
PHYSICAL REVIEW A 108, 022219 (2023)

Exceptional point in self-consistent Markovian master equations

Dong Xie * and Chunling Xu
College of Science, Guilin University of Aerospace Technology, Guilin, Guangxi 541004, People’s Republic of China

(Received 25 April 2023; accepted 17 August 2023; published 25 August 2023)

The cxceptional point (EP) denotes the non-Hermitian degeneracy, in which both eigenvalues and eigenstates
become identical. By the conventional local Markovian master equation, the EP can be constructed by parity-time
(PT ) or anti-PT symmetry in a