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Causal influences are at the core of any empirical science, the reason why its quantification is of paramount
relevance for the mathematical theory of causality and applications. Quantum correlations, however, challenge
our notion of cause and effect, implying that tools and concepts developed over the years having in mind a
classical world have to be reevaluated in the presence of quantum effects. Here, we propose the quantum version
of the most common causality quantifier, the average causal effect, measuring how much a target quantum
system is changed by interventions on its presumed cause. Not only does it offer an innate manner to quantify
causation in two-qubit gates but also in alternative quantum computation models such as the measurement-
based version, suggesting that causality can be used as a proxy for optimizing quantum algorithms. Considering
quantum teleportation, we show that any pure entangled state offers an advantage in terms of causal effects
as compared to separable states. This broadness of different uses showcases that, just as in the classical case,
the quantification of causal influence has foundational and applied consequences and can lead to a yet totally
unexplored tool for quantum information science.
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I. INTRODUCTION

In spite of the mantra in statistics that correlation does not
imply causation, a central goal of any quantitative science
is precisely that: to infer cause and effect relations from ob-
served data [1,2]. In fact, as stated by Reichenbach’s principle
[3], correlations between two events do imply some causation.
Either one has a direct influence over the other or a third event
acts as a common cause for both. Within this context, given
variables A and B, the basic aim of causal inference is to
distinguish how much of their observed correlations are due to
direct causal influences, rather than due to a potential common
cause �. If we do not have empirical access to �, which is
then treated as a latent (or hidden) variable, both models—
common cause or direct causal influences—generate the same
set of possible correlations that cannot be set apart from obser-
vations alone. With that aim, one has to rely on interventions
[1]. By intervening on A, we fix it to a value independent of
� such that any remaining correlations between A and B can
unambiguously be traced back to a direct influence A → B, a
fundamental result with a wide range of applications [4–9].

Notwithstanding all the successes of causality theory, since
Bell’s theorem [10] it is known that the classical notions
of cause and effect break down at the quantum level. Not
only the notion of a causal structure has to be generalized in
order to include quantum states [11–18] or the possibility of
superposition of causal orders [19–22], but also the meaning
and applicability of Bell inequalities as a causal compatibility
tool [23] have to be reevaluated [24], and tests employed to
bound the causal effects [25] have to be readjusted [26]. Given
that, a fundamental question reemerges: how can we quan-
tify quantum causal effects? Complementary frameworks for

reasoning about quantum causal influences were developed
[13,15,17,21,22] and explicit quantifiers of causality have
already been proposed [27,28]. Nevertheless, the quantum
generalization of the most widely used and intuitive quantifier
of causality in the classical case, the average causal effect
(ACE) [1,7,25,26,29,30], has not yet been achieved. That is
the main goal of this paper.

Using the trace distance, we propose a quantum version
of the ACE. It quantifies the causal influence that an inter-
vention on a system might have on a resulting quantum state.
We show the applicability of our framework in a number of
paradigmatic quantum information scenarios. We start quan-
tifying causal influences in two-qubit gates and discussing the
advantages of our approach relative to other recent proposals
[27]. Within the context of measurement-based quantum com-
putation [31,32] and quantum teleportation [33], we show that
separable states imply a limited amount of causal influence, a
restraint that can be surpassed by any pure entangled state.
Thus, our quantum causality quantifier not only provides a
natural extension of a widely used and acknowledged classical
tool but also can be seen as a witness of nonclassical behavior.

II. QUANTUM AVERAGE CAUSAL EFFECT

Suppose we observe correlations between variables A and
B, that is, their probability distribution does not factorize
as p(a, b) �= p(a)p(b). From Reichenbach’s principle [3], the
most general causal model explaining such correlations might
involve direct influences as well as a common cause � that,
for many reasons, might not be directly observed. Thus, at
least in a classical description, the conditional observational
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distribution p(b|a) can be decomposed as

p(b|a) =
∑

λ

p(λ|a)p(b|a, λ). (1)

If, however, an intervention is performed on A, an operation
denoted as do(a), the interventional distribution is now

p(b|do(a)) =
∑

λ

p(λ)p(b|a, λ), (2)

where p(b|do(a)) denotes the probability of b when variable
A is set by force to be a, that is, any potential influence from
the common cause � is erased. Importantly, interventions
bring in a natural way for quantifying causality. For instance,
if a and b are binary variables, a widely used quantifier of
the causal influence from A to B, the average causal effect
[1,7,25,26,29,30], is defined as

