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Individual addressing of ion qubits with counterpropagating optical frequency combs
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We propose a method of individual single-qubit addressing of linear trapped-ion chains utilizing two ul-
trastable femtosecond frequency combs. For that, we suggest implementing the single-qubit gates with two
counterpropagating frequency combs overlapping on the target ion and causing the ac Stark shift between
the qubit levels. With analytical calculations and numerical modeling, we show that the arbitrary single-qubit
rotations can be indeed realized using only laser fields propagating along the ion chain. We analyze the error
sources for the proposed addressing method and prove that it allows implementing the single-qubit gates with
high fidelity.
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I. INTRODUCTION

Trapped-ion quantum computers are one of the most
promising platforms for quantum computation [1,2]. Their
beneficial features include long qubit coherence times [3,4],
high entangling gate fidelities [5,6], and all-to-all qubit
connectivity. With trapped-ion quantum computers, highly
entangled states have been prepared [7], and quantum circuits
consisting of multiple gates have been realized [8,9]. Also,
trapped ions allowed performing quantum simulations of vari-
ous spin models with up to 53 spins [10–13]. However, scaling
the trapped ion quantum computers up to more than tens of
qubits remains challenging [14].

One of the necessary components to perform quantum op-
erations with trapped ions is individual addressing, meaning
the ability to apply the control laser field to an individual ion to
perform gate operations. The existing approaches to perform
addressing include the usage of microoptics splitting modules
[7,15], acoustooptical deflectors [7], multichannel acoustoop-
tical modulators [9], microelectromechanical mirror systems
[16], or integrated-optical waveguides [17]. However, the
difficulty of the technical realization of these approaches in-
creases with the growing number of ions. Thus, designing
new approaches to individual addressing is of great interest to
the development of the large-scale quantum computer based
on trapped ions. In this paper, we suggest a scalable method
of single-qubit addressing in trapped-ion quantum computers
utilizing femtosecond frequency combs.

Ultrastable femtosecond frequency combs generated by
mode-locked lasers [18] have multiple applications in the field
of quantum information processing, in particular, for quantum
computing with atomic ions. For example, the remarkable
spectral purity of the frequency combs enabled their usage to
produce entanglement between two atomic ions via Raman
transitions [19]. Also, the high instantaneous field intensity
and the short pulse duration allowed the implementation of
ultrafast gates [20] and the generation of ultrafast spin-motion
entanglement [21].

In trapped-ion quantum computers, the most frequently
used ions configuration is a linear chain [2]. We suggest

a method to perform individual single-qubit operations in
linear chains of optical ion qubits with two ultrastable fem-
tosecond frequency combs with the same repetition rate
counter-propagating along the chain. To select the target ion,
the delay between the comb pulses should be adjusted to
overlap them on the target ion. After the action of the two
trains of pulses, the rotation of the target qubit differs from
the rotation of the other ones due to the nonlinearity of the
ion-field interaction. The beneficial feature of the suggested
method is that the setup geometry is independent of the num-
ber of ions in the chain.

We demonstrate the feasibility of such an approach for
optical 40Ca+ qubits. We consider the interaction of the 40Ca+

qubit with the off-resonant comb field inducing the ac Stark
shift [22] on the qubit levels which induces optical qubit
Bloch sphere rotations by arbitrary angle about the Z axis. Our
calculations show that these gates can be implemented with
reasonable gate time and high fidelity. Thus, the suggested
method can become an effective tool for quantum operations
in the ion chain.

II. ARBITRARY LOCAL GATE BASED
ON AC STARK SHIFT

The key idea of our method is to illuminate the ion chain
with two frequency combs which propagate along the ion
chain in opposite directions [see Fig. 1(a)]. For such geometry,
there exist spatial regions where the pulses from different
combs overlap. The length of the femtosecond pulse is of the
order of the interionic distance, so it is possible to make only
one target qubit lie in the overlap region. The action of the
field on the ion in the overlap region differs from the one
outside of it due to the intrinsic nonlinearity in the ion-field
interaction. This allows acting selectively on an arbitrary ion
by controlling the time delay between the combs: the time
delay should be chosen to overlap the pulses on a target ion.

