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Noiseless linear amplifiers (NLAs) provide a powerful tool to achieve long-distance continuous-variable (CV)
quantum key distribution (QKD) in the presence of realistic setups with nonunit reconciliation efficiency. We
address a NLA-assisted CV QKD protocol implemented via realistic physical NLAs, namely, quantum scissors
and single-photon catalysis, and compare their performance with respect to the ideal NLA gn̂. We investigate also
the robustness of two schemes against inefficient conditional detection and discuss the two alternative scenarios
in which the gain associated with the NLA is either fixed or optimized.
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I. INTRODUCTION

Quantum key distribution (QKD) [1] allows one to share a
common secure key between a sender and a receiver even in
the presence of an untrusted channel that could be under the
control of an eavesdropper. Within this framework, a promis-
ing role is played by continuous-variable (CV) QKD for both
theoretical and experimental reasons [2]. In the first proposal
of a CV QKD scheme by Grosshans and Grangier [3–7], in-
formation is encoded by the sender (Alice) on the quadratures
of a quantized optical field with Gaussian modulation and then
sent into a channel to the receiver (Bob) that performs either
homodyne or heterodyne (double-homodyne) measurements.
The key is then extracted after a reconciliation process, where
one of the two parties publicly reveals part of the data: If such
a party is Alice, the process is referred to as direct recon-
ciliation; if the party is Bob we have reverse reconciliation.
The security analysis of the reverse-reconciliation protocol
guarantees a non-null secure key rate for any transmission
distance [3,4,7,8].

In realistic conditions, however, the reconciliation proce-
dure is not perfect and one can introduce a reconciliation
efficiency, which depends on the particular code employed to
extract the secure key [9]. Moreover, the presence of defects
inside Alice’s Gaussian modulator and the phase noise of the
carrier signal introduce excess noise [10]. Both these limita-
tions crucially affect the key generation rate (KGR), i.e., the
length of the secret key shared by Alice and Bob per unit time
slot, and prevent long-distance communication leading to a
maximum transmission distance at which the KGR vanishes
[10–12]. In the latest experimental realizations, high-loss
CV QKD has been achieved up to maximum transmission
distances ranging from 100 to 200 km [13–17].

A challenging task to face those issues is to modify the
original protocol by implementing strategies allowing one to
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increase as much as possible the maximum transmission dis-
tance. An intriguing solution is provided by heralded noiseless
linear amplification at the receiver’s side [18–20]. Indeed,
an ideal probabilistic noiseless linear amplifier (NLA) with
amplitude gain g leads to an increase in the maximum trans-
mission distance proportional to log g [21]. Nevertheless, any
realistic physical NLA can only approximate the ideal am-
plifier for low-amplitude optical signals [18,22–30]. To avoid
this limitation, measurement-based NLAs, performing virtual
amplification based on classical data postselection, have also
been proposed [31–33]. However, the low success probabil-
ities of these operations [34,35] make physical NLAs still
worthy of investigation. Recently, CV QKD employing quan-
tum scissors (QS) [18] has been addressed, allowing one to
achieve long-distance CV QKD for sufficiently low channel
excess noise [36,37]. With the same goal, also single-photon
catalysis (SPC) has been investigated [25,38]. In the QS
scheme, a single photon is mixed with the vacuum at a beam
splitter with transmissivity τ . One of the output branches then
impinges at a balanced beam splitter with the incoming signal,
after which double conditional photodetection is performed.
Differently from QS, in the SPC process a single photon inter-
feres directly with the incoming signal at a beam splitter with
transmissivity τ and then a single photon is retrieved at the
end. Thus, SPC provides a simpler scheme and may represent
a feasible alternative to QS for experimental realizations.

In the present paper we investigate a CV QKD protocol as-
sisted by these two schemes and consider a simplified realistic
scenario where photodetection is replaced by on-off detection.
We compute the KGRs for both strategies and compare them
to the performance of the protocol assisted by the ideal NLA
proposed in [21]. Moreover, we distinguish two alternative
cases. In the first we fix the NLA gain g and show that also
physical NLAs increase the maximum transmission distance
by the same amount log g as the ideal amplifier. In the second
we assume g to be a free parameter and optimize its value,
obtaining that both physical and ideal NLAs achieve arbitrary
long-distance CV QKD. For the physical amplifiers, we also
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discuss the robustness in the presence of a quantum detec-
tion efficiency η � 1, showing that the detection efficiency
only rescales the KGR without preventing long-distance
communication.

The structure of the paper is as follows. In Sec. II we recall
the main features of the Grosshans-Grangier (GG) protocol.
In Sec. III we describe the NLA-assisted protocols for both
the ideal and the physical amplifiers, namely, QS and SPC.
In Sec. IV we perform the security analysis by comparing
the KGRs of the protocols under investigation. In Sec. V we
summarize the results obtained and draw some conclusions.

II. THE GG ORIGINAL PROTOCOL

We start by reviewing the CV QKD protocol proposed in
[3–6] in its entanglement-based version, which provides
a simplified theoretical analysis [39,40]. Here Alice
and Bob share a two-mode squeezed vacuum (TMSV)
state, namely, |TMSV〉〉 = √

1 − λ2
∑∞

n=0 λn|n〉|n〉, with
0 � λ � 1. The TMSV is a two-mode Gaussian state [41,42]
and can be completely described by the covariance matrix
(CM) (see Appendixes A and B for details)

�TMSV =
(

V12 Zσz

Zσz V12

)
, (1)

where V = 1 + 2λ2/(1 − λ2) is the TMSV variance, corre-
sponding to the input modulation variance of the protocol,
Z = √

V 2 − 1, 12 = diag(1, 1), and σz is the Pauli z matrix.
All quantities are expressed in shot-noise units.