A = |P(b1|do(a1)) − P(b1|do(a0))|, (3)

measuring the change in the distribution p(b1) = p(b = 1) of
variable B depending whether the value of A is set to a = 1 or
a = 0. Notice that

P(b1|do(a1))−P(b1|do(a0)) = P(b0|do(a0)) − P(b0|do(a1)),

therefore Eq. (3) accounts for the influence A on the full
probability distribution over B. In contrast, when A and B can
assume more than two values, generalizations of Eq. (3) are
not unique.

For simplicity, first assume that only B can have more than
two values. If we want to measure the largest causal influence
A has over B, a natural generalization is to maximize the right-
hand side of Eq. (3) over all values of b [26], such that

Amax = max
b

|P(b|do(a1)) − P(b|do(a0))|. (4)

This definition, however, might not capture the full causal
influence from A to B if it is very spread through the event
space of B. To illustrate, suppose B can assume integer values
from 1 to 2N . If a = 0 (a = 1), B assumes uniformly random
integer values from 1 to N (N + 1 to 2N). The ACE, as defined
by Eq. (4), decreases as N increases. And yet, changing the
value of A clearly has a large effect on B. This illustrates
the extent to which Amax is sensitive to coarse graining of
the probability distribution. Since our intention is to quantify
causal influence in quantum protocols, it makes sense to al-
low for arbitrary coarse grainings on outcomes of quantum
measurements, as we can always encode a coarse-graining
strategy as degeneracies in the measured observable.

Building on that, we propose a generalization of Eq. (3)
based on the total variation distance (TVD), the largest pos-
sible difference that two distributions can assign to the same
event, given by

δ(P, Q) = 1

2

∑
x∈X

|P(x) − Q(x)|, (5)

where P and Q are two probability distributions over X . The
ACE can then be defined as

ATVD = 1

2

∑
b

|P(b|do(a1)) − P(b|do(a0))|. (6)

It reduces to Eq. (3) when B is binary, and returns the largest
value of Amax over all possible coarse grainings of the distri-
bution of B.

To generalize Eq. (6) for a quantum system, there are
two choices. The first is to suppose we have some set of
measurement bases and compute ATV D at the level of proba-
bility distributions over measurement outcomes. Often this is
desirable, since it operates directly at the level of outcomes
[24,26,34,35]—the success probability of a quantum game
or protocol might be stated in terms of these quantities, as
usual within device-independent quantum information [36].
However, there are in principle infinitely many choices of
measurement bases, and different protocols can differ on how
much information the measuring agent has over in which basis
to measure. Therefore, it can be meaningful to measure di-
rectly the causal influence of a parent variable on the resulting
quantum state, agnostic to which basis it will be measured in.

Following this reasoning, we propose a generalization of
the ACE for quantum states in terms of the trace distance
(TD), a well-known generalization of the TVD measuring the
distance between two density matrices ρ and σ , defined as

DT (ρ, σ ) := 1

2
Tr(

√
(ρ − σ )2) = 1

2

∑
i

|λi|, (7)

where λi are the eigenvalues of the matrix (ρ − σ ). Just like
the TVD accounts for all classical strategies (i.e., choices of
coarse graining), the TD accounts for all quantum strategies.
More concretely, the trace distance between two states cor-
responds to the maximum TVD between the two probability
distributions that would arise from measuring those states
with the same POVM.

If A is a classical binary variable, the quantum ACE is
naturally defined as

AQ = DT [ρB(do(a1)), ρB(do(a0))], (8)

where ρB(do(a0)) is the density matrix that describes the state
at B given the intervention do(a0). In many cases, however,
and particularly for the applications we consider later on, A
corresponds to some pure (qubit) quantum state. More con-
cretely, A could correspond to any state in the Bloch sphere,
and so Eq. (8) is no longer well defined. We thus generalize it
as follows:

AQ = E
a0,a1

DT [ρB(do(a1)), ρB(do(a0))], (9)

where we now average over the choice of a0 and a1. Following
Ref. [13], do interventions on quantum states are obtained
simply by tracing whatever state represents A and replacing
it with a pure state, and subsequently averaging over all pos-
sible states of A. Clearly, which average must be performed
depends on the nature of the variable A. For instance, if it is
an arbitrary state in the Bloch sphere, the natural choice is the
uniform (Haar) distribution [37,38].