The nonlinear effect that we utilize is the quadratic ac Stark
shift of the qubit levels, which implies a large detuning of the
comb frequencies from the ion transition frequencies. Then,
the main effect of each comb pulse is the phase accumula-

2469-9926/2023/108(2)/022402(8) 022402-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2966-3735
https://orcid.org/0000-0002-6160-8103
https://orcid.org/0000-0002-8353-2488
https://orcid.org/0000-0002-6747-6033
https://orcid.org/0000-0003-1223-7569
https://orcid.org/0000-0002-1177-2204
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.022402&domain=pdf&date_stamp=2023-08-03
https://doi.org/10.1103/PhysRevA.108.022402


EVGENY ANIKIN et al. PHYSICAL REVIEW A 108, 022402 (2023)

FIG. 1. (a) Ion chain in the linear trap and comb pulses prop-
agating along it (x axis). Comb pulses overlap on the target ion.
(b) The phases acquired by the ion chain after the action of two
counterpropagating pulse trains. (c) The implementation of the local
Rx (θ ), Ry(θ ), Rz(θ ) operations on a target ion. The arrow represents
the order in which the operators should be performed (from left to
right).

tion on each of the ion levels, in particular, on qubit levels.
Therefore, the action of the comb reduces to the Rz(θ ) gate
for each qubit. Here Rx(θ ), Ry(θ ), Rz(θ ) denote qubit Bloch
sphere rotations by angle θ about the corresponding axes.

At the position of the target ion, the pulses form an inter-
ference pattern. The electric field in the largest interference
peak is twice the maximum of the field magnitude of a single
pulse. The electric field of the combs induces the phase shifts
between the ion qubit levels due to the ac Stark effect. As the
ac Stark effect is quadratic in the field amplitude, the phase
shift is four times larger than the phase shift from a single
pulse.

Therefore, the cumulative effect of the two trains of Npulses

pulses on the ion qubit levels |0〉 and |1〉 is an Rz(θ ) rota-
tion. The rotation angle is 2θ = 4Npulses(δθ1 − δθ0) for the
target ion and θ = 2Npulses(δθ1 − δθ0) for nontarget ions [see
Fig. 1(b)], where δθ0,1 are the acquired phases per single comb
pulse for the levels 0 and 1, respectively. To apply the Rz(θ )
rotation only on the target ion, the pulse trains need to be
followed by a global Rz(−θ ) rotation. Further, local Rx(θ ) and
Ry(θ ) rotations can be implemented with the help of additional

global ±π/2 rotations before and after the pulse train [see
Fig. 1(c)] [23].

The choice of the comb wavelength is justified by two
requirements. First, the combs should be detuned far enough
from the transitions between the qubit levels and the short-
living 4P1/2 and 4P3/2 levels, otherwise, photon scattering
will lead to large qubit decoherence. As the spectral width
of femtosecond pulses is a tenth of terahertz, the detunings
should be at least the same order or larger. Second, the comb
wavelength should be far enough from the magic wavelength
of qubit transitions [24], which ensures that the phase acquired
by the qubit is sufficiently large. For the 40Ca+, both of these
requirements are satisfied for the 1000-nm frequency comb.

The comb repetition rate νrep should be chosen so that the
distance c/2νrep between the overlap regions is larger than the
ion chain length. This ensures that only one overlap region is
present within the chain (see Fig. 1). As the typical length of
long ion chains is hundreds of μm [12], the upper limit on νrep

is hundreds of GHz.
The theoretical analysis of the subsequent sections shows

that for the 40Ca+ ion, the ∼1000-nm frequency combs with
a pulse duration of 20 fs and a repetition rate of 100 MHz
allow implementing the single-qubit Rz(π/2) rotations with
the infidelity of ∼5 × 10−4 and the gate duration of ∼8 μs.