Now Alice performs a heterodyne (i.e., double-homodyne)
measurement on her beam, while the other one is sent to Bob
through an untrusted communication channel, described by
means of a thermal-loss channel. The channel has a transmis-
sivity T = 10−κd/10, where d is the transmission distance in
kilometers and κ ∼ 0.2 dB/km is the typical loss parameter
for optical fibers at 1550 nm [43–45]. Moreover, a single-
mode thermal bath of nε = T ε/2(1 − T ) photons models the
presence of an excess noise ε introduced by the realistic
defects of Alice’s modulation system [10]. Losses and im-
perfections affect the signal received by Bob that exhibits
an added noise χ = (1 − T )/T + ε, leading to an overall
thermal-loss channel. Therefore, the state shared between
Alice and Bob is still Gaussian with the CM [41,42]

�AB =
(

�A �Z

�T
Z �B

)
=

(
V12

√
T Zσz√

T Zσz T (V + χ )12

)
. (2)

Once received the signal, Bob implements a Gaussian mea-
surement [39,40] that here we assume to be homodyne
detection of a quadrature randomly chosen between q and p,
as in the original proposal [3,4].

All the necessary information to perform the security anal-
ysis is contained in the CM (2). According to the Gaussian
formalism [42,46], when Alice and Bob perform detection on
their own signals they get a bivariate Gaussian distribution
pA (B)(xA (B), yA (B) ) with zero mean and covariance �A (B) +
σ

(m)
A (B), where σ

(m)
A = 12 is the CM of the heterodyne detection

and

σ
(m)
B = lim

z→0

(
z 0
0 z−1

)
(3)

is the 2 × 2 CM associated with homodyne detection still
in shot-noise units (see Appendix B). Therefore, the joint
measurement leads to the distribution pAB(xA, yA; xB, yB) with
covariance �AB + (σ (m)

A ⊕ σ
(m)
B ). The mutual information be-

tween Alice and Bob is then given by

IAB = H[pA] + H[pB] − H[pAB]

= log2

⎛
⎜⎝

√√√√det
[
�A + σ

(m)
A

]
det

[
�B + σ

(m)
B

]
det

[
�AB + (

σ
(m)
A ⊕ σ

(m)
B

)]
⎞
⎟⎠, (4)

with H[p] = − ∫
dx p(x) log2 p(x) the Shannon entropy

of p(x).
Throughout this paper we will focus on a reverse recon-

ciliation scheme, which has been proved to guarantee higher
security than direct reconciliation [7,8]. Furthermore, we will
assume an eavesdropper (Eve) to be able to perform collective
attacks, which represent the best possible kind of attacks in
his power, at least in the asymptotic limit of an infinite data
set [7]. If the reconciliation efficiency is 0 � β � 1, the KGR
is written

K = βIAB − χBE , (5)

where the Holevo information χBE represents the amount of
information extracted by Eve [47] and can be computed start-
ing from the CM (2) as

χBE = G

(
d1 − 1

2

)
+ G

(
d2 − 1

2

)
− G

(
d3 − 1

2

)
, (6)

where

G(x) = (x + 1) log2(x + 1) − x log2 x (7)

and d1 (2) are the symplectic eigenvalues of �AB [42,46],
namely,

d1 (2) =
√


 ±
√


2 − 4I4

2
, (8)

with I1 (2) = det(�A (B) ), I3 = det(�Z ), I4 = det(�AB), and

 = I1 + I2 + 2I3. Finally, d3 = √

det(�A|B) with (see
Appendix B)

�A|B = �A − �Z
(
�B + σ

(m)
B

)−1
�T

Z . (9)

In the following we will study the behavior of K as a
function of the transmission distance d , optimizing over the
modulation variance V for fixed reconciliation efficiency β ∼
0.95 [9,48,49] and the channel excess noise ε. For the sake
of clarity, we will review the results for the original protocol
in the next section together with the NLA-assisted strategies
under investigation.

III. NLA-ASSISTED CV QKD

In this section we investigate the performance of the
CV QKD protocol presented in Sec. II assisted by a NLA.
Specifically, Alice prepares the TMSV state with modulation
variance V and injects one mode into the thermal-loss channel.
To mitigate the added noise χ , Bob implements a NLA on his
received pulse, before performing homodyne detection. Here
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FIG. 1. Scheme of the CV QKD protocol assisted by the ideal
NLA proposed in [21]. Here HET and HOM denote the heterodyne
and homodyne detectors, respectively.

we consider Bob to employ either the ideal NLA proposed in
[21] or feasible physical NLAs realized via QS or SPC.

A. Ideal NLA

First, we assume Bob to employ an ideal NLA, as depicted
in Fig. 1. The ideal NLA is a nondeterministic operation
described by the self-adjoint operator gn̂, where n̂ is the
photon-number operator of the optical mode undergoing am-
plification and g � 1 is the amplifier gain [18]. As discussed
in [21], this operation preserves Gaussianity; therefore the
protocol in Fig. 1 is equivalent to a GG scheme with the
parameters

Vid = V + T (g2 − 1)Z2

2 − T (g2 − 1)(V − 1 + ε)
, (10a)

Tid = g2T

1 + T (g2 − 1)[1 + T ε(g2 − 1)(2 − ε)/4 − ε]
, (10b)

εid = ε + (g2 − 1)
T ε(2 − ε)

2
, (10c)

provided

g �
√

1 + 2

T (V + ε − 1)
. (11)

Without the last condition on the gain an unphysical unnor-
malizable state is obtained [18,21]. Equivalently, for a fixed
gain Eq. (11) corresponds to a threshold of the transmissivity,
namely,

T � Tth ≡ 2

(g2 − 1)(V + ε − 1)
, (12)

preventing the use of the NLA protocol for distances d �
d (id)

th = (−10 log10 Tth )/κ . For d > d (id)
th , employing the ideal

NLA is equivalent to considering an effective channel of in-
creased transmissivity Tid � T . The resulting KGR then reads

