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Performance enhancement of surface codes via recursive minimum-weight perfect-match decoding
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The minimum weight perfect matching (MWPM) decoder is the standard decoding strategy for quantum
surface codes. However, it suffers a harsh decrease in performance when subjected to biased or nonidentical
quantum noise. In this work, we modify the conventional MWPM decoder so that it considers the biases, the
nonuniformities, and the relationship between X , Y , and Z errors of the constituent qubits of a given surface
code. Our modified approach, which we refer to as the recursive MWPM decoder, obtains an 18% improvement
in the probability threshold pth under depolarizing noise. We also obtain significant performance improvements
when considering biased noise and independent nonidentically distributed (i.ni.d.) error models derived from
measurements performed on state-of-the-art quantum processors. In fact, when subjected to i.ni.d. noise, the
recursive MWPM decoder yields a performance improvement of 105.5% over the conventional MWPM strategy,
and in some cases, it even surpasses the performance obtained over the well-known depolarizing channel.
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I. INTRODUCTION

Quantum computers have the potential to surpass conven-
tional machines and result in vast leaps forward in several
fields such as cryptography, pharmacy, or finance. Nonethe-
less, if quantum computers are to reach their, as of yet,
unrealized potential, they must become fault-tolerant; they
must be able to function in the presence of errors and imper-
fect components. The building blocks of quantum computers
are known as qubits and they are the most basic elements ca-
pable of storing quantum information. Thus, substantial effort
and resources are currently being invested to design and build
efficient methods to preserve the information stored in qubits.
This type of research falls within the scientific niche known
as quantum eError correction (QEC).

Recent developments in the field of QEC have revolved
around the casting and adaptation of state-of-the art classi-
cal codes, such as the LDPC codes [1–4] and TURBO CODES

[5,6], into the quantum framework with the goal of deriving
powerful QEC codes. However, these schemes face significant
technological limitations, such as the need for nonlocal inter-
action as large physical qubit counts, and so it is unlikely that
they will be employed to implement near-term quantum error
correction. Fortunately, well-known strategies like the surface
code [7,8], which have low connectivity and physical qubit
counts, are promising candidates to protect quantum errors in
the short term [9,10].

Information states encoded using surface codes are gen-
erally decoded using the Minimum Weight Perfect Matching
decoder (MWPM), although a variety of different methods,
like the Union Find decoder [11], the Matrix Product State
decoder [12], the Renormalization Group decoder [13], the
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Cellular Automata decoder [14], the Neural Network decoder
[15], or even the recently proposed “Belief Propagation (BP)
+ Ordered Statistics Decoder (OSD)” decoder [16,17], exist.
When a quantum information state encoded within a surface
code suffers an error, the MWPM method maps the resulting
nonzero syndrome elements into a graph and then determines
the set of edges without common vertices, referred to as
matching, in which the sum of weights is minimum [18,19].
The term perfect refers to the fact that the matching includes
all vertices of the graph.

In this paper we introduce a modified MWPM approach
which yields significant performance improvements when
compared to the conventional method. We make use of the
ideas proposed in [20,21], where the authors exchanged in-
formation between CSS code subgraphs, and in [22] where
the idea of applying such concepts in a recursive matter under
depolarizing noise was introduced. Based on these results, we
develop a strategy that makes the rotated planar code more ro-
bust towards quantum noise. We verify this outcome by testing
the performance of the rotated planar code over three different
noise models: Symmetric depolarizing noise, biased noise,
and independent nonidentically distributed (i.ni.d.) noise
built using data from state-of-the-art quantum processors
[10,23–25].

II. SURFACE CODE

Surface codes are a widely studied class of quantum error-
correcting codes that are generally described by arranging
data qubits in a two-dimensional lattice. Data qubits interact
locally with other additional qubits (check or ancilla qubits)
that can later be measured to produce a syndrome. Several
lattice structures have been studied for surface codes, but the
most popular and the first one to be introduced is the square
lattice [7,8].