III. THEORETICAL DESCRIPTION
OF THE GATE IMPLEMENTATION

To find parameters for the suggested gate implementation,
we derive the evolution operator for trapped ions interacting
with the electromagnetic (EM) field �E (t, x̂) of the combs
using the following Hamiltonian:

H = Ĥ0 − �E (t, x̂) �̂d +
∑

λ

h̄ωλâ†
λâλ,

Ĥ0 =
∑

α

εα|α〉〈α|, �̂d =
∑
αβ

�dαβ |α〉〈β|,

x̂ = x0 +
∑

λ

ηλ

kc
(âλ + â†

λ). (1)

Here Ĥ0 is the Hamiltonian of a single ion with the electronic

levels α; εα are their corresponding energies; �̂d = (d̂x, d̂y, d̂z )
is the ion dipole moment operator defined in the basis of
the electronic states α, β; ηλ is the Lamb-Dicke parameter
of the normal mode λ; kc = ωc/c is the comb wave vector;
and â†

λ, âλ are phonon creation and annihilation operators. For
the energy-level structure and the dipole-allowed transitions
of the 40Ca+ ion, see Fig. 2 (see also [25]).

For our purposes, it is convenient to write the field of
two combs �E (t, x̂) acting on each ion in the form where the
contributions from each comb are grouped into pairs:

�E (t, x) =
Npulses∑
k=1

Ek (t, x)�u, (2)

Ek (t, x) = Eenv

(
t − kT − t1 − x

c

)
e−iωc (t−t1− x

c )

+ Eenv

(
t − kT − t2 + x

c

)
e−iωc (t−t2+ x

c ) + c.c.. (3)
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FIG. 2. The energy levels of the 40Ca+ ion (black lines, not to
scale) together with the frequency comb spectrum (red lines). The
carrier frequency of the comb is far detuned from all the transitions
between the ion levels. The green dashed lines represent the dipole
allowed transitions.

Here T = 1
νrep

is the time between the pulses, t1,2 are the delay
times of the combs, �u1,2 are polarization vectors of the combs,
and ωc is the carrier offset frequency. The envelopes Eenv(t )
of the comb pulses are smooth functions quickly decaying
away from t = 0, in particular, we assume Gaussian shape
Eenv(t ) = Epeake−t2/τ 2

. The terms Ek (t, x) contain contribu-
tions of the kth pulses of both frequency combs. We can
separate the contributions of different pairs of pulses because

in our scheme the kth pulses from both combs come with the
delay of tens of femtoseconds, whereas the interval between
the adjacent pulses is tens of nanoseconds.

We use the following strategy to find the evolution operator
of an ion in the field of the frequency combs. We find the
evolution operator for each couple of pulses and then multiply
all the operators for all couples. The free evolution between
the couples is represented by the identity operator, so the
evolution operator of the train of pulses reads

Utotal = UNpulsesUNpulses−1 . . .U1, (4)

where each operator Uk represents the action of the kth couple
of pulses with the field Ek in the interaction representation.

In the interaction picture, the unitary rotation Uk can be
found with the help of the perturbation theory based on Mag-
nus expansion [26]. It is sufficient to consider the Magnus
expansion up to the second order as the phase shift on the ion
levels appears first in the second order. Thus, the evolution
operator in the interaction representation reads

Uk = eXk+Yk , (5)

where Xk and Yk are the first-order and the second-order con-
tributions of the kth couple of pulses.

Using the Fourier image of the field Ek (ω) of the couple of
pulses and ignoring the contribution of the phonon modes, we
obtain

(Xk )αβ = −iEk (εα − εβ )(�u �d )αβ, (6)

(Yk )αβ = +i
∫

dω

2π
Ek

(
εα − εβ

2
− ω

)
Ek

(
εα − εβ

2
+ ω

) ∑
γ

(�u �d )αγ (�u �d )γ β

εγ − εα+εβ

2 − ω
. (7)