K̃id (V, g) = Pid (V, g)
[
βI (id)

AB (V, g) − χ
(id)
BE (V, g)

]
, (13)

where Pid (V, g) is the success probability of the NLA and
I (id)
AB (V, g) and χ

(id)
BE (V, g) are computed from Eqs. (4) and

(6), respectively, with the modified parameters (10). Since
Pid (V, g) � 1/g2 [21], from now on we consider as a bench-
mark the KGR

Kid (V, g) = 1

g2

[
βI (id)

AB (V, g) − χ
(id)
BE (V, g)

]
. (14)

The KGR (14) depends on the two free parameters V and g
that can be optimized. As discussed in the rest of the paper,
the choice of the gain g will be a crucial task. Hence, we

(a)

(b)

FIG. 2. Scheme of the CV QKD protocol assisted by the two
physical NLAs discussed in the paper: strategy based on (a) quantum
scissors and (b) single-photon catalysis.

will discuss two separate cases. In the first case we assume a
fixed g and optimize only the modulation variance, obtaining
the KGR

Kid (g) = max
V

Kid (V, g), (15)

and the corresponding distance-dependent modulation
V (id)

opt (g). In the second case the optimization involves also the
gain, obtaining

Kid = max
V,g

Kid (V, g), (16)

and the associated parameters V (id)
opt and g(id)

opt .

B. Physical NLAs: QS and SPC

Here we consider the more realistic scenario in which Bob
employs a physical NLA, realized via either QS or SPC and
employing on-off detection rather than photon counting.

In the QS scheme proposed in [36] [Fig. 2(a)], Bob
prepares two ancillary modes in the Fock states |1〉 and
|0〉, respectively. He mixes them at a beam splitter with
transmissivity τ and lets the reflected signal interfere at a bal-
anced beam splitter with the pulse received by Alice. Then he
performs conditional on-off detection on both output branches
(see Appendix C for details), corresponding to the positive-
operator-valued measurement {�off ,�on = 1 − �off},
where

�off =
∞∑

k=0

(1 − η)k|k〉〈k|, (17)

with η � 1 the detection quantum efficiency. If one of the
two detectors gives the outcome “on,” Bob performs homo-
dyne detection on the postselected output state. The value of
τ fixes the gain associated with the NLA; that for low-
amplitude coherent signals reads g = √

(1 − τ )/τ [18]. Thus,
to achieve the gain g we set the transmissivity equal to

τQS(g) = 1

1 + g2
. (18)

In contrast, in the SPC scheme [Fig. 2(b)], Bob has a
single ancillary mode excited in |1〉 impinging at a beam
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splitter with transmissivity τ with the pulse received by Alice.
He performs on-off detection on the reflected branch, con-
ditioned on outcome “on,” and homodynes the postselected
state. The associated gain is g = (1 − 2τ )/

√
τ [25], which

can be inverted to find the transmissivity as a function of
the gain

τSPC(g) = 1
8 (4 + g2 − g

√
8 + g2). (19)

In both cases, after the NLA Alice and Bob share a
non-Gaussian state ρ

(p)
AB (p = QS, SPC). However, since

Bob’s measurement is Gaussian, the security analysis of
the NLA-assisted protocol can be based on the optimal-
ity of Gaussian attacks [50–52], which, in this scenario,
maximize the amount of information extractable by Eve.
Moreover, following Ref. [50], we consider the Gaussian
lower bound on the mutual information, which is a con-
sequence of the Gaussian (heterodyne) detection at Alice’s
side. In turn, we can compute a lower bound of the exact
KGR as

Kp(V, g) = Pp(V, g)
[
βI (p)

AB (V, g) − χ
(p)
BE (V, g)

]
, (20)

where Pp(V, g) is the success probability associated with the p
NLA and I (p)

AB (V, g) and χ
(p)
BE (V, g) are the mutual information

and the Holevo information, respectively, both computed for
a Gaussian state having the same CM of ρ

(p)
AB . The condi-

tion Kp(V, g) � 0 provides a sufficient condition to guarantee
secure communication. Nevertheless, our results are in good
agreement with other exact numerical approaches [36], prov-
ing the bound (20) to be tight, especially in the long-distance
regime κd 
 1.

Thus, in our approach it suffices to compute the CM �
(p)
AB

associated with ρ
(p)
AB to perform the security analysis. Straight-

forward calculations lead to (see Appendix C)

�
(p)
AB =

(
Vp(V, g)12 Zp(V, g)σz

Zp(V, g)σz Wp(V, g)12

)
. (21)

The expressions of Pp(V, g), Vp(V, g), Wp(V, g), and Zp(V, g)
are clumsy and thus only reported in Appendix C. We com-
pute the mutual information and the Holevo information
following the procedure described in Sec. II by substituting
�AB → �

(p)
AB and optimize Eq. (20) over the free parameters,

obtaining the KGRs

Kp(g) = max
V

Kp(V, g) (p = QS, SPC) (22)

for a fixed g, together with the corresponding modulation
V (p)

opt (g), and

Kp = max
V,g

Kp(V, g) (p = QS, SPC) (23)

if g can be optimized too, with the associated optimized pa-
rameters V (p)

opt and g(p)
opt.

We note that in the SPC scheme there always exists a
local maximum for τ = 1, in which case the SPC performs
as the identity operator, allowing us to retrieve the results of
the original protocol. However, for a more fair comparison
with the QS, in the optimization procedure we have ne-
glected this point and restricted maximization over the interval

(a)

(b)

FIG. 3. (a) Logarithmic plot of the KGRs Kp(g) for different
values of the quantum efficiency η and Kid (g) as functions of
the distance d in kilometers for β = 0.95, ε = 0.03, and g = 2.
The dashed line is the KGR of the original protocol. (b) Plot of
the optimized (input) modulations V (p)

opt (g) and V (id)
opt (g) as functions

of the distance d in kilometers for β = 0.95, ε = 0.03, g = 2, and
η = 1. In both the plots, the shaded region represents the regime
d � d (id)

th , where ideal NLAs generate an unphysical unnormalizable
state (see the text for details).