Planar codes encode the information stored in a single
logical qubit within larger sets of data qubits, which are
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located on the edges of the square lattice. On the vertices
and plaquettes of the code lattice additional qubits, known as
measurement qubits, are found. Measurement qubits interact
with their nearest data qubit neighbors differently depending
on their location. This interaction occurs through a series of
Hadamard and CNOT gates, allowing Pauli errors within the
adjacent data qubits to propagate to the measurement qubit.
Upon measurement, the measurement qubit brings partial in-
formation of their surrounding data qubits. This process can
also be seen as measuring qubits applying Pauli operators
to their adjacent data qubits and turning nontrivial if an odd
number of adjacent data qubits undergo a Pauli error which
anticommutes with the operator applied by the measaurement
qubit. For instance, the so-called X -measurement qubits are
located within the vertices of the planar code and apply X
operators to their neighbors, whereas Z-measurement qubits
are located on the plaquettes and apply Z operators in the same
manner. Following their application on the corresponding
data qubits, the measurement qubits themselves are measured.
Thus, the number of data qubits is restricted by the size of the
planar code via the relation n = d2 + (d − 1)2, where n is the
number of data qubits and d is the distance of the planar code.
Moreover, the number of measurement qubits is n − 1 since
the planar code encodes a single qubit. The distance d of the
code represents the minimum number of Pauli gates that need
to act on an encoded state to modify it nontrivially.

The planar code is initialized by establishing all constituent
physical qubits into a desired state, e.g., a tensor product
of |0〉 s and then measuring all the measurement qubits and
saving their values. Note that the selection of the initial states
of the physical qubits is not arbitrary in general since its
selection impacts code performance whenever circuit-level
noise is considered [26]. However, since the present study
does not consider noisy gates and state preparation and mea-
surement (SPAM) errors, such selection is not important.
Afterwards, whenever an error correction procedure is to be
executed, the syndrome is extracted from the planar code
by repeating the aforementioned procedure, i.e., measuring
all the measurement qubits. Every measurement qubit that
experiences a change in its measured outcome indicates that
an odd number of nearest neighbors have experienced a Pauli
error. X -measurement qubits are susceptible to Z operators,
Z-measurement qubits are susceptible to X operators, and
both are susceptible to Y operators since, in the effective
Pauli group, Y = XZ [4]. Therefore, we can say that the X -
measurement qubits act as Z checks while the Z-measurement
qubits act as X checks.

Against this backdrop, the planar code provides an effec-
tive way to encode the information of a qubit. It must be
mentioned, however, that the current standard method em-
ployed to build experimental surface codes is the rotated
planar code [9,10]. The rotated planar code is a variant of the
general planar code that reduces the number of physical qubits
to d2 by considering a rotated form of the original square
lattice. This modified lattice results in a decrease of the code
threshold1 from around 16% to 14% through conventional

1Assuming perfect measurements.

FIG. 1. Visual representation of a 7 × 7 rotated planar code. The
data qubits, X -measurement, and Z-measurement qubits are repre-
sented via gray, yellow, and green circles, respectively. In (a) we
see an X -measurement qubit stabilizing its four nearest data qubits.
In (b) a Z-measurement qubit interacts with its two nearest data
qubits. In (c), (d) two adjacent X -measurement and Z-measurement
qubits interact with their nearest data qubits. In (e), an X measure-
ment stabilizes its nearest data qubits altogether with its adjacent
Z-measurement qubit. The logical X and Z operators are shown in
(g), (f), respectively.

decoding [27], but it leads to an increase in the code rate, i.e.,
the ratio of logical qubits to physical qubits increases.

The rotated planar code is stabilized in the same way as
the planar code: X -measurement and Z-measurement qubits
are constantly initialized and measured. In Fig. 1, we portray
the most relevant features of the planar code. As can be seen,
the X - and Z-measurement stabilizers have weight 2 or 4,
depending on their location within the code. Moreover, all
adjacent X measurement and Z measurement commute among
each another. Two measurement qubits of the same kind will
commute because they apply the same type of operator to the
shared data qubit. Moreover, as seen in label e, different kinds
of measurements which are adjacent to each other also com-
mute, as they anticommute on two shared data qubits. Lastly,
the logical operators X̂ and Ẑ can be understood as chains of
X and Z operators traversing the code and commuting with all
measurement qubits. The combination of both X̂ and Ẑ results
in Ŷ (notice that X̂ Ẑ = −ẐX̂ through the anticommutation of
X and Z in the top left corner data qubit).