III. CAUSAL INFLUENCES IN TWO-QUBIT GATES

We consider a two-qubit gate, U , acting on a pair of qubits
labeled A and B. We wish to compute the AQ from the input
state of qubit A onto the output of qubit B. We consider that
this gate might be embedded into a larger quantum circuit, but
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FIG. 1. The setup to calculate the causal influence of quantum
gates. Here the influence is measured from the entry |a〉 to the output
of |b〉 (red lines). We perform a Haar-random average over |b〉 and a
partial trace over the first output qubit.

that we perform a do intervention on qubit A, replacing it by
some pure state |A〉 [13]. As there is no preferred basis for B
a priori, we perform a Haar-random average over the input of
B. Since we are also not interested in the output of qubit A, it
is traced out after the application of U . The entire procedure,
shown in Fig. 1, can be summarized by

AQ(U ) = E
|a〉
E
|b〉

DT (ρ(b|do(a), ρ(b|do(a⊥)), (10)

where we used the shorthand

ρ(b|do(a)) = trA(U |a, b〉〈a, b|U †). (11)

The average over choices of intervention is done as fol-
lows. First, we choose some state |a〉, and assume the
intervention consisted of choosing either of the orthogonal
states |a〉 and |a⊥〉. We then average the result uniformly over
|a〉. We could have chosen to average uniformly over two
independent choices of states |a0〉 and |a1〉. However, this is
computationally more costly and seems to lead to a reduction
by a constant multiplicative factor. It is also intuitive that,
given a state |a〉, the largest influence over B is obtained by
choosing either |a〉 or |a⊥〉.

Our results, for a few paradigmatic quantum gates, are
summarized in Table I and detailed in Appendix A. It is
natural that the SWAP gate displays the largest causal influence:
if the states of A and B get swapped, then A has maximal
influence over B irrespective of anything else. Another virtue
of our definition is that it is basis invariant. As a consequence,
consider the CNOT gate: it flips the target qubit if the control
qubit is in the |1〉 state, and does nothing otherwise. Thus,
one can expect the influence to only exist from the control
qubit onto the target qubit, or at least to be stronger in that
direction. Our measure, however, attributes the same causal
influence from the control to the target in a CNOT gate as
vice versa, which is to be expected since these roles can be
flipped by a local change of basis. Finally, our definition has
a natural scale, ranging from 0 (for local gates) to 1 (for the
SWAP). Thus, not only our causality measure has a fundamen-
tal motivation as a generalization of the well-known ACE [1],
it also displays a number of advantages that can be showcased
by comparison with another recent proposal [27]. There, the
CNOT gate does not have the same value of causal influence
in both directions, neither does their definition have a natural
scale, which is inferred by averaging over unitary gates.

IV. ONE-WAY MODEL OF QUANTUM COMPUTATION

In measurement-based quantum computation (MBQC)
[32], interactions between qubits and unitary operations
required to execute a given algorithm are replaced by the

initial entanglement in a graph state [40] and the possibility
of performing local adaptative measurements. Measurements
in the computational basis {|0〉, |1〉} disconnect unnecessary
qubits from the graph state while measurements on the
X -Y plane of the Bloch sphere, represented by the eigen-
states |a〉 = (1/

√
2)(|0〉 + eiφa |1〉) and |a⊥〉 = (1/

√
2)(|0〉 −

eiφa |1〉), perform the desired quantum gates. Quantum compu-
tation is then characterized by a collection of angles defining
the measurement basis for each qubit, as well as dependencies
of these angles on outcomes of previous measurements. There
is a feed forward of classical information (measurement out-
comes) along the computation, explaining why this approach
is also known as the one-way model [31].