0 � τ � 1
2 for which the corresponding gain is g � 0, as

shown in Appendix C.

IV. SECURITY ANALYSIS

In this section we compare the KGRs of all the
schemes under investigation, for the two cases of fixed or
optimized gain.

A. KGR with fixed gain g

For a fixed g, the optimized KGRs are depicted in Fig. 3(a)
for ε > 0. As emerges from the plot, NLAs are fundamental in
the long-distance regime, as for large d all the NLA-assisted
protocols beat the KGR (5) of the original protocol. The ideal
NLA increases the maximum transmission distance by the
amount 20 log10 g/κ , since for T � 1 the effective transmis-
sivity in Eq. (10) is Tid ≈ g2T [21]. Remarkably, also the
physical NLA-assisted protocols achieve the same maximum
transmission distance. Moreover, the presence of inefficient
conditional detection reduces the value of the KGRs, still
maintaining the same increase in distance even for the realistic
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values of practical CV QKD systems where 0.4 � η � 0.6
[10,40].

In fact, by expanding the CM (21) in the long-distance
regime where T � 1 up to the first order in T , we have

Vp(V, g) = V + O(T ), (24a)

Wp(V, g) = g2T (V + χ ) + O(T 2), (24b)

Zp(V, g) =
√

g2T Z + O(T 3/2) (p = QS, SPC), (24c)

corresponding to the CM of a GG scheme with transmissivity
g2T , consistently with the ideal case. The success probabilities
read

Pp(V, g) ≈ Pp(g) = ητp(g), (25)

and, since PSPC(g) � PQS(g), we have KSPC(g) � KQS(g). In
turn, a quantum efficiency η � 1 only reduces the success
probability and rescales the KGR, without preventing long-
distance secure communication. For completeness, we report
the (input) optimized modulations in Fig. 3(b). Despite the
different behavior at small distances, for large d all the proto-
cols converge to the same asymptotic value, not depending on
ε. Numerical calculations have also shown that V (p)

opt (g) does
not depend on the quantum efficiency.

We note that in the short-distance regime, where T ≈ 1
or, equivalently, κd � 1, both physical NLAs are useless
since we obtain negative KGR up to a threshold distance d (p)

th
(p = QS, SPC). In this regime, the CM (21) cannot be recast
in the form of Eq. (2) and, as displayed in Fig. 4(a) for the QS
case, both the mutual information I (p)

AB (g) = I (p)
AB (V (p)

opt (g), g)

and the Holevo information χ
(p)
BE (g) = χ

(p)
BE (V (p)

opt (g), g) are

lower than their GG counterparts I (GG)
AB and χ

(GG)
BE , respec-

tively. Moreover, for ε > 0 we have I (p)
AB (g) � χ

(p)
BE (g), leading

to a negative KGR which inhibits secure communication.
This effect may be understood by considering the success
probability Pp(V, g) of the proposed physical NLAs, plotted
in Fig. 4(b) for the QS case. Analogous considerations hold
for SPC. When Pp(V, g) > 1/g2 the p scheme does not im-
plement a true NLA [21,36], and the amplification process
introduces an unavoidable noise on the quadrature variances,
becoming a further resource for Eve’s attack. Accordingly, for
κd � 1 the optimization procedure leads to low modulation
variances V (p)

opt (g) ≈ 1, resulting in lower mutual information
with respect to the GG scheme and in a negative KGR. On the
other hand, for κd 
 1, V (p)

opt ≈ V (GG)
opt and both I (p)

AB and χ
(p)
BE

outperform the GG protocol. In turn, between the short- and
long-distance regimes, we identify the threshold distance such
that Kp(g) � 0 for d � d (p)

th .
Finally, in Fig. 5 we plot the maximum tolerable excess

noise (MTEN) εmax as a function of the distance d: It rep-
resents the maximum value of ε still leading to a positive
KGR. For the original protocol, εmax is a decreasing function
of d . The behavior is rather different for the NLA-assisted
protocols. In the presence of ideal NLA the MTEN ε(id)

max(g)
for d � 40 km is lower than in the original protocol due to the
limitation imposed by (11). However, for larger distances we
have ε(id)

max(g) > εmax. In contrast, the MTEN associated with

FIG. 4. (a) Logarithmic plot of I (QS)
AB (g) and χ

(QS)
BE (g) (solid lines),

I (GG)
AB (dashed line), and χ

(GG)
BE (dash-dotted line) as functions of the

distance d in kilometers. (b) Plot of the success probability PQS(V, g)
as a function of the distance d and the modulation variance V . The
horizontal plane refers to the value 1/g2: When PQS(V, g) > 1/g2,
the QS do not perform noiseless amplification. In both figures we set
β = 0.95, ε = 0.03, g = 2, and η = 1.

the physical NLAs, namely, ε
(p)
max(g), is not a monotonic func-

tion of d; it is an increasing function of d approaching ε(id)
max.

A quantum efficiency η � 1 does not affect the value of ε
(p)
max,

consistently with the previous discussion. As a consequence,
for fixed g, in the long-distance regime the physical NLAs
guarantee the same performance of the ideal NLA.

FIG. 5. Logarithmic plot of the maximum tolerable excess noise
ε(id)

max(g) and ε(p)
max(g) (p = QS, SPC) as a function of the distance d

in kilometers for g = 2, η = 1, and β = 0.95. The black dashed line
corresponds to the εmax of the original protocol.
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(a)

(b)

FIG. 6. (a) Logarithmic plot of the KGRs Kp (p = QS, SPC)
and Kid as functions of the distance d in kilometers for different
values of the quantum efficiency η, ε = 0.03, and β = 0.95 and with
optimized gain g. The dashed line is the KGR of the original protocol
and the upper line is the PLOB bound (26). (b) Logarithmic plot of
the maximum tolerable excess noises ε(id)

max and ε(p)
max (p = QS, SPC)

as functions of the distance d in kilometers for η = 1 and β = 0.95.
The black dashed line corresponds to the εmax of the original protocol.