An error within the code will result in a syndrome after
a measurement of the stabilizer qubits. To extract a recov-
ered error through said syndrome a process named decoding
is undergone. Usually decoding requires the full syndrome,
nevertheless some studies have been made as to optimize the
syndrome data required by the decoder [28]. Minimum weight
perfect matching is the conventional choice, nevertheless, this

022401-2



PERFORMANCE ENHANCEMENT OF SURFACE CODES VIA … PHYSICAL REVIEW A 108, 022401 (2023)

FIG. 2. Decoding of a 5 × 5 rotated planar code via minimum
weight perfect matching. On the top, the rotated planar code expe-
riences an error, the nontrivial Pauli operators on the data qubits
are represented through red circles. Measurement qubits which ex-
perience a change in measurement due to the error are denoted in
light green and light yellow circles with an exclamation mark. On
the bottom, the X -check and Z-check subgraphs with the resulting
MWPM computation are shown.

method suffers a harsh decrease in performance under realistic
noise.

III. MWPM DECODER

The minimum weight perfect matching decoder allows us
to decode quantum states encoded in planar codes by mapping
nonzero syndrome elements to two separate subgraphs and
matching them by finding the minimum weight configuration
[18]. Each subgraph is composed by the Z-measurement and
the X -measurement qubits.

In Fig. 2, an example of the functioning of the MWPM
decoder is shown. On the top, the rotated planar code ex-
periences an error, which is detected by a change in the
measurement outcome of some measurement qubits. The
measurement qubits are susceptible to errors that occur on
their nearest data qubits: notice how the green Z-measurement
qubits react to nearby X errors, while the yellow X -
measurement qubits react to Z errors that are close. Addition-
ally, both types of measurement qubits react to Y errors since
they anticommute with both X and Z operators. Nevertheless,
when a measurement qubit is in contact with an even number
of errors with which it anticommutes, the anticommutations

cancel out and it is never triggered. This effect can be seen in
the yellow qubit in between the two Z errors on the bottom
left part of the graph, or with the green measurement qubit
in between the X and Y errors. On the bottom of Fig. 2,
two subgraphs are created from the measurement qubits that
experience a change in their measurement outcome. Said mea-
surement qubits will act as nodes on the resulting graph and
the data qubits of the code are represented by the same weight
edges which connect them. Once these two subgraphs are
derived, the minimum weight perfect matching is computed,
as is shown by the green and yellow lines of Fig. 2. The graph
paths that correspond to the MWPM represent the recovered
error and so the recovery operation is built by applying X and
Z operators on the data qubits that are crossed by green or
yellow lines, respectively.

One of the strong suits of the MWPM decoding rule is that
it always returns an estimate of the error that corresponds to
the measured syndrome. If the MWPM decoder is successful,
but the input error is different from the recovered one, this
difference will be up to a stabilizer element, and so the error
correction procedure will still work.

The characteristics of the MWPM decoding rule and its
consideration of the degeneration of quantum states within
the code makes it so that it can find the most likely recovery
operation (one of the most likely errors belongs to the coset
with highest probability [4]).

While the average physical error probability stays below
10.3% for each subgraph [19]. For higher physical error prob-
abilities, the most likely Pauli sequence no longer belongs to
the stabilizer coset with highest probability, and so the perfor-
mance will deteriorate until reaching the probability threshold
(pth): the physical error probability at which increasing the
distance of the code no longer improves its performance.

Despite these positive traits, one of the biggest disadvan-
tages of the MWPM decoder is its complexity, which scales
with the distance of the rotated planar code as O[d6log(d )]
[19]. It is likely that for large distance rotated planar codes
other decoders will be applied, such as the local version of the
MWPM or the so-called BPOSD decoder, as they significantly
reduce complexity and generally achieve relatively similar
performance results [16,17,19].

