 1

2ψ6 ⊗ (ψ0 + ψ7),

Q(B)
5 = 1

2ψ1 ⊗ (ψ0 + ψ7),

Q(C)
1 = 1

2ψ1 ⊗ ψ7 + 1
2ψ6 ⊗ ψ0,

Q(C)
2 = 1

2ψ1 ⊗ ψ0 + 1
2ψ6 ⊗ ψ7,

Q(C)
3 = Q(C)

4 = Q(C)
5 = 0.

This solution is actually an optimal one but we only
need to check its feasibility. As an instance, we check
here the constraint Y − ψ0 ⊗ ψ1 � TA(Q(A)

1 ) + TB(Q(B)
1 ) +

TC (Q(C)
1 ) [with the help of expressions (6)]:

TA(Q(A)
1 ) + TB(Q(B)

1 ) + TC (Q(C)
1 )

= 0 + 1
2 (ψ0 + ψ7) ⊗ 1

2 (ψ3 + ψ4 − ψ1 + ψ6)

+ 1
8 (ψ0 − ψ7 + ψ1 + ψ6) ⊗ (ψ0 + ψ7 − ψ1 + ψ6)

+ 1
8 (−ψ0 + ψ7 + ψ1 + ψ6) ⊗ (ψ0 + ψ7 + ψ1 − ψ6)

= 1
4 (ψ1 + ψ6) ⊗ (ψ0 + ψ7) + 1

4 (ψ0 + ψ7) ⊗ (ψ3 + ψ4)

+ 1
2ψ0 ⊗ ψ6 − 1

2ψ0 ⊗ ψ1

� Y − ψ0 ⊗ ψ1,

and the others can be checked similarly. For the distinguisha-
bility of T (2,3)

5 across the 2 − 1 bipartitions, we present the
explicit distinguishing protocol respectively:

(i) For A|BC: BC can first perform a two-outcome joint
measurement {|00〉〈00| + |11〉〈11|, |01〉〈01| + |10〉〈10|}B2C2

on the second share of the qubit GHZ state to reduce T (2,3)
5

into {ψ0 ⊗ ψ1, ψ0 ⊗ ψ6} and {ψ0 ⊗ ψ3, ψ3 ⊗ ψ0, ψ4 ⊗ ψ0}
(see Fig. 1), of which the former can apparently be
distinguished across A|BC and the latter can be further dis-
tinguished into {ψ0 ⊗ ψ3} or {ψ3 ⊗ ψ0, ψ4 ⊗ ψ0} if A|BC
measure on the second share and communicate classically (we
use the delete line “–” to denote that the share of state has
collapsed after measurements). Last, {ψ3 ⊗ ψ0, ψ4 ⊗ ψ0} can
also be distinguished by measuring on the first share.

(ii) For B|CA: CA can perform a joint measurement
{|00〉〈00| + |11〉〈11|, |01〉〈01| + |10〉〈10|}C2A2 on the second
share of the state to reduce T (2,3)

5 into {ψ3 ⊗ ψ0, ψ4 ⊗ ψ0}
and {ψ0 ⊗ ψ1, ψ0 ⊗ ψ6, ψ0 ⊗ ψ3}, where the former set is
apparently distinguishable across B|CA. For the latter, B can
use the first share ψ0 as resource, to teleport his second share
of qubit to CA and then CA can distinguish {ψ0 ⊗ ψ1, ψ0 ⊗
ψ6, ψ0 ⊗ ψ3} by their own.

(iii) For C|AB: AB first perform a joint measurement
{|00〉〈00| + |11〉〈11|, |01〉〈01| + |10〉〈10|}A1B1 on the first
share of the state to reduce the set into {ψ3 ⊗ ψ0, ψ4 ⊗
ψ0} and {ψ0 ⊗ ψ1, ψ0 ⊗ ψ6, ψ0 ⊗ ψ3}, where the former is

distinguishable across C|AB. For the other, AB can fur-
ther perform a measurement {|00〉〈00| + |11〉〈11|, |01〉〈01| +
|10〉〈10|}A2B2 on the second share to reduce it into {ψ0 ⊗ ψ3}
and {ψ0 ⊗ ψ1, ψ0 ⊗ ψ6}, where the latter one can be distin-
guished simply through the second share. �

It is also straightforward to construct (2,3)-threshold sets
in systems C2t ⊗ C2t ⊗ C2t