B. KGR with optimized gain g

The situation is rather different if we can also optimize the
gain g associated with the NLAs, as reported in Fig. 6(a).
First, in the short-distance regime the physical NLAs still
exhibit a threshold distance to obtain a positive KGR, differ-
ently from the ideal amplifier. Second, all the NLA-assisted
protocols allow us to reach arbitrary large distances, but the
ideal amplifier outperforms the physical ones. As before, a
quantum efficiency still rescales the KGR. However, differ-
ently from Sec. IV A, in the long-distance regime κd 
 1,
KQS and KSPC are almost identical, proving SPC as a feasible
alternative to QS. We also remark that in the long-distance
regime both Kid and Kp (p = QS, SPC) are proportional to the
Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound [53]

Kmax = − log2[(1 − T )T nε ] − G(nε ), (26)

which represents the maximum KGR achievable with the
considered repeaterless thermal-loss channel, thus resulting in
nearly optimal strategies.

Furthermore, in Fig. 7 we report the optimized parameters
V (p)

opt and g(p)
opt. The modulation V (p)

opt has a different behavior
with respect to Sec. IV A, being an ε-dependent growing
function of d . In contrast, the modulations of the original and
the ideal NLA-assisted protocols are decreasing functions of

  

(a)

(b)

FIG. 7. (a) Plot of V (p)
opt (p = QS, SPC) as a function of the dis-

tance d in kilometers for different values of excess noise ε. The upper
gray and the dash-dotted lines represent the optimized modulation for
the original and the ideal NLA-assisted protocols, respectively, for
ε = 0.03. (b) Logarithmic plot of g(p)

opt (p = QS, SPC) as a function
of the distance d in kilometers for different values of excess noise ε.
The plots have been performed only for distances such that Kp > 0
(p = QS, SPC). We set β = 0.95 and η = 1.

d converging to an asymptotic value not depending on ε, as
for the case of fixed g. Instead, the optimized gains g(id)

opt and

g(p)
opt grow exponentially with d in the long-distance regime.

However, if ε = 0 this exponential scaling is not reached
yet for the physical NLAs within the considered range of
distances d � 500 km.

Finally, in Fig. 6(b) we plot the MTENs as a function of
d . Differently from Sec. IV A, the MTEN associated with
the physical NLAs, namely, ε

(p)
max, do not achieve the perfor-

mance of the ideal one ε(id)
max. Actually, both these MTENs

outperform the original protocol and saturate to a value ε∞ as
κd 
 1. However, the saturation value of the physical NLAs,
namely, ε

(p)
∞ ≈ 0.04, is lower than the ideal NLA one, that is,

ε
(id)
∞ ≈ 0.1 (see Fig. 6). The numerical results also show that

a quantum efficiency η � 1 does not affect the value of ε
(p)
∞ ,

consistently with the previous findings.
The difference between ideal and physical NLAs emerges

by expanding the CM (21) in the long-distance regime T � 1
up to the first order, keeping all the contributions of O(g2T ),
due to the fact that g(p)

opt 
 1, and neglecting the other terms

Vp(V, g) ≈ V + δVp, (27a)

Wp(V, g) ≈ Tp[Vp(V, g) + χp], (27b)
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(a)

(b)

FIG. 8. (a) Plot of Zp(V, g) and Z (GG)
p (V, g) (p = QS, SPC) as

functions of g2T for ε = 0.03 and V = 4. (b) Logarithmic plot of
the effective transmissivity Tp (p = QS, SPC) as a function of the
distance d in kilometers for different values of excess noise ε. The
plot is only for distances such that Kp > 0. In both figures we set
β = 0.95 and η = 1.

Zp(V, g) ≈ Tp√
g2T

Z, (p = QS, SPC), (27c)

where δVp = TpZ2/2, Tp represents the effective
transmissivity

Tp = g2T

1 + g2T (V + ε − 1)/2
, (28)

and χp = (1 − Tp)/Tp + εp, with the effective excess noise

εp = ε − δVp. (29)

Employing a physical NLA is then equivalent to consider-
ing an effective channel of higher transmissivity Tp � T and
lower excess noise εp � ε. Nevertheless, the correspondence
to a GG protocol does not occur anymore, as the correlation
term Zp(V, g) does not coincide with the one expected for a
GG scheme, namely,

Z (GG)
p (V, g) =

√
Tp[Vp(V, g)2 − 1], (30)

but rather

Zp(V, g) � Z (GG)
p (V, g), (31)

as depicted in Fig. 8(a). We have Zp(V, g) ≈ Z (GG)
p (V, g) only

if g2T � 1. As a consequence, the analogy with the ideal-
NLA assisted protocol in Eq. (10) is broken.

Now the optimization procedure described above leads to
exponential gains g(id)

opt and g(p)
opt for the ideal and physical

NLAs, respectively, such that the product g2T is kept constant
for κd 
 1. Consequently, the effective transmissivities Tid

and Tp saturate, as shown in Fig. 8(b). In turn, also the mu-
tual information and the Holevo information saturate and the
corresponding KGRs (16) and (23) turn out to be proportional
only to the success probability of the NLAs, namely,

Kid ∝ 1

(g(id)
opt )2

∝ T (32)

and

Kp ∝ Pp ≈ ηT

2Tp
[1 + Tp(Vp + χp)], (33)

with Pp = Pp(V (p)
opt , g(p)

opt ) and Vp = Vp(V (p)
opt , g(p)

opt ), decreasing
linearly with T and thus guaranteeing Kp > 0 for κd 
 1.
The same linear scaling is achieved by the PLOB bound if
T � 1,

Kmax ≈ T
2 − ε[1 − ln(ε/2)]

2 ln 2
, (34)

which proves both NLA-assisted protocols to be nearly opti-
mal. Furthermore, as in Sec. IV A, a quantum efficiency η � 1
only rescales the KGR and does not introduce any maximum
transmission distance.