IV. RECURSIVE MWPM DECODER

As introduced in the previous sections, in this paper we
consider the rotated planar code. Within it, the stabilizer
checks of a conventional rotated planar code can be divided in
two types: the X checks, which interact by applying Z gates
to their nearest data qubit neighbors, and the Z checks, which
also interact with their nearest data qubit neighbors albeit
via the application of X gates. When errors take place, mea-
suring the measurement qubits of the surface code produces
a quantum syndrome, which is a binary vector that yields
information regarding the error that has taken place. The
process through which the most likely error to have caused
the measured syndrome can be inferred is known as decoding.
The most common decoding method applied with the surface
code is the MWPM [27], which, in broad terms, consists in
mapping the nontrivial syndrome elements to a graph and
then finding the minimum weight perfect matching associated
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to said graph (note that this yields the most probable error
sequence, not the most likely error coset).

Conventional MWPM decoding performs well under de-
polarizing noise, but it suffers substantial performance losses
when subjected to biased quantum noise [29–31]. It is note-
worthy that this type of biased noise has similar effects on
Belief Propagation (BP) decoders for QLDPC codes [32,33].
The MWPM decoder suffers further decrements over more
precise noise models like the earlier described i.ni.d. Pauli
channel, where constituent qubits are considered individually
and have their own probability distributions. In fact, when
attempting to decode high standard deviation i.ni.d. noise
with the conventional MWPM method harsh performance de-
creases are observed [34,35].

The conventional MWPM decoder assumes that the er-
rors from each of the subgraphs are independent. However,
they are correlated due to the fact that Y errors are com-
posed by a product of X and Z errors. The recursive MWPM
(recMWPM) is an effort to take this extra information into
account. More specifically, the rates pY /pX and pY /pZ are
used to improve the performance under i.ni.d. noise. Let us see
how. Consider the two check-subgraphs used for MWPM de-
coding. First, select whichever subgraph has the least nonzero
syndrome elements. Were we to select the X -check subgraph,
once the MWPM is computed, the recovered error would
indicate which data qubits are expected to have experienced
X errors. This recovered error will not only cover the set
of X errors experienced by the code, but also the set of Y
errors since they also anticommute with the X checks. The
Y errors also anticommute with the Z checks, thus, each X
error recovered in the X -check subgraph should also appear
in the Z check one with probability pY

pY +pX
.

Once the matching on the first subgraph is computed, the
next step is to reweigh the data qubits in the second subgraph
according to

wi = − ln[p(Zi = 1|Xi )], (1)

where Zi = 1 indicates that the ith edge in the Z-check sub-
graph recovers a Z error, and Xi indicates the result obtained
in the earlier X -check subgraph for the ith qubit. That is, the
weight of each edge is determined for the probability that an
Z error arises knowing the outcome of that same edge in the
other subgraph. In the symmetric depolarizing channel, where
pX = pY = pZ = p/3:

p(X = 1|Z = 1) = pY

pZ + pY
= 1

2
,

p(X = 1|Z = 0) = pX = p/3,

p(Z = 1|X = 1) = pY

pX + pY
= 1

2
,

p(Z = 1|X = 0) = pZ = p/3. (2)

Once the second subgraph is obtained, the same procedure
is repeated by reweighing the first graph following Eq. (1).
This process is repeated until the recovered error of a subgraph
matches its previous one, i.e., the estimate does not change
following two recoveries.

Figure 3 provides a graphical portrayal of the procedure
of the recursive MWPM strategy. Once the code experiences

FIG. 3. Application of the recursive MWPM strategy on a rotated
surface code. White circles represent data qubits, green circles repre-
sent X-check qubits, and yellow circles represent Z-check qubits. On
the top left, the rotated planar code experiences an error (red circles)
that causes certain checks to react (exclamation marks). On the top
right, the X-check subgraph with the MWPM recovered error (pink
circles) is shown. On the mid left, the result of applying the MWPM
on the Z-check subgraph can be seen. The blue circles indicate the
values chosen for recovery in the previous subgraph, which have
changed weight following Eq. (1). The remaining figures are as fol-
lows: mid right, bottom left, and bottom right, portray the remaining
stages of the recursive MWPM until the error is found.

an error, first the X -check subgraph is computed. Then, a
reweighted Z-check subgraph is computed. This process con-
tinues until the result of a subgraph occurs twice. It is possible
in some instances that this halting criterion is never satisfied.
To avoid them, we establish a hard limit of subgraph MWPM
computations represented by Nmax. Once this limit is achieved,
we reduce the computation to a conventional MWPM prob-
lem.