Equations (6) and (7) contain all possible contributions from
the single-photon and two-photon processes except those
involving the phonon modes (for the latter, see Sec. IV).
(Xk )αβ contains contributions from single-photon absorption
and stimulated emission and can be neglected since the con-
sidered comb fields are off-resonant with atomic transitions.
(Yk )αβ contains contributions from two-photon transitions,
Raman transitions, and photon forward scattering. Among
these processes, two-photon absorption and emission can be
neglected as they are off-resonant. Raman transitions are pos-

sible and there is a nonzero transition amplitude between the
ion fine-structure components, Zeeman sublevels, or oscilla-
tory levels for each couple of pulses. However, for a long train
of pulses, these amplitudes interfere destructively unless the
transition frequency between the levels is close to an integer
multiple of the combs repetition rate (see discussion in Sec. IV
and Appendix A). Thus, the only remaining effect is photon
forward scattering which leads to the phase accumulated on
each ion level. The phases can be directly found from the
diagonal components of Yαβ . For the ion at the position x, the
acquired phase on the level α is

δθα (x) = −iYαα ≈ 4
∫

dω

2π
|Eenv(ω − ωc)|2

{
1 + cos

[
ω

(
t1 − t2 + 2x

c

)]}∑
γ

(εγ − εα )|(�u �d )αγ |2
(εγ − εα )2 − ω2

, (8)

where Eenv(ω) is the Fourier image of a single pulse envelope
and only the resonant contributions to the Yαα are kept.

The behavior of the phases δθα (x) for the levels of the
40Ca+ is shown in Fig. 3. The phases δθα (x) have oscillatory

dependence on x due to the interference of combs. They
vanish away from the overlap region and the phases approach
the constant value. In the center of the overlap region [at x =
c(t2 − t1)/2], the phases are twice of the value far away from
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FIG. 3. (a) The phases acquired on the ion qubit levels |0〉 =
|D5/2, m = −1/2〉 and |1〉 = |S1/2, m = −1/2〉 after the action of
Npulses = 200 couples of combs pulses depending on the ion coor-
dinate x The parameters of combs are taken from Table I. (b) The
probability of the phonon mode excitation for the initial state
|ψinit〉 = 1√

2
(|0〉 + |1〉). The orange dashed line represents the upper

estimate (11), the blue solid line represents the analytical expression
(B5), and red triangles represent the numerically simulated values.

it. Thus, by applying Npulses couples of pulses to the ion chain
with the combs delays t1 and t2 such as xtg = c(t2 − t1)/2, one
can implement the Rz(2θ ) rotation on the target ion with the
coordinate xtg and Rz(θ ) rotation on all other ions, where

θ = Npulsesδθ (xtg) = Npulses[δθ1(xtg) − δθ0(xtg)]/2, (9)

with the indices 0, 1 denoting the qubit levels and the gate
duration of NpulsesT .

With Eq. (8), we calculate the phase shifts for the
4S1/2, m = −1/2 and 3D5/2, m = −1/2 levels of the 40Ca+

ion. The energy levels (see Fig. 2) are taken from the NIST
database [25], and we calculate the transition dipole mo-
ments from the decay rates taken from the NIST database.
The parameters of combs are taken from Table I. The field

TABLE I. The parameters chosen for the analysis of single-qubit
trapped-ion gates performed with frequency combs.

Combs parameters

Carrier wavelength λc 1000 nm
Pulse duration τ 20 fs
Repetition rate νrep 100 MHz
Polarization �u (0, 0, 1)T

Peak electric field ea0Epeak/h̄ ≈4.405 THz

Trap parameters
Axial frequency ωax/(2π ) 600 kHz
Lamb-Dicke parameter η 0.09

Predicted gate parameters
Angle per couple of pulses δθ (x = 0) π/1600
Qubit rotation speed dθ

dt π/16 μs−1

Infidelity 1 − F 5 × 10−4

polarization is taken as �u = (0, 0, 1)T (parallel to the quanti-
zation axis) for simplicity and the value of the electric field
is chosen in order to achieve the qubit rotation speed of
dθ
dt = π/16 μs−1. This allows performing a π/2 rotation per
8 μs with 800 combs pulses, which is comparable with the
duration of single-qubit gate implemented with continuous-
wave lasers.

Also, by the appropriate choice of the comb wavelength
and intensity, our method can be adjusted for the 88Sr+,
138Ba+, and 226Ra+ ions which have a similar structure of the
energy levels (see Fig. 2).