Moreover, the saturation value of Tp determines the differ-
ence between ideal and physical NLAs. Indeed, if εp is small
we have Tp � 1 and the physical NLA-assisted protocols
approximate a GG protocol with the effective channel param-
eters Tp and εp. By increasing the excess noise further, we
have Tp �� 1 and Zp(V, g) � Z (GG)

p (V, g) and the state shared
between Alice and Bob is less correlated and the protocol
deviates more and more from GG. This implies the reduced
asymptotic maximum tolerable excess noise with respect to
the ideal case.

V. CONCLUSION

In this paper we have addressed the exploitation of NLAs
to achieve long-distance CV QKD in the presence of a nonunit
reconciliation efficiency and a non-null excess noise of the
channel. We have considered both the ideal amplifier and two
approximated physical realizations, namely, QS and SPC, in
the presence of inefficient conditional on-off detection. We
have discussed two alternative scenarios of either fixed or
optimized NLA gain and showed that in the former, employ-
ing a NLA increases the maximum transmission distance by
20 log10 g/κ , whereas in the latter NLAs allow us to reach
arbitrary large distances, provided the excess noise of the
channel is sufficiently low. Furthermore, we have proved both
physical NLA-assisted protocols to be robust if η � 1, show-
ing that the quantum efficiency only rescales the KGR without
preventing long-distance communication.

The results obtained offer a further strategy to overcome
the practical limitations in CV QKD and quantifies the degra-
dation of performance produced by inefficient conditional
detection. Moreover, they provide new perspectives for the
applications of NLAs in realistic conditions for both one-way
communication and end-to-end communication over quantum
repeater chains [54–56].
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APPENDIX A: BRIEF REVIEW
OF THE PHASE-SPACE FORMALISM

As discussed in the main text, to perform the analysis of
the continuous-variable quantum key distribution protocol we
exploit the phase-space formalism [42,46]. We consider an
n-mode bosonic system, described by the bosonic operators
ak satisfying the canonical commutation relations [ak, al ] = 0
and [ak, al

†] = δkl and by the quadrature operators

qk = ak + ak
†, pk = i(ak

† − ak ) (A1)

such that [qk, pl ] = 2iδkl . All quantities are expressed in
shot-noise units. More compact notation is obtained by in-
troducing the vector operators a = (a1, a2, . . . , an)T and r =
(q1, p1, q2, p2, . . . , qn, pn)T.

1. Quantum states

According to Glauber’s formula [42,46], any n-mode quan-
tum state of radiation ρ is written

ρ =
∫

d2α

πn
χ (α)Da(α)†, (A2)

where α = (α1, α2, . . . , αn)T ∈ Cn and

Da(α) =
n⊗

k=1

Dak (αk ), (A3)

where Dak (αk ) is the displacement operator acting on mode
ak , namely,

Dak (αk ) = exp(αkak
† − α∗

k ak ). (A4)

Some useful properties of the displacement operator are

Da(α1)Da(α2) = Da(α1 + α2), α1,α2 ∈ Cn, (A5a)

Dξa(α) = Da(ξα), ξ ∈ R, (A5b)

Tr[Da(α)] = πnδ(n)(α), (A5c)

where δ(n)(α) is the complex n-mode Dirac delta distribution.
Finally, the function

χ (α) = Tr[ρDa(α)] (A6)

is the characteristic function associated with ρ. In particular, a
quantum state ρG exhibiting a Gaussian characteristic function
is said to be a Gaussian state, namely,

χ (α) = exp
(− 1

2 α̃Tσα̃ − iα̃TX
)
, (A7)

where α̃ = (Reα1, Imα1, Reα2, Imα2,. . ., Reαn, Imαn) ∈R2n,

X = Tr(ρGr) (A8)

is the first moment vector, and

σ = 1
2 Tr[ρG{(r − X), (r − X)T}] (A9)

is the 2n × 2n covariance matrix (CM) where {A, B} = AB +
BA is the anticommutator of A and B. Thus, a Gaussian state
is completely characterized by its prime moments and its
covariance matrix.

Moreover, for any pair of generic operators O1 and O2

acting on the Hilbert space of n modes the trace rule holds:

Tr(O1O2) =
∫

d2α

πn
χO1 (α)χO2 (−α). (A10)

Here χO1 (2) (α) is the characteristic function of O1 (2). As an
example, for a single radiation mode a, we choose O1 =
Da(α) and O2 = q2

a = (a + a†)2 and obtain [36]

Tr
[
Da(α)q2

a

] = e−(x2+y2 )/2

(
πδ(2)(α) + 2πyδ(x)

d

dy
δ(y)

− πδ(x)
d2

dy2
δ(y)

)
, (A11)

where α = x + iy and δ(x) is the Dirac delta distribution.