The recursive MWPM modification increases the overall
complexity of the MWPM by Nmax + 1 but also significantly
increases the robustness of the surface code towards noise
which can be detected through both types of checks. In the
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FIG. 4. 7 × 7 rotated planar code with Y measurements instead
of Z measurements.

case of conventional CSS planar codes, recursive MWPM
decoding makes the planar code more resistant to Y errors
when compared to the conventional MWPM decoder (since
both Z and X checks are susceptible to them). We know from
the literature that qubits are more prone to suffer from Z errors
[36–38]. To preserve the tolerance towards biased noise that
we established, we propose changing the checks so as to have
a code with X checks and Y checks, where Z operators are
detected by both. This technique is commonly known as the
XY surface code, and has been used to enhance other codes
when facing highly biased noise [26,29,30]. In Fig. 4, an
example of such a code is provided. The stabilizing properties
of the code remain unchanged, but the reaction of the code
towards Y and Z operators is reversed. This allows for more
shared information between subgraphs and, consequently, im-
provements in performance when recMWPM is used.

V. RESULTS

The performance of the recMWPM method used to decode
rotated planar codes has been assessed over three different
noise models. Over the depolarizing channel (pX = pY =
pZ = p/3) the performance of the code has been benchmarked
through the probability threshold (pth), that is, the physical
error probability at which increasing the distance of the code
does improve its performance. As can bee seen in Fig. 5, the
rotated planar code decoded via recursive MWPM reaches a
probability threshold at p = 16.5%. This represents a perfor-
mance gain of around 18% with respect to the conventional
MWPM.

The strength of the recursive MWPM decoder is showcased
further when biased noise is considered. Over the biased chan-
nel, qubit errors have independent and identically distributed
probabilities, but there is a bias towards a specific type of

FIG. 5. Logical error rate as a function of the physical qubit
error rate of the symmetric depolarizing channel for four different
distance rotated planar codes. The top figure shows the results for the
conventional MWPM decoding method. The bottom figure portrays
the results for the recursive MWPM method. The black dashed lines
indicate the location of the threshold.

error. In our case we consider bias towards Z noise, which will
be determined by η = pZ

pX +pY
= pz

2p . For a fixed physical error
probability of 10% (pX + pY + pZ = 0.1) the performance of
the code using MWPM and recMWPM is shown in Fig. 6. As
can be seen in said figure, the performance loss experienced
when using conventional MWPM is significantly reduced
when using recursive MWPM. Additionally, the difference in
performance between both decoding methods increases as we
use higher distance codes.

Evaluating the performance of the rotated planar code
under i.ni.d. is a complicated task. In the Appendix, it is
shown that the relaxation and dephasing times of qubits
in state-of-the-art quantum processors vary significantly, up
to orders of magnitude [10,23–25]. This experimental phe-
nomenon presents us with two challenges to benchmark the
performance of surface codes. The first one is that choosing
different sets of qubits with the same average T1 and T2, while
possible, will result in different simulated performances. This
occurs because, since the standard deviations of the different
samples may vary, similar qubit samples will outperform sam-
ples whose qubits are very different. To resolve this issue, we
adopt a strategy where, for each code size, we select the qubits
with the longest and shortest relaxation and dephasing times.
This approach is taken for maintaining the average relaxation
and dephasing times of the qubit set while maximizing the
impact of i.ni.d. noise through a substantial standard deviation
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FIG. 6. Logical error rate as a function of Z-error bias with a
physical error probability of 10% for four rotated planar codes of
distances 5, 7, 9, and 11. The green curve represents the probability
of error under the conventional MWPM decoding method. The blue
curve indicates the performance of the recursive MWPM method.
The dashed lines separate the last point, which considers infinite bias
(pure Z noise).