A building block for MBQC is a two-qubit graph state
|G2〉 = (1/

√
2)(|0+〉 + |1−〉). One measures the first qubit

in the basis {|a〉, |a⊥〉}, obtaining outcome s = 0, 1. The sec-
ond qubit is then projected to X sRx(φa)|0〉, where Rx(φa) =
e−iφaX/2 and X s is the so-called byproduct of the computation.
If s = 0 (i.e., outcome |a〉) then the desired rotation Rx(φa)
was achieved. Otherwise (i.e., outcome |a⊥〉) one has to cor-
rect the extra X term. By concatenating two-qubit graph states
we can perform arbitrary single-qubit gates as well as a CNOT

gate, and thus universal quantum computation.
Our aim is to investigate the causal influence from A to

B in this MBQC building block, i.e., the influence of the
measurement basis (defining the desired gate) on the state
that is prepared on the remaining qubit, particularly when we
consider replacing |G2〉 by some imperfect alternative ρin. In
this case, AQ is

AQ(ρin) = E
|a〉

DT (ρB(do(a)), ρB(do(a⊥)), (12)

where ρB(do(a)) is the output state when the first qubit is
measured in the {|a〉, |a⊥〉} basis and the resource state is ρin.
When ρin = |G2〉〈G2| the basis choice perfectly defines the
output state, and hence AQ(|G2〉〈G2|) = 1, as expected.

As proven in Appendix B, if the resource state is separa-
ble, ρin = ρsep = ∑

i piρ
i
A ⊗ ρ i

B, then AQ(ρsep) � 2/π , with
equality achieved for state |0+〉. In turn, for a pure en-
tangled state |Gε

2〉 = √
ε|0+〉 + √

1 − ε|1−〉, we have that
AQ(|Gε

2〉〈Gε
2|) = 2

π
E [(1 − 2ε)], where E (k) is the complete

elliptic integral of the second kind (see Fig. 2 and Ap-
pendix B). That is, up to local unitaries, any pure entangled
state surpasses the maximum quantum ACE achievable by
separable states, which can be seen as a sort of advantage in
the one-way model.

In Fig. 2 we show the relation between the concurrence
[41] of two-qubit states and their quantum ACE when used as
a resource in the one-way model. The figure shows uniformly
sampled (pure) quantum states, as well as curves corre-
sponding to specific parameterized families of states, such as
pure partially entangled states |Gε

2〉, |F ε
2 〉 = (H ⊗ 1)|Gε

2〉, and
|H ε

2 〉 = (H ⊗ H )|Gε
2〉, as well as the depolarized state ρiso =

ε|G2〉〈G2| + (1 − ε)1/4. The shaded region is delimited by
the highest value achieved by a separable state, Asep

Q = 2/π .
Clearly, for a given concurrence, states |Gε

2〉 and |F ε
2 〉 serve

as upper and lower bounds on the AQ, respectively. For more
details, see Appendix B.
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FIG. 2. AQ as a function of the concurrence. The green, red, blue,
and orange curves correspond to families of states |H ε

2 〉, ρiso, |Gε
2〉,

and |F ε
2 〉, respectively, as defined in the main text. The black horizon-

tal line delimits the shaded region and corresponds to Asep
Q = 2/π .

Points correspond to 10000 uniformly sampled pure states.

V. QUANTUM TELEPORTATION

The final scenario we analyze from the perspective of
causal influence is quantum teleportation [33]. We consider
the standard protocol, where Alice wants to teleport some
state |a〉 to Bob, and they share a Bell pair. Alice applies a Bell
basis measurement on |a〉 together with her end of the Bell
pair and informs Bob of the outcome. He applies a quantum
gate (depending on Alice‘s outcome) to his end of the Bell
pair, recovering state |a〉.

The ACE we consider for teleportation is analogous to
Eq. (12), where ρB(do(a)) is the output state in Bob‘s side of
the protocol when Alice prepares one of two orthogonal states
{|a〉, |a⊥〉}, and where we assume they follow the teleportation
protocol exactly. As before, ρin is some imperfect entangled
state that replaces their initial Bell pair. If ρin = |F 1/2

2 〉〈F 1/2
2 |,

where |F ε
2 〉 = √

ε|00〉 + √
1 − ε|11〉, the teleportation is suc-

cessful and AQ = 1.
The qualitative behavior of AQ in the case of teleportation

is similar to that of Fig. 2. This is not surprising, since MBQC
is based on using teleportation as a computational primitive
[42]. Any entangled state can exhibit an AQ better than the
best separable strategy [where now AQ(ρsep) = 1/2]. One
main difference is that there is no nontrivial lower bound in
the case of teleportation, i.e., we observe numerically that, for
any given concurrence, there exists some state with AQ = 0.
The upper bound is achieved by |F ε

2 〉. The plots and a more
thorough analysis can be found in Appendix C.