2. Conditional measurements

In the paper we also discuss the case of conditional
measurements. We consider a bipartite system AB, where
subsystems A and B are composed of nA an nB modes, re-
spectively. In the vector notation we have a = (aA, aB). We
consider a bipartite quantum state ρAB with characteristic
functions χAB(α) = χAB(αA,αB). We now perform a quan-
tum measurement on subsystem B, described my means of
the positive-operator-valued measurement (POVM) {�rm}rm ,
whose effects are associated with the characteristic function
χrm (αB). By applying the trace rule, the conditional state on A
reads

ρA|rm = 1

p(rm)
TrB[ρAB(1A ⊗ �rm )]

≡ 1

p(rm)

∫
d2αA

πnA
χA|rm (αA)DaA (αA)†, (A12)

where

χA|rm (αA) =
∫

d2αB

πnB
χAB(αA,αB)χrm (−αB) (A13)

and p(rm) is the detection probability

p(rm) = TrAB[ρAB(1A ⊗ �rm )]

= TrA

( ∫
d2αA

πnA
χA|rm (αA)DaA

)
= χA|rm (0). (A14)

An interesting results is obtained for Gaussian states and
Gaussian measurements. We now assume ρAB to be a Gaussian
state with prime moments X = (XA, XB) and CM (written in
block form)

σ =
(

σA σAB

σT
AB σB

)
. (A15)

Moreover, we consider a Gaussian POVM {�rm}rm , that is, a
POVM whose effects have a Gaussian characteristic function
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with prime moments rm and CM σm. Then the conditional
state ρA|rm is still a Gaussian state with CM σA|rm and first
moment vector XA|rm given by [42,46]

σA|rm = σA − σAB(σB + σm)−1σT
AB (A16)

and

XA|rm = XA + σAB(σB + σm)−1(rm − XB), (A17)

respectively.

APPENDIX B: SECURITY PROOF OF THE GG PROTOCOL

To perform the security analysis of the GG protocol in a
reverse reconciliation scheme, we compute the KGR

K = βIAB − χBE , (B1)

with β the reconciliation efficiency. The mutual informa-
tion IAB gets the final expression reported in Eq. (4), as the
Shannon entropy of a multivariate n-dimensional Gaussian
distribution N (μ, σ ) with prime moments μ and CM σ,

G (x) = exp
[− 1

2 (x − μ)T σ−1(x − μ)
]

(2π )n/2
√

det(σ)
(B2)

is equal to

H[G ] = −
∫

dx G (x) log2[G (x)]

= 1

2
{n log2(2πe) + log2[det(σ)]}. (B3)

The amount of information extracted by Eve is given by the
Holevo information

χBE = SE − SE |B, (B4)

which can be evaluated as follows. We assume Eve to purify
the system AB shared between Alice and Bob, that is, we
assume her to collect the fraction of the signal lost due to both
the presence of the excess noise and the propagation into the
channel such that the global quantum state ρABE shared by
Alice, Bob, and Eve is pure [39,40]. As a consequence, we
have

SE = SAB = G

(
d1 − 1

2

)
+ G

(
d2 − 1

2

)
, (B5)

where G(x) = (x + 1) log2(x + 1) − x log2 x and d1 (2) are the
symplectic eigenvalues of �AB [42,46]. Furthermore, when
Bob gets the outcome xB from homodyne detection and re-
veals its value, the system AE shared between Alice and Eve
becomes pure and thus

SE |B = SA|B = G

(
d3 − 1

2

)
, (B6)

where d3 = √
det(�A|B) and

�A|B = �A − �Z
(
�B + σ

(m)
B

)−1
�T

Z , (B7)

which is independent of the particular outcome obtained.

(a)

(b)

FIG. 9. Schematic representation of the two physical
NLA-assisted protocol discussed in the paper: strategy based
on (a) quantum scissors and (b) single-photon catalysis.

APPENDIX C: EMPLOYING QUANTUM SCISSORS
AND SINGLE-PHOTON CATALYSIS

As discussed in the main text, we perform the security
analysis by exploiting the optimality of Gaussian attacks
[50–52]. If Alice and Bob share a non-Gaussian state ρ, a
lower bound of the exact KGR is obtained by considering a
Gaussian protocol in which they share the Gaussian state ρG

with the same CM of ρ. In this Appendix we derive the CM
for both the physical noiseless linear amplifiers discussed in
the paper, namely, the quantum scissors and the single-photon
catalysis. To do so, we exploit the input-output formalism and
the phase-space representation of quantum states.

1. Quantum scissors

By following the notation introduced in Fig. 9(a), the pro-
tocol employing QS works as follows [36]. Alice prepares
the TMSV and injects one mode into the thermal-loss chan-
nel; thereafter Bob performs the QS protocol on the received
beam. The input modes are a = (aA, aB, aB1 , aB2 )T, where aA

and aB are the modes shared by Alice and Bob after the
channel and aB1 and aB2 are the modes exploited locally by
Bob for the QS. The global input state reads

ρa =
∫

d2α

π4
χa(α)Da(α)†, (C1)

where α = (αA, αB, αB1 , αB2 )T and

χa(α) = χG(αA, αB)(1 − |αB1 |2)e−(|αB1 |2+|αB2 |2 )/2, (C2)

with χG(αA, αB) the Gaussian characteristic function in
Eq. (A7) with null prime moments and the CM (2).

The output modes after the mode mixing operations per-
formed by Bob are b = (bA, bB, bB1 , bB2 )T = MQSa, where

MQS =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1√
2

√
τ/2 −√

(1 − τ )/2

0 − 1√
2

√
τ/2 −√

(1 − τ )/2

0 0
√

1 − τ
√

τ

⎞
⎟⎟⎟⎟⎠, (C3)
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with τ = τQS(g) = (1 + g2)−1. The output state then is written

ρb =
∫

d2β

π4
χb(β)Db(β)†, (C4)

where, exploiting the properties in Eq. (A5), χb(β) =
χa(M T

QSα).
Finally, Bob performs on-off detection on modes bB, bB1 ,

corresponding to the POVM {�off ,�on = 1 − �off}, with as-
sociated characteristic functions [46,57]

χoff (α) = 1

η
e−[(2−η)/2η]|α|2 , (C5a)

χon(α) = πδ(2)(α) − χoff (α). (C5b)