in the values of T1 and T2. The second challenge revolves
around the fact that we can no longer use the probability
threshold (pth) as our performance reference. As shown in
[34], the performance curves do not converge in a pth due
to the differences in the data qubit samples. Consequently,
we will now use the probability pseudothreshold (ppth), that
is, the probability at which the logical error probability (PL)
equals the physical error probability, i.e., PL = ppth, as our
performance reference metric. Said physical error probability
is obtained by considering i.i.d. noise for the average relax-
ation and dephasing times.

Previous works showed that considering samples of real
computer readout T1 and T2 parameters results in decreases in
the performance of the conventional MWPM decoder, that is,
MWPM where all edges are equal, when applied to planar
codes [34]. As can be seen in Fig. 7, this phenomenon is
also observed for rotated planar codes. For this work, we
used the T1 and T2 values measured in several state-of-the-art
quantum processors to simulate performance of rotated planar
codes when i.ni.d. noise is considered [10,23–25]. The change
between i.i.d. noise to i.ni.d. noise reduces the ppth of the code
by 3.6% for a rotated planar code of distance-7 under a noise
channel produced by the T1 and T2 values from the Google
chip [10] to 98.5% in the case of the distance-3 rotated planar
code with the data of the the Aspen-M-2 qubits [23]. The
performance loss for the smaller code is caused both because
of the higher relevance of the worst performing qubits within

the code and by the fact that, given the smaller distance, lower
weight errors are needed to cause code failure.

Applying the recMWPM strategy enhances the perfor-
mance when compared to conventional MWPM methods by
7.2% improvement of the ppth for Zuchongzhi qubits [24] in a
distance-3 code and 105.0% for the distance-7 code with the
qubits of Aspen-M-2 [23]. When considering Google proces-
sor’s qubits [10], the recursive MWPM decoder surpasses the
MWPM strategy by 42.3% when subjected to i.ni.d. noise.
This exceptional performance improvement for the Google
quantum processor is explained by the fact that qubits whose
parameters satisfy T1 > T2 and T1 < T2 are present. This
makes it so that the decoding subgraphs that are generated are
less dense, which ultimately improves MWPM performance.
Ultimately, employing the recMWPM strategy provides an
advantage over executing the conventional MWPM decoder
under i.ni.d. for all of the simulated distances.

VI. SIMULATIONS

The simulations we carried out for this paper were con-
ducted using a modified version of the QECSIM package [39].
For both the symmetric Pauli channel and the biased Pauli
channel the logical probability of error has been derived fol-
lowing 105 applications of random errors to the code. For the
i.ni.d. results, 100 different qubit distributions (arrangements
on the lattice) were considered for each point and for each
specific point 15 probabilities were considered (the closest
one to the ppth taking into account its error was chosen). For
all cases considered Nmax was assigned a value of 10. Finally,
the weighted average has been employed to obtain the results.

VII. CONCLUSION

This work introduced an improved decoding strategy for
surface codes known as the recursive minimum weight perfect
matching decoding method. We showed how considering the
decoding outcomes of one subgraph to condition and solve
the next one can yield improvements in the performance
of the decoder. Our simulation results show an 18% increase
in the threshold of the rotated planar code under depolarizing
noise when using this recursive decoder. We also showed how
the recMWPM strategy is more robust towards biased noise
than the generic MWPM decoder. Finally, we also studied
the behavior of our decoding approach when subjected to
i.ni.d. noise. As expected, we observed a decrease in the
performance similar to the one experienced by the conven-
tional MWPM decoder over such channels. Nonetheless, our
results proved that the recMWPM method also surpasses the
MWPM decoder under i.ni.d. noise. Additionally, although
in this work the decoding method has only been applied to
the rotated planar code, it could be successfully extrapolated
to the toric and planar codes by adapting the the subgraph
structures.