IV. GATE ERRORS

In this section, we analyze the sources of infidelity for the
considered gate implementation, which we list as follows:

(1) Unwanted rotations of the non-target qubits;
(2) Photon scattering;
(3) Transitions between the electronic or vibrational lev-

els;
(4) Fluctuations of the comb field.
The unwanted rotations of the non-target qubits (the

crosstalk) occur because the phase shifts of the nontarget
qubits are not exactly equal to each other. This leads to the
incomplete cancellation of their phases when the global ro-
tations are applied [see Figs. 1(b) and 1(c)]. The dominant
contribution to the error comes from the nearest neighbors of
the target qubit. Given that the target qubit rotates by 2θ , the
neighbor ones rotate by θ + δθ . For the other ions, one can ne-
glect the incomplete phase cancellation due to the rapid decay
of the phases oscillations in Eq. (8). Then, the contribution to
the gate infidelity can be estimated as δθ2. For the interionic
distance of 10 μm, we calculate the phase difference δθ with
the help of Eq. (8) and find that δθ ∼ 10−2 for θ ∼ 1, which
leads to the contribution to the gate infidelity of ∼10−4.

For photon scattering, we estimate its contribution into the
gate infidelity as the mean number of scattered photons (both
elastically and inelastically) by all ions after the action of the
train of pulses. Given that the full scattering cross section of a
photon with the frequency ω is σ (ω), we calculate the mean
number of photons scattered by a single ion from a single
comb pulse E (t ) as

Nscattered = ε0c

h̄

∫ ∞

0

dω

π

σ (ω)

ω
|E (ω)|2. (10)

The cross section σ (ω) is given by the Kramers-Heisenberg
formula [27] integrated over the scattered photon angles
and summed over all possible final states. In the Kramers-
Heisenberg formula, we carefully take into account the finite
lifetime of the intermediate P1/2 and P3/2 levels to avoid sin-
gularities in the integral. The resulting probability to emit a
photon per pulse at the considered parameters does not exceed
10−9, which leads to the contribution to infidelity of ∼10−6

per ion for ∼1000 pulses.
Then, we analyze the contribution of the transitions be-

tween the electronic and the vibrational levels. We claim that
the most important processes contributing to the gate error are
the following Raman transitions:

(1) Between different fine structure sublevels: D5/2 →
D3/2;
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(2) Between different Zeeman components of the qubit
manifolds;

(3) Between different oscillatory levels (equivalent to the
phonon creation and annihilation).

Among the other possible transitions, the excitation of
the short-living P1/2 and P3/2 levels contributes to the pho-
ton scattering discussed above, as the excited P1/2 and P3/2

levels quickly decay with the emission of a photon. Also,
the quadrupole and magnetodipole transitions between the
S and D levels and the two-photon absorption and emission
processes are strongly off-resonant and thus can be neglected.

In contrast, for the processes (a) to (c), the single-pulse
transition amplitudes have comparable magnitude with the
phase shifts defined by Eq. (8) because of the large spectral
width of pulses exceeding even the fine splitting. However,
the total pulse train contribution obtained by summation of
all pulse amplitudes remains small due to destructive inter-
ference between pulses. This happens because the transition
amplitude from the ion level α to the level γ induced by
the kth pair of pulses contains an oscillating phase factor
of ei(εγ −εα )kT . The contributions of individual pulses nearly
cancel each other for long pulse trains.

The detailed calculations for the processes (a) and (b) are
presented in Appendix A. There, we consider a pulse train
inducing the rotation by angle θ ∼ 1 and find the transition
amplitudes by direct summation of all the single-pulse am-
plitudes. For the transition amplitude D5/2 → D3/2, the total
transition probability remains as small as ∼1/N2

pulses ∼ 10−6

providing that the transition frequencies between the qubit
D5/2 level and |D3/2, m〉 levels are not the integer multiples
of the repetition rate. For the transitions between the Zeeman
sublevels of the D5/2, we estimate the transition probability as
( νrep

2πNpulsesνz
)2 ∼ 10−4, where νz is the Zeeman splitting.