(t > 2) inductively from T (2,3)
5 ,

similarly as that of Proposition 2. What is more, we have also
found a 16-ary superset of T (2,3)

5 that is PPT distinguishable
in all three 2 − 1 bipartitions:

T16 = {ψ0 ⊗ ψ1, ψ0 ⊗ ψ6, ψ0 ⊗ ψ3, ψ3 ⊗ ψ0,

ψ0 ⊗ ψ5, ψ5 ⊗ ψ5, ψ5 ⊗ ψ0, ψ4 ⊗ ψ0,

ψ6 ⊗ ψ5, ψ6 ⊗ ψ3, ψ6 ⊗ ψ6, ψ6 ⊗ ψ0,

ψ2 ⊗ ψ2, ψ2 ⊗ ψ3, ψ3 ⊗ ψ3, ψ3 ⊗ ψ1}.
Note that 16 achieves the upper bound of cardinality of such
sets indeed (it is not hard to prove that any k > d2 GHZ
states in Cd ⊗ Cd ⊗ Cd are PPT indistinguishable across the
2 − 1 partitions). Yet, we do not know whether T16 is locally
distinguishable in the 2 − 1 bipartitions. It is then interesting
to find out the maximal intermediate (2,3)-threshold set(s)
T (2,3)

5 ⊆ T (2,3)
max ⊆ T16 with the largest cardinality |T (2,3)

max |, such
that the intermediate sets between T (2,3)

5 and T (2,3)
max are all

(2,3)-threshold sets immediately.

V. CONCLUSION AND DISCUSSION

In this paper, we have studied the distinguishability-based
genuine nonlocality of a typical type of genuine multipartite
entangled states—the GHZ states. We first study the genuine
nonlocality of the three-qubit GHZ basis. Then, using the
result in the three-qubit case, we construct genuinely non-
local sets of “GHZ lattices” in three-partite systems where
the local dimension are powers of 2. It turns out that the
size of these genuinely nonlocal sets with genuine multipar-
tite entanglement can at least scale down to linear in the
local dimension d , with a conspicuously small linear factor
l = 1. The concept of genuine nonlocality, which concerns
the distinguishability of multipartite quantum states through
any possible bipartition of the subsystems, is in our opinion
more naturally arising than the recently more popular “strong
nonlocality”. However, little is known about this form of
distinguishability-based nonlocality. A natural and interesting
question is to ask: In what extent is strong nonlocality stronger
than the more normal genuine nonlocality? As far as we know
presently, no strongly nonlocal set with such small scale has
been constructed yet, no matter product states or genuinely en-
tangled states that were considered. It is therefore reasonable
to argue that there might exist a significant gap between the
strength of strong nonlocality and the distinguishability-based
genuine nonlocality. Besides that, our result might possi-
bly also illuminate the relation between entanglement and
distinguishability in multipartite scenarios, substantiating the
perspective that entanglement can somehow raise difficulty in
state discrimination.

We also discuss the concept of (s, n)-threshold distin-
guishability, which extends the notion of genuine nonlocality
to characterize the local accessibility of global information
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more comprehensively. Although there are no (2,3)-threshold
sets in C2 ⊗ C2 ⊗ C2 consisting of states from the three-qubit
GHZ basis, we have found their existence in systems of higher
local dimension. We stress here that the techniques we use
can be easily generalized to more-partite cases. For example,
in the four-partite case, when distinguishability in bipartitions
is considered, we can consider semidefinite programs (4) and
(5) similarly by letting X ∈ {A, B,C, D, AB, BC, AC}. When
considering distinguishability through the 1 − 1 − 1 − 1
partition, semidefinite program (17) can be adjusted to

αA|B|C|D = max
P1 ,··· ,Ps

1

s

s∑
k=1

Tr(Pk�k )

such that P1 + · · · + Ps = IABCD ,

P1, . . . , Ps � 0,

TA(Pk ), TB(Pk ), TC (Pk ), TD(Pk ) � 0,

TAB(Pk ), TBC (Pk ), TAC (Pk ) � 0 (1 � k � s),

and so forth. It is interesting to derive some more universal
results and this will be the main focus in our future work.