The primary takeaway from this work is that small changes
to the MWPM decoding method can result in strong perfor-
mance improvements when certain information about qubit
noise is known. The recursive minimum weight perfect match-
ing method proposed herein is an example of this, as it
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FIG. 7. Probability pseudothresholds as functions of the code distances for four different sets of qubits under three different scenarios.
The blue curves consider i.i.d. conditions and are decoded through MWPM. The orange and green curves consider i.ni.d. noise decoded with
MWPM and recMWPM, respectively.

achieves significant improvements in performance at the ex-
pense of small increases in decoding complexity.

Reweighting the edges of subgraphs for MWPM compu-
tation is not a new task. In [26], edges are adapted based
on the resulting probabilities of a BP process. In [20], one
of the subgraphs is decoded using conventional MWPM, and
the second subgraph is reweighted based on the earlier match-
ing. In [21], single matches within the bulk of the code are
used to reweight the edges of the other subgraph. In contrast,
recMWPM continuously updates both subgraphs until they
converge to an error. In [40], errors within the stabilizer cir-
cuit of the checks are considered to reweight the edges. For
recMWPM, measurement gates are assumed to be perfect and
the correlations between the X and Z subgraphs are the only
source for reweighting. In [22], a recursive MWPM method is
performed under depolarizing noise, but matched edges in one
subgraph have weight-0 while the remaining have weight-1
in the other subgraph. RecMWPM adapts the weight to the
channel conditions and, more specifically, to the individual
qubit’s conditions, as shown in Eq. (1). This difference allows
it to better undergo biased channels and i.ni.d. noise.

Furthermore, these conclusions give rise to some crucial
unresolved questions. One critical factor in the recMWPM
algorithm is the hard limit parameter, Nmax. A higher value
of Nmax may lead to improved code performance, especially
in the case of independent and non-identical scenarios where
qubits’ T1 and T2 values differ significantly and different paths
have very different weights. However, a larger Nmax also re-
sults in a higher decoding complexity, while a lower Nmax may
not fully exploit the correlation of the subgraphs to an optimal
extent. This becomes especially important since measurement
errors may occur implying that several stabilizing circuits
might be necessitated before the overall decoding process.
This increases the complexity of the decoding process even
more, and this must to be done in real time. Future research
may focus on how to apply the recMWPM algorithm to a
decoding scheme with measurement error and how the qubits’
constraints may restrict the maximum value of Nmax.

The data that supports the findings of this study are avail-
able from the corresponding authors upon reasonable request.

The code that supports the findings of this study is available
from the corresponding authors upon reasonable request.
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APPENDIX: INDEPENDENT NONIDENTICAL NOISE
MODEL FOR SUPERCONDUCTING QUBITS

At the time of writing, most of the accessible experimental
quantum computing prototypes were built using supercon-
ducting qubits. Superconducting qubits generally suffer from
noise that stems from the combination of two processes:
energy relaxation and pure dephasing. Energy relaxation de-
scribes the process of energy loss in a qubit arising from
the emission of a photon, while pure dephasing refers to
a change of phase within the qubit. The Lindblad master
equation provides a mathematical description of both these
phenomena through the amplitude damping channel NAD and
the dephasing channel NPD, respectively. To study both effects
simultaneously, we can make use of the amplitude and phase
damping channel NAPD, which combines both the effects of
dephasing and relaxation. Unfortunately, the amplitude and
phase damping channel is costly to compute since the overall
dimension of the Hilbert space of n qubits scales as 2n. To
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efficiently simulate this type of quantum noise we apply the
information-theoretic concept known as twirling. Twirling is
a widely used method in classical and quantum information
which consists in studying the average effect of noise by
mapping it to a more symmetric version of itself [36,37]. The
application of a Pauli twirl approximation to the amplitude
and phase damping channel results in the Pauli channel

NAPDPTA(ρ) = (1 − pX − pY − pZ )ρ + pX XρX + pY Y ρY

+ pZZρZ, (A1)

where I , X , Y , and Z are the identity, bit-flip, bit and phase-
flip, and phase-flip Pauli matrices, respectively. Moreover, pX ,
pY , and pZ are the probabilities of each of the nontrivial
processes and correspond to

pX = pY = 1
4

(
1 − e− t

T1
)

and

pZ = 1
4

(
1 + e− t

T1 − 2e− t
T2

)
.