For process (c), we calculate the probability of the phonon
mode excitation with the help of the effective Hamiltonian
for the qubit levels and phonon modes (see details in the
Appendix B). We derive the effective Hamiltonian using the
fact that the normal-mode oscillation period is much larger
than the single pulse duration and considerably larger than
the period between pulses. Given that the ion is initially in
the state |ψinit〉 = c0|0〉 + c1|1〉, the estimate for the phonon
excitation probability reads [see Eq. (B5)]

Pi =|c0|2Pi0+|c1|2Pi1 <Pi0, Piα <
c2

ω2
c

(
∂δθα

∂x

)2 ∑
λ

4|ηiλ|2
ω2

λT 2
,

(11)

where i is the ion number, λ enumerates the axial phonon
modes, and ηiλ are the Lamb-Dicke parameters. The first
inequality holds because Pi0 > Pi1.

According to Eq. (11), the phonon excitation probability
vanishes when the ion is in the center of the interference
peak. However, it may significantly contribute to the error in
a realistic setup if the center of the interference peak devi-
ates from the ion position. To estimate the phonon excitation
probability, we assumed the deviation of 30 nm. For a single
ion characterized by parameters of Table I, we use Eq. (11) to
prove that the phonon excitation probability does not exceed
3 × 10−4 [see Fig. 3(b)]. For longer ion chains, we find that
a similar level of phonon excitation error can be achieved

FIG. 4. The probability of the phonon excitation for a center ion
of the chain with Nions ions in |0〉 state depending on gate duration
at the rotation angle of π/2. The horizontal dashed line indicates the
probability level of 3 × 10−4.

with the appropriate choice of gate duration (see Appendix B,
Fig. 4).

Finally, let us discuss the effect of comb field fluctua-
tions. We assume that the pulse trains coming from both
sides originate from a single frequency comb source. Then,
phase fluctuations of the comb source and the fluctuations
of the pulse shape do not affect the interference pattern for
the intensity in the pulses overlap region and therefore the
gate performance. Thus, the main effect comes from overall
intensity fluctuations, which can be estimated the same way
as for continuous wave lasers. For continuous wave lasers, the
contribution of intensity fluctuations into infidelity is typically
of order ∼10−4 [5] and can be further reduced with intensity
stabilization techniques [28]. Therefore, we do not include
this type of error in our error budget.

All the discussed errors (except for comb field fluctuations)
are presented in Table II. The dominant contributions are the
crosstalk, transitions to Zeeman sublevels and phonon excita-
tion error. We estimate the total contribution for the suggested
parameters as 5 × 10−4.

V. NUMERICAL MODELING

We verify the theoretical considerations of Secs. III and IV
with the numerical simulation of the 40Ca+ ion in the field of

TABLE II. The contributions to the frequency-comb based gate
error discussed in Sec. IV.

Error source Contribution

Crosstalk 10−4

Photon scattering 10−5

Transitions to nonqubit Zeeman sublevels 10−4

Transitions to D3/2 sublevels 10−6

Phonon excitation 3 × 10−4

Total error 5 × 10−4
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two counterpropagating frequency combs. In the simulation,
we consider the low-lying S, P, and D levels of the 40Ca+

ion, the interaction of the internal degrees of freedom of the
ion with one vibrational mode of the ion chain and radiative
decay of the short-living P levels.

For the verification, we simulate the quantum dynamics of
the ion using the master equation in the Lindblad form [29,30]

d̂ ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + Lρ̂, (12)

where ρ̂ is the density matrix of the ion-phonon system, Ĥ
is the Hamiltonian (1), and L is a spontaneous relaxation
superoperator [31,32]

Lρ̂ = −
∑

c

γc

2
(ρ̂Ŝ+

c Ŝ−
c + Ŝ+

c Ŝ−
c ρ̂ − 2Ŝ−

c ρ̂Ŝ+
c ). (13)

Here c enumerates the set of all possible spontaneous decay
channels for the considered energy levels, γc are the spon-
taneous decay rates and Ŝ±

c are the excitation or deexcitation
operators. The actual simulations are performed in the interac-
tion representation. We use the QUANTUMOPTICS.JL package
[33] written in the JULIA language [34].