VI. DISCUSSION

Quantifying causal influences with the use of interven-
tions is a central concept and tool for causal inference, with

applications ranging from the reconstruction of genetic net-
works [5] to social studies [9] and learning algorithms [6].
Given that quantum theory is at odds with the classical notion
of causality, it is natural to seek a generalization of the most
common causality quantifier, the average causal effect (ACE),
and employ it to analyze paradigmatic quantum information
processing protocols. Here we propose a quantum ACE based
on the trace distance, quantifying how much a target quantum
system is changed by interventions on its presumed cause.

Our approach offers an innate manner to quantify cau-
sation in two-qubit gates, with a natural scale that ranges
from AQ = 0 for local gates up to AQ = 1 for a SWAP gate.
Interestingly, the CNOT gate, three of which are required to
perform any other two-qubit gate, has AQ = π/8. In turn,
the B gate [39], two of which are sufficient to compose any
other two-qubit gate, has AQ ≈ 0.5878. This suggests that
quantifiers of causality can be used as a proxy for optimizing
quantum circuits. We also obtain results for an alternative
quantum computation model, based on measurements [32],
showing that, for its two-qubit building block, any pure entan-
gled state offers an advantage in terms of AQ as compared to
separable states. A similar result is valid for quantum telepor-
tation, pointing out that our quantifier of quantum causality
can be employed as a witness of nonclassicality in a wide
range of information processing scenarios. This broadness of
different uses shows that, just as in the classical case, the quan-
tification of causal influence has foundational and applied
consequences, a topic that deserves further investigation and
for which our results might trigger further developments. As
a concrete example, it would interesting to consider the usage
of our measure in the context of quantum causal modeling
[12,13,15,16,43,44].
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APPENDIX A: CAUSAL INFLUENCE
OF TWO-QUBIT GATES

As discussed in the main text, we define our measure of
causal influence of two-qubit gates as follows. We initialize
both input qubits in arbitrary states, which we parametrize as:

|a〉 = cos

(
θ1

2

)
|0〉 + eiφ1 sin

(
θ1

2

)
|1〉, (A1)

|b〉 = cos

(
θ2

2

)
|0〉 + eiφ2 sin

(
θ2

2

)
|1〉. (A2)

In this parametrization, we can also write

|a⊥〉 = sin

(
θ1

2

)
|0〉 − eiφ1 cos

(
θ1

2

)
|1〉. (A3)

We can now rewrite Eq. (10) as

AQ(U ) = E
|a〉
E
|b〉

DT [ρ(b|do(a)), ρ(b|do(a⊥))], (A4)
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TABLE I. AQ(U ) for some noteworthy two-qubit gates. As ex-
pected, the causal influence of a CNOT gate is the same in both
directions. The B gate was defined in Ref. [39], and is an optimal
two-qubit gate in the sense that any other gate can be decomposed
using only two copies of it (compared to three CNOT gates). This
distinction manifests in the fact that AQ is larger for the B gate than
for the CNOT.

Gate AQ

Local 0
CNOT π/8
CZ π/8
B gate 0.5878√

SWAP 0.6427
SWAP 1

where we used the shorthand

ρ(b|do(a)) = trA(U (|a〉〈a| ⊗ |b〉〈b|)U †), (A5)

and TD is the trace distance between the two states. We can
now perform the Haar-random averages over the inputs, E

|a〉
E
|b〉

,

by integrating over the angles {θ1, φ1, θ2, φ2}. Recall that we
chose the two intervention states in qubit A as |a〉 and |a⊥〉,
and then averaging only over the choice of |a〉. We could have
chosen to average over two independent intervention states,
but we verified numerically that this was computationally
more expensive and only lead to a reduction of the AQ by
a constant fraction.