(A2)

Based on this, it is clear that the noise suffered by the qubits
that comprise our surface codes is governed by the relaxation
time (T1) and the dephasing time (T2). Qubits limited by their
T1 will be more prone to X and Y errors, while the ones limited
by T2 will be more susceptible towards Z errors. The most
studied quantum channel in the literature is the depolarizing
channel, that is, the channel where T1 = T2 and so pX = pY =
pZ . However, it is likely that superconducting qubits are more
biased towards Z noise, hence, great effort has been expended
recently in building codes tailored to such noise profiles.

Additionally, much of the current research on quantum
codes considers all qubits within the code to have the
same T1 and T2 parameters, which means that they all have
independent and identically distributed error probabilities
(i.i.d.). This means that, for an n-qubit system, the Pauli
twirl approximation amplitude and phase damping channel is
described by

N (n)
APDPTA(ρ) = N⊗n

APDPTA

(
ρ,μT1 , μT2

)

=
∑

A∈{I,X,Y,Z}⊗n

pA
(
μT1 , μT2

)
AρA,

(A3)

where A = A1 ⊗ · · · ⊗ An−1 ⊗ An with Ai ∈ {I, X,Y, Z} de-
notes each of the possible n-fold Pauli error operators, with
probability distribution pA(μT1 , μT2 )

pA
(
μT1 , μT2

) =
n∏

i=1

pAi

(
μT1 , μT2

)
, (A4)

with pAj (μT1 , μT2 ) described by Eq. (A2), and where μT1 and
μT2 represent the mean values of the relaxation and dephasing
times averaged across n qubits.

In reality, measurements on state of the art quantum pro-
cessors shoed that the T1 and T2 parameters vary significantly
from qubit to qubit, sometimes even by an order of magnitude.
This interqubit change is too significant to be ignored and is
not conveyed by taking the average of the time parameters,
thus, a new model must be derived by considering each data

FIG. 8. Representation of the values of T1 and T2 from the qubits
in the quantum processors used for simulations.

qubit separately

N (n)
APDPTA(ρ) =

n⊗

i=1

NAPDPTA
(
ρ,μT i

1
, μT i

2

)

=
∑

A∈{I,X,Y,Z}⊗n

pA
({

T i
1

}n

i=1,
{
T i

2

}n

i=1

)
AρA,

(A5)

where A = A1 ⊗ · · · ⊗ An−1 ⊗ An with Ai ∈ {I, X,Y, Z} de-
notes each of the possible n-fold Pauli error operators with
probability distribution pA({T i

1 }n
i=1, {T i

2 }n
i=1)

pA
({

T i
1

}n

i=1,
{
T i

2

}n

i=1

) =
n∏

i=1

pAj

(
T i

1 , T i
2

)
. (A6)

This independent consideration of the qubit parameters
is named independent nonidentically distributed error model
(i.ni.d.) [34,35]. In Fig. 8, a representation of the relax-
ation and dephasing times of the qubits from the chosen
quantum processors is portrayed. The experimental measure-
ments reveal how the particular relaxation and dephasing
times of each individual qubit within the quantum system
can vary drastically. For example, the qubits that make up
the IBM_WASHINGTON quantum processor exhibit a minimum
relaxation time of 16.54 µs and a maximum relaxation time of
123.11 µs, i.e., there are qubits whose relaxation time differs
by an order of magnitude. This phenomenon is further exac-
erbated for the IBM_WASHINGTON qubit dephasing times. The
minimum dephasing time value is 8.58 µs and the maximum
value is 228.56 µs. This behavior can be relatively observed
over all of the superconducting machines considered in this
paper. The main takeaway here is that, within the real quantum
systems, the decoherence parameters of each constituent qubit
will vary significantly. Because this type of behavior must
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be considered when building accurate decoherence models,
the i.ni.d. noise model is a relevant contribution to the field

of QEC, as it can accurately reenact the real quantum noise
processes that experimental multiqubit systems can suffer.
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