To model the gate described above, we consider the ion at
t = 0 described by the normalized phonon-ion wave function

|ψinit〉 = (c0 |0〉q + c1|1〉q) ⊗ |0〉vib, (14)

where |n〉vib is the nth Fock state of the vibrational mode,
|0〉q and |1〉q are the qubit states encoded in the 3D5/2, m =
−1/2, and 4S1/2, m = −1/2 levels, respectively, and c0 =
c1 = 1/

√
2. The initial density matrix is ρ̂init = |ψinit〉〈ψinit|.

Then, we calculate the evolution under 200 pairs of combs
pulses with the model parameters of Table I for different ion
equilibrium positions x0.

For the final density matrix ρ̂fin in the interaction represen-
tation, we calculate the phase difference θ acquired between
the qubit levels with the expression

θ = Arg(〈ψ0|ρ̂fin|ψ1〉), (15)

where |ψα〉 = |α〉q ⊗ |0〉vib. Also, we calculate the popula-
tions ργγ of the nonqubit states.

The numerical results match with the theoretical predic-
tions of Secs. III and IV. The acquired qubit phase coincides
with Eqs. (8) and (9) with the discrepancy of ∼10−3 [see
Fig. 3(a)], which we associate with the higher-order terms of
the Magnus expansion. This discrepancy does not contribute
to the gate error, as it indicates only the inaccuracy of the
analytical expression for the phase (8) and can be avoided with
the appropriate calibration of the combs power. The probabil-
ity of the phonon excitation also matches with the prediction
of Eq. (B5) [see Fig. 3(b)]. The excitation of the nonqubit
electronic levels remains on the level of 10−6 in agreement
with the estimates of Sec. IV.

VI. CONCLUSION

We suggest a method for single-qubit addressing in the
trapped ion linear chains based on the quadratic Stark shift
induced by two counter-propagating frequency combs. The
implementation requires only global laser beams and is appli-
cable for the ion chain of any length. To realize a single-qubit

gate on a target qubit, one should adjust the time delay be-
tween the combs pulses so that the target ion lies in the overlap
region between the pulses and apply the train of combs pulses
and additional continuous-wave laser fields. We present the
detailed calculation of the gate parameters for 40Ca+ ions and
find that the single-qubit rotations can be implemented with
the low infidelity (∼5 × 10−4) at moderate gate times (∼8μs).
Also, our method can be extended for the isoelectronic 88Sr+,
138Ba+, and 226Ra+ ions by the appropriate choice of the setup
parameters. We believe that our findings provide useful insight
into quantum operations in trapped ion chains.
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APPENDIX A: LEAKAGE TO THE NONQUBIT
ION LEVELS

Here we analyze the leakage to the nonqubit ion levels.
They can belong to either S1/2, D3/2, or D5/2 manifolds. For
the qubit state 0 belonging to the D5/2 manifold, leakage is
possible to the D sublevels, and for the qubit state 1 belonging
to the S1/2 manifold, the leakage is possible to the nonqubit
S1/2 component. For all listed pairs of electronic levels, transi-
tions with the change of the vibrational state are also possible.

Assuming that the ion is in the qubit state α, we find the
transition amplitude due to the action of the train of pulses
to the nonqubit state γ . It can be approximated as the sum of
transition amplitudes associated with the action of each couple
of pulses. Each of these processes is a two-photon process
corresponding to the absorption and emission of a photon,
therefore, the amplitude by the kth pulse can be written as
ak = a0ei(εγ −εα )kT . Therefore, the total amplitude reads

|atot| =
∣∣∣∣∣∣
Npulses−1∑

k=0

a0ei(εγ −εα )kT

∣∣∣∣∣∣ <
|a0|

| sin [(εα − εγ )T/2]| . (A1)

The dominant contribution to a0 comes from the second order
of the Magnus expansion. For the transitions not affecting
the vibrational state, it is the same order as the phase shift
per pulse. At the gate times and repetition rates that we
consider a0 ∼ θgate/Npulses ∼ 10−3. For transitions changing
both the electronic and the vibrational states, the amplitude
is additionally multiplied by the Lamb-Dicke parameter a0 ∝
ηθgate/Npulses. Given the Lamb-Dicke regime, we neglect the
contribution of such transitions into error.