There are also some questions left to be considered. For
example, can the technique we use be generalized to more
general cases where the local dimensions d are not powers
of 2? Can we find genuinely nonlocal sets with even smaller
cardinality? What is the situation when a large number of
parties is considered? Besides, notice that we have constructed
the genuinely nonlocal sets or threshold sets mainly through
PPT indistinguishability in this work. It is then natural and
interesting to ask whether there exist other ways to construct
these sets, such that they have even smaller cardinality or
some other novel properties.
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APPENDIX

1. Proof of Lemma 2

Proof. It is routine to check this result. For example, notice
that TA(ψ0) = (|000〉〈000| + |111〉〈111| + |100〉〈011| +
|011〉〈100|)/2, and ψ4 = (|011〉〈011| + |100〉〈100| −
|011〉〈100| − |100〉〈011|)/2. Then by adding these two
operators we eliminate the cross terms:

TA(ψ0) + ψ4

= |000〉〈000| + |111〉〈111| + |011〉〈011| + |100〉〈100|
2

.

(A1)

Moreover, ψ0 + ψ7 = |000〉〈000| + |111〉〈111| while ψ3 +
ψ4 = |011〉〈011| + |100〉〈100|. Therefore, we get TA(ψ0) =

(ψ0 + ψ7 + ψ3 − ψ4)/2 as it is shown in (6). By acting TA on
(A1), we get ψ0 + TA(ψ4) = (ψ0 + ψ7 + ψ3 + ψ4)/2 and so
TA(ψ4) = (−ψ0 + ψ7 + ψ3 + ψ4)/2. Similarly,

TA(ψ3) + ψ7 = TA(ψ7) + ψ3 = ψ0 + ψ7 + ψ3 + ψ4

2
,

hence we have TA(ψ7) = (ψ0 + ψ7 − ψ3 + ψ4)/2 and
TA(ψ3) = (ψ0 − ψ7 + ψ3 + ψ4)/2. Actually, within
the bipartition A|BC, A1 = {ψ0, ψ7, ψ3, ψ4} is locally
equivalent to the Bell basis (see Fig. 1). Similarly for
A2 = {ψ1, ψ6, ψ2, ψ5}, one can easily check that

TA(ψ1) + ψ5 = TA(ψ5) + ψ1

= TA(ψ2) + ψ6 = TA(ψ6) + ψ2

= |001〉〈001| + |110〉〈110| + |010〉〈010| + |101〉〈101|
2

= ψ1 + ψ6 + ψ2 + ψ5

2
.

Hence, TA has the same matrix representation on A2 and so
forth for the other two bipartitions. �

2. Proof of Theorem 1

Proof. We present here a set of feasible solutions (actually
optimal ones) to the dual problems for S7, inductively from
the solutions (7) for S5.

For A|BC,

Y (A1A2 ) = Y (A1 ) ⊗ (ψ0 + ψ7) − ψ1 ⊗ ψ7 − ψ2 ⊗ ψ7,

Q(A1A2 )
i = Q(A1 )

i ⊗ (ψ0 + ψ7),

Q(A1A2 )
6 = Q(A1 )

4 ⊗ (ψ0 + ψ7),

Q(A1A2 )
7 = Q(A1 )

5 ⊗ (ψ0 + ψ7) (1 � i � 5). (A2)

For B|CA,

Y (B1B2 ) = Y (B1 ) ⊗ (ψ0 + ψ7) − ψ0 ⊗ ψ7 − ψ2 ⊗ ψ7,

Q(B1B2 )
i = Q(B1 )

i ⊗ (ψ0 + ψ7),

Q(B1B2 )
6 = Q(B1 )

4 ⊗ (ψ0 + ψ7),

Q(B1B2 )
7 = Q(B1 )

5 ⊗ (ψ0 + ψ7) (1 � i � 5). (A3)

For C|AB,

Y (C1C2 ) = Y (C1 ) ⊗ (ψ0 + ψ7) − ψ0 ⊗ ψ7 − ψ1 ⊗ ψ7,

Q(C1C2 )
i = Q(C1 )

i ⊗ (ψ0 + ψ7),

Q(C1C2 )
6 = Q(C1 )

4 ⊗ (ψ0 + ψ7),

Q(C1C2 )
7 = Q(C1 )

5 ⊗ (ψ0 + ψ7) (1 � i � 5). (A4)

Now the feasibility of these solutions can be checked in-
ductively from the feasibility of (7). Taking A|BC for example,
it is routine to check from (8) that

Y (A1 ) − (ψ1 + ψ2) > 0 = TA(Q(A1 )
2 ) = TA(Q(A1 )

3 ),

and

Y (A1 ) − (ψ1 + ψ2) � ψk−1 + TA(Q(A1 )
k ) (k = 1, 4, 5).
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Therefore, we have