The uniform average over the Bloch sphere can be ob-
tained, for an arbitrary function f (θ, φ), by performing the
following integral:

〈 f 〉 = 1

4π

∫ 2π

0

∫ π

0
f (θ, φ) sin θdθdφ. (A6)

We also can write explicitly the matrices used to evaluate
Table I. First, the entry for “Local” simply means any matrix
of the form

Q ⊗ P, (A7)

with Q and P being any two single qubit gates. Beyond local
gates, we have:

CNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ X =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠,

(A8)

B = exp
[
i
(π

4
X ⊗ X + π

8
Y ⊗ Y

)]

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cos
(

π
8

)
0 0 i sin

(
π
8

)
0 sin

(
π
8

)
i cos

(
π
8

)
0

0 i cos
(

π
8

)
sin

(
π
8

)
0

i sin
(

π
8

)
0 0 cos

(
π
8

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A9)

CZ = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Z =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠,

(A10)

√
SWAP = exp

[
i
π

8
(X ⊗ X + Y ⊗ Y + Z ⊗ Z )

]

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ei π
8 0 0 0

0 1√
2
e−i π

8 i 1√
2
e−i π

8 0

0 i 1√
2
e−i π

8
1√
2
e−i π

8 0

0 0 0 ei π
8

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A11)

SWAP = 1

2
(1 ⊗ 1 + X ⊗ X + Y ⊗ Y + Z ⊗ Z )

=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠. (A12)

APPENDIX B: CAUSAL INFLUENCE IN THE ONE-WAY
MODEL OF QUANTUM COMPUTATION

As shown in the main text, the one-way quantum computer
starts with the building block graph state

|G2〉 = 1√
2

(|0+〉 + |1−〉). (B1)

Measurement are performed in the basis {|a〉, |a⊥〉} given by

|a〉 = 1√
2

(|0〉 + eiφa |1〉), (B2)

|a⊥〉 = 1√
2

(|0〉 − eiφa |1〉). (B3)

After the measurement of the first qubit, the second qubit
collapses to

|b〉 = X sRx(φa)|0〉, (B4)

where Rx(φ) = e−iφX/2, and s = 0 if outcome |a〉 was ob-
served and s = 1 otherwise. The X s gate is a conditional
correction applied to the remaining qubit necessary for the
protocol to succeed.

We can now compute AQ as

AQ(ρin) = E
|a〉

DT [(ρB(do(a)), ρB(do(a⊥))], (B5)

where labels A and B correspond to the first and second qubit.
The density matrix ρB(do(a)) after the measurement and cor-
rection is

ρB(do(a)) = trA(�aρin) + X (trA(�a⊥ρin))X, (B6)

�a = |a〉〈a| and �a⊥ = (1 − �a) are projectors on the two
measurement outcomes, and ρin is the shared input state. For
the protocol as described above, ρin = |G2〉〈G2|, though we
consider alternative shared states shortly.
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In this case, since the two choices of intervention state lie
on the equator of the Bloch sphere, we perform a uniform av-
erage over just that subspace. More concretely, for an arbitrary
function f , we replace Eq. (A6) by

〈 f 〉 = 1

2π

∫ 2π

0
f (φ)dφ. (B7)

We also characterize the causal influence in the one-way
model when we change the shared resource state. More pre-
cisely, how much influence can we observe when the state
is partially entangled, or only classically correlated? To that
end, we replace the entangled state in Eq. (B1) by a few
alternatives. The first state we consider is simply a partially
entangled state:∣∣Gε

2

〉 = √
ε|0+〉 +

√
(1 − ε)|1−〉. (B8)

Note that |G1/2
2 〉 = |G2〉. Since we expect the one-way model

to not be symmetric under arbitrary single-qubit rotations ap-
plied on ρin, we also consider rotated versions of |Gε

2〉, namely,∣∣F ε
2

〉 = H ⊗ 1
∣∣Gε

2

〉
(B9)∣∣H ε

2

〉 = H ⊗ H
∣∣Gε

2

〉
. (B10)

where H is the Hadamard gate. We also consider a depolarized
Bell state:

ρiso = ε|G2〉〈G2| + (1 − ε)

4
1. (B11)

Note that all states described so far interpolate between sepa-
rable and maximally entangled states as function of ε.