When the leakage occurs from the qubit state 0 to the
nonqubit fine-structure D3/2 sublevel, the transition frequency
is εD5/2 − εD3/2 = 2π × 1.8287 THz. Keeping the repetition
rate νrep unequal to an integer fraction of (εD5/2 − εD3/2 )/(2π ),
one can easily ensure that| sin [(εD5/2 − εD3/2 )T/2]| ∼ 1. For
example, for the repetition rate of 100 MHz, the energy dif-
ference can be represented as εD5/2 − εD3/2 = 2π (k + �k)νrep,
where k = 18 287 and �k = 0.34. At these conditions, the
probability of the transition to the D3/2 sublevels remains as
small as ∼θ2

gate/N2
pulses ∼ 10−6.
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For the case of the leakage from the qubit state to other
Zeeman sublevels of the same manifold, the transition fre-
quency equals the Zeeman splitting. Assuming the Zeeman
splitting of νz = 2 MHz and using Eq. (A1), we obtain the
transition probability below ( θgateνrep

2πNpulsesνz
)2 ∼ 10−4.

APPENDIX B: EXCITATION OF
THE VIBRATIONAL LEVELS

The transitions between the vibrational levels can be taken
into account in the following way. As femtosecond pulses
are much faster than the periods of the ion motion, one can
neglect the time dependence of the operator x̂ for each pulse.
This allows expressing the evolution operator of the kth pulse
through the x-dependent evolution operator Uk (x):

Uk = Uk[x̂(tk )]. (B1)
As the evolution operator for each pulse is approximately
diagonal, for two-qubit levels it takes the form

Uk =
(

eiδθ0[x̂(tk )] 0
0 eiδθ1[x̂(tk )]

)
. (B2)

The phases per pulse are small, therefore, we approximate the
evolution of the wave function by a continuous function. Thus,
the evolution can be described by the effective Hamiltonian

Heff = 1

T

(
δθ0(x̂) 0

0 δθ1(x̂)

)
. (B3)

In the Lamb-Dicke regime, the expansion of the phases in
deviations from the equilibrium position reads

δθα (x̂i ) = δθα (x0) + 1

kc

∂δθα

∂x

∑
λ

ηiλ(aλ + a†
λ). (B4)

As the angles δθα (x) depend only on the axial coordinate x,
only axial modes contribute to the sum in Eq. (B4). Finally,
the probability of phonon excitation (assuming that the gate
acts on the ith ion being in the level α) can be easily calculated
with the first-order perturbation theory

Piα = 1

k2
c

(
∂δθα

∂x

)2 ∑
λ

|ηiλ|2|eiωλtgate − 1|2
ω2

λT 2

<
1

k2
c

(
∂δθα

∂x

)2 ∑
λ

4|ηiλ|2
ω2

λT 2
. (B5)

One can see that the probability is proportional to ( ∂δθα

∂x )2.
Therefore, it vanishes for the ion at the center of the pulses
overlap region.

We estimate the phonon excitation probability for the ion
slightly deviating from the center of the overlap region. For
the gate angle of π/2 and the deviation from the pulse overlap
region of 30 nm, we calculate the phonon excitation proba-
bility with Eq. (B5). We considered ion chains of different
length Nions and different gate times, including the case of a
single ion with the parameters of Table I. For each Nions > 1,
we chose the axial frequency νax = ωax/(2π ) small enough
to ensure stability of the linear configuration at the radial
frequency ωrad/(2π ) = 1 MHz. The Lamb-Dicke parameters
were found by diagonalization of the ions Hessian matrix
as in [35] assuming harmonic potential in axial and radial
directions. According to the dependencies shown in Fig. 4,
even for chains with 20 ions with a low axial frequency of
110 kHz, the gate time can be chosen to so that the error
remains on the level of 3 × 10−4.
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