The amplification is successful if one of the two detectors
gives the outcome “on” [18,36]. In the following we assume
to retrieve the couple (on and off), respectively for modes bB

and bB1 . The postselected state is then equal to

ρQS = 1

P̃QS

∫
d2βA

π

d2βB2

π
χQS(βA, βB2 )DbA (βA)†DbB2

(βB2 )†,

(C6)

where

χQS(βA, βB2 ) =
∫

d2βB

π

d2βB1

π
χb(β)χon(−βB)χoff (−βB1 )

(C7)

and

P̃QS = Tr

(∫
d2βA

π

d2βB2

π
χQS(βA, βB2 )DbA (βA)†DbB2

(βB2 )†

)

= χQS(0, 0) = 2
8ητ + (w − 1)(3 + w)(1 + ητ )

(1 + w)2(3 + w)2
(C8)

is the success probability of this conditional operation, with
w = 1 + ηT (V + ε − 1). The same results hold if Bob gets
the pair (off and on); thus the global success probability of the
QS-based NLA is PQS = 2P̃QS.

Finally, we compute the CM associated with the state ρQS.
By exploiting Eq. (A11), we have

VQS = Tr
(
ρQSq2

bA

) = −1 − VQS

P̃QS
, (C9a)

WQS = Tr
(
ρQSq2

bB2

) = −1 − WQS

P̃QS
, (C9b)

ZQS = Tr
(
ρQSqbA qbB2

) = −ZQS

P̃QS
, (C9c)

where

VQS =
(

d2

dy2
[e−y2/2χQS(iy, 0)]

)
y=0

= 2(V + 1)

(
(2 + ηT ε)(1 − ητ )

(1 + w)2
− 8(3 + w) + 2ηT ε(3 + w − 4ητ ) + 4ητ (w − 5)

(3 + w)3

)
,

(C10a)

WQS =
(

d2

dv2
[e−v2/2χQS(0, iv)]

)
y=0

= −4
8ητ + (w − 1)(3 + w)[2 − (1 − η)τ ]

(1 + w)(3 + w)2
, (C10b)

ZQS =
(

d2

dydv
[e−(y2−v2 )/2χQS(iy, iv)]

)
y=0,v=0

=
√

T Z
8η

√
τ (1 − τ )

(3 + w)2
. (C10c)

Accordingly, the CM is written

�
(QS)
AB =

(
VQS12 ZQSσz

ZQSσz WQS12

)
. (C11)

2. Single-photon catalysis

For SPC we follow the analogous procedure of the pre-
ceding section. The input modes depicted in Fig. 9(b) are
a = (aA, aB, aB1 )T, where aA and aB are the modes shared by
Alice and Bob after the channel and aB1 is Bob’s ancillary
mode. The global input state reads

ρa =
∫

d2α

π3
χa(α)Da(α)†, (C12)

where α = (αA, αB, αB1 )T and

χa(α) = χG(αA, αB)e−|αB1 |2/2(1 − |αB1 |2), (C13)

with χG(αA, αB) the Gaussian characteristic function in
Eq. (A7) with null prime moments and the CM (2).

The output modes after the mode mixing operation per-
formed by Bob are b = (bA, bB, bB1 )T = MSPCa, where

MSPC =
⎛
⎝1 0 0

0
√

τ
√

1 − τ

0 −√
1 − τ

√
τ

⎞
⎠, (C14)

with τ = τSPC(g) = (4 + g2 − g
√

8 + g2)/8. The output state
is then written

ρb =
∫

d2β

π3
χb(β)Db(β)†, (C15)

where

χb(β) = χa
(
M T

SPCα
)
. (C16)

After the conditional on-off detection on mode bB1 , the posts-
elected state reads

ρSPC = 1

PSPC

∫
d2βA

π

d2βB

π
χSPC(βA, βB)DbA (βA)†DbB (βB)†,

(C17)
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where

χSPC(βA, βB) =
∫

d2βB1

π
χb(β)χon(−βB1 ) (C18)

and

PSPC = Tr

( ∫
d2βA

π

d2βB

π
χSPC(βA, βB)DbA (βA)†DbB (βB)†

)

= χSPC(0, 0) = 1 − 4(1 − ητ ) + 2(w − 1)(1 − τ )

[2 + (w − 1)(1 − τ )]2

(C19)

is the success probability of the SPC, and we introduced the
quantity w = 1 + ηT (V + ε − 1).

The CM associated with the state ρSPC reads

�
(SPC)
AB =

(
VSPC12 ZSPCσz

ZSPCσz WSPC12

)
. (C20)

As for QS, we have

VSPC = Tr
(
ρQSq2

bA

) = −1 − VSPC

PSPC
, (C21)

WSPC = Tr
(
ρQSq2

bB

) = −1 − WSPC

PSPC
, (C22)

ZSPC = Tr(ρQSqbA qbB ) = −ZSPC

PSPC
(C23)

and

VSPC =
(

d2

dy2
[e−y2/2χSPC(iy, 0)]

)
y=0

= −(V + 1)

(
1 − 2

4 + ηT ε(1 − τ )(1 + q − 4ητ ) + 2(1 + ητ )(q − 1) − 4ητ

(1 + q)3

)
, (C24a)

WSPC =
(

d2

dv2
[e−v2/2χSPC(0, iv)]

)
y=0

= −4 − τ (r − 3) + 4
(q − 1)2 + (r − 1)(q − 1)(η + τ ) + 2τ (r − 1) − 2ητ (q − 1) + 2(w − 1)(4 − 4τ − τ 2)

(1 + q)3
, (C24b)

ZSPC =
(

d2

dydv
[e−(y2−v2 )/2χSPC(iy, iv)]

)
y=0,v=0

= √
τT Z

(
1 − 4

2 + (1 + η)(q − 1) + 2η(1 − 2τ )

(1 + q)3

)
, (C24c)

with q = 1 + ηT (1 − τ )(V + ε − 1) and r = 1 + T (V + ε − 1).
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