Besides partially entangled states, we also consider states
that exhibit only classical correlations. The goal is to deter-
mine how much causal influence, if any, can be achieved with
only classical resources.1 To that end, we consider the state

ρC =
∑

i, j=0,1

pi j (1 ⊗ H )|i j〉〈i j|(1 ⊗ H ). (B12)

As before, the corresponding rotated versions

ρC′ = (H ⊗ 1)ρC (H ⊗ 1), (B13)

ρC′′ = (H ⊗ H )ρC (H ⊗ H ). (B14)

For this set of input states we obtain the following values
of AQ:

AQ
(∣∣F ε

2

〉〈
F ε

2

∣∣) = 4

π

√
ε(1 − ε) (B15)

AQ
(∣∣Gε

2

〉〈
Gε

2

∣∣) = 2
√

ε(1 − ε) (B16)

AQ
(∣∣H ε

2

〉〈
H ε

2

∣∣) = 2

π
E (1 − 2ε) (B17)

AQ(ρiso) = ε (B18)

1It is a certain abuse of terminology to associate this case with
classical resources, since the output of the one-way protocol is a
quantum state.

AQ(ρC ) = 2

π
|p00 + p11 − p01 − p10| (B19)

AQ(ρC′ ) = AQ(ρC′′ ) = 0 (B20)

where E (k) = ∫ π/2
0

√
1 − k2 sin(x)2dx is the complete elliptic

integral of the second kind.

1. Upper bound on the causal influence of separable states
in the one-way model

In the main text we stated that any (pure) entangled state,
when measured in a suitable basis, can display a higher AQ

in the one-way model of quantum computation than any sep-
arable state. In order to prove this claim, we need the fact that
there is a nontrivial upper bound for separable states, namely

AQ(|+0〉〈+0|) = 2

π
. (B21)

We now present proof of this upper bound.
Suppose first that the shared resource state can be written

as a convex combination of other states, i.e.,

ρin =
∑

i

piρi. (B22)

Following Eq. (B6) we can write the state ρB(do(a)) as

ρB(do(a)) = trA

(
�a

∑
i

piρi

)
+ X

(
trA

(
�a⊥

∑
i

piρi

))
X

=
∑

i

pi[trA(�aρi ) + X (trA(�a⊥ρi ))X ].

=
∑

i

piρB,i(do(a)), (B23)

where ρB,i(do(a)) is the output state of second qubit, B, as-
suming that the first qubit was measured in basis {|a〉, |a⊥〉}
and that the shared state was ρi. Now we can write AQ,
assuming the two intervention choices as |a〉 and |a⊥〉, as

AQ(ρin) = E
|a〉

DT [ρB(do(a)), ρB(do(a⊥))]

= E
|a〉

DT

(∑
i

piρB,i(do(a)),
∑

i

piρB,i(do(a⊥))

)
.

(B24)

Now recall that the trace distance is defined as

DT (ρ, σ ) = 1
2‖ρ − σ‖1 = 1

2 Tr
√

(ρ − σ )2, (B25)

where ‖·‖1 is the trace norm. From this, we can write

AQ(ρin) = E
|a〉

∥∥∥∥∥
∑

i

piρB,i(do(a)) −
∑

i

piρB,i(do(a⊥))

∥∥∥∥∥
1

= E
|a〉

∥∥∥∥∥
∑

i

pi[ρB,i(do(a)) − ρB,i(do(a⊥))]

∥∥∥∥∥
1

. (B26)
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Given that the trace norm is a norm, it is convex. Using also
linearity of expectation we have that

AQ(ρin) = E
|a〉

∥∥∥∥∥
∑

i

pi[ρB,i(do(a)) − ρB,i(do(a⊥))]

∥∥∥∥∥
1

�
∑

i

piE|a〉
‖[ρB,i(do(a)) − ρB,i(do(a⊥))]‖1

=
∑

i

piAQ(ρi ). (B27)

In other words, the AQ, as a function of the shared resource
state in the one-way protocol, is convex. Since any separable
state ρsep is a convex combination of product states, this means
that no separable state can have an AQ, in this context, higher
than its component product states. Consequently, the largest
AQ among all separable two-qubit states will be achieved by
a product state.

Now suppose that the input state is an arbitrary two-qubit
product state

ρprod = |ψ〉〈ψ | ⊗ |ϕ〉〈ϕ|. (B28)

If we parametrize the two single-qubit states as

|ψ〉 = cos

(
θ1

2

)
|0〉 + eiφ1 sin

(
θ1

2

)
|1〉, (B29)

|ϕ〉 = cos

(
θ2

2

)
|0〉 + eiφ2 sin

(
θ2

2

)
|1〉, (B30)

a straightforward (if tedious) calculation shows us that

AQ(ρprod ) = 2

π
sin θ1

√
cos θ2

2 + sin θ2
2 sin φ2

2.

Combining everything, we conclude that

AQ(ρsep) � AQ(ρprod ) � 2

π
= AQ(|+0〉〈+0|),

as claimed.

APPENDIX C: CAUSAL INFLUENCE IN QUANTUM
TELEPORTATION

We performed the same analysis as in the previous sec-
tion, but for the well-known quantum teleportation protocol.
The behavior is qualitatively similar in most aspects (unsur-
prisingly, since one-way quantum computation uses quantum
teleportation as a primitive), so we will not repeat all argu-
ments and proofs from the previous section, instead focusing
on the distinctions.

First, let us recall the ideal teleportation protocol. Two
parties, Alice and Bob, share a Bell pair

|F2〉 = 1√
2

(|00〉 + |11〉) = H ⊗ 1|G2〉, (C1)

and we label these qubits 2 and 3. Alice has another qubit,
which we label 1, whose state she wants to teleport to Bob,
and which we parametrize as follows:

|a〉 = cos

(
θ1

2

)
|0〉 + eiφ1 sin

(
θ1

2

)
|1〉. (C2)

Alice applies a CNOT gate with qubit 1 (2) as control (target),
followed by a H gate on qubit 1. She then measures both of

FIG. 3. AQ as a function of the concurrence. The green and red
curves correspond to families of states |F ε

2 〉 and ρiso, respectively.
The blue curve corresponds to either |H ε

2 〉 or |Gε
2〉. The black hori-

zontal line delimits the shaded region and corresponds to AQ(ρsep) =
1/2. Orange points correspond to 10000 uniformly-sampled pure
states, whereas purple points correspond to 10000 randomly sampled
mixed states.

her qubits, and sends the measurement outcome to Bob. If the
measurement outcomes of Alice’s qubits 1 and 2 were s1 and
s2, respectively, for si ∈ {0, 1}, Bob must apply a gate Zs1 X s2

on his qubit 3, successfully recovering state |a〉.
We consider Alice‘s choice of state to teleport, |a〉, as the

intervention. In other words, we compute the AQ from Alice’s
choice to Bob’s output state as

AQ(ρin) = E
|a〉

DT [ρB(do(a)), ρB(do(a⊥))], (C3)

where ρin is the shared two-qubit state, and

ρB(do(a)) =
∑
s1,s2

Zs1 X s2 trA
(
�s1,s2U (|a〉〈a| ⊗ ρin)U †

)
X s2 Zs1 .

Here, U = H2 · CNOT12, �i, j is the projector on outcome i at
qubit 1 and j at qubit 2, and the partial trace is taken over both
of Alice‘s qubits. As before, we assume that the intervention
consists of choosing between a pair of orthogonal states, |a〉
and |a⊥〉, and we average uniformly over all |a〉 (which now
means averaging over the full Bloch sphere, not only the
equator as in the previous section).

We expect there to be some nonzero causal influence
from A to B even in the absence of entanglement, due
to the classical communication that happens at the end
of the protocol. To test that, we compute the AQ for
the same families of quantum states shown in Eqs. (B8)
to (B11). We were unable to obtain closed-form solu-
tions for all cases, but the numerical results are shown in
Fig. 3.

As anticipated, the plot of Fig. 3 is qualitatively similar
to that of Fig. 2. The most immediate differences are (i) less
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distinct behaviors among the families of quantum states, and
(ii) the lack of an absolute lower bound for the value of the AQ

for a given concurrence. Point (i) follows from the fact that the
one-way protocol, as we described it, has a preferred direction
in the Bloch sphere, since measurements are made only in a
particular equator. This is why there is an important differ-
ence between states |Gε

2〉 and |H ε
2 〉. Quantum teleportation,

on the other hand, is an isotropic protocol, in the sense that
everything should be basis invariant, and states that differ by

a rotation of the type U ⊗ U , for some single-qubit U , should
display the same behavior.

Quantitatively, the main difference is that the upper bound
for separable states is 1/2 rather than 2/π . However, it re-
mains the case that any entangled two-qubit state, if measured
in the correct basis, outperforms the best separable state,
showing that quantum teleportation also displays a notion of
quantum advantage over classical resources, at least from the
point of view of causal influence.
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