Y (A1A2 ) − (ψ1 ⊗ ψ0 + ψ2 ⊗ ψ0)

= Y (A1 ) ⊗ (ψ0 + ψ7) − (ψ1 + ψ2) ⊗ (ψ0 + ψ7)

> 0 = TA(Q(A1A2 )
2 ) = TA(Q(A1A2 )

3 ),

and

Y (A1A2 ) − (ψ1 ⊗ ψ0 + ψ2 ⊗ ψ0)

= Y (A1 ) ⊗ (ψ0 + ψ7) − (ψ1 + ψ2) ⊗ (ψ0 + ψ7)

>
[
ψk−1 + TA(Q(A1 )

k )
] ⊗ (ψ0 + ψ7)

> ψk−1 ⊗ ψ0 + TA
(
Q(A1A2 )

k

)
(
also ψk−1 ⊗ ψ7 + TA

(
Q(A1A2 )

k

))
(k = 1, 4, 5).

This means that Y (A1A2 ) − � j � TA(Q(A1A2 )
j ) for all 1 � j �

7, where {�1, . . . , �7} = S7. Hence, the solution (A2) for
bipartition A|BC is feasible and so forth for the other two
bipartitions. Since the corresponding target values for these

solutions are all smaller than 1 (6/7, 6/7, 6/7, respectively),
the set S7 is genuinely nonlocal. �

3. Proof of Lemma 4

A general standard form of semidefinite program is defined
as

α = max
X

Tr(MX )

such that �(X ) = N,

X � 0,

where M, N , and X (called optimization variables) are Her-
mitian operators and �(·) is a linear map that preserves
Hermiticity. The problem is called the primal problem and its
dual problem is defined as

β = min
Y

Tr(NY )

such that �∗(Y ) � M,

where the optimization variable Y is also Hermitian and �∗ is
the adjoint map of � satisfying Tr[�(X ) · Y ] = Tr[X · �∗(Y )]
for arbitrary Hermitian X and Y .

Putting the semidefinite program (17) into this standard
form, we have that

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1
. . . 0′s

�s

0
. . .

0′s . . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, N =

⎛
⎜⎜⎜⎜⎜⎝

IABC 0′s
0

. . .

0′s . . .

0

⎞
⎟⎟⎟⎟⎟⎠,

and

�(X ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 + · · · + Xs

TA(X1) − X ′
1 0′s

. . .

TA(Xs) − X ′
s
TB(X1) − X ′

s+1
. . .

TB(Xs) − X ′
2s
TC (X1) − X ′

2s+1

0′s . . .

TC (Xs) − X ′
3s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the optimization variable X � 0 has been written as

X = 1

s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1
. . . ∗

Xs

X ′
1

. . .

∗ . . .

X ′
3s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Namely, X1, . . . , Xs and X ′
1, . . . , X ′

3s are the diagonal blocks of sX and they are therefore semidefinite positive. For its dual
problem, denote

Y = 1

s

⎛
⎜⎜⎜⎜⎜⎝

Y ′
−Y1 ∗

. . .

∗ . . .

−Y3s

⎞
⎟⎟⎟⎟⎟⎠

the optimization variable and we have

Tr[�(X ) · Y ] = 1

s
Tr[(X1 + · · · + Xs) · Y ′] − 1

s

s∑
i=1

Tr{[TA(Xi ) − X ′
i ] · Yi} − 1

s

s∑
i=1

Tr{[TB(Xi ) − X ′
s+i] · Ys+i}

− 1

s

s∑
i=1

Tr{[TC (Xi ) − X ′
2s+i] · Y2s+i}

= Tr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1
. . . ∗

Xs

X ′
1

. . .

∗ . . .

X ′
3s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=X

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y ′ − TA(Y1) − TB(Ys+1) − TC (Y2s+1) 0′s
. . .

Y ′ − TA(Ys) − TB(Y2s) − TC (Y3s)
Y1

. . .

0′s . . .

Y3s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=�∗(Y )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we apply Tr[TA(V ) · W ] = Tr[V · TA(W )] (also for TB, TC) in the second equality. Consequently, by the constraint
�∗(Y ) � M we get the dual problem as

β = min
Y ′ ,Y1 ,...,Y3s

1

s
Tr(Y ′)

such that Y ′ − �i � TA(Yi) + TB(Ys+i ) + TC (Y2s+i ) (1 � i � s),

Y1, . . . ,Y3s � 0

which is equivalent to problem (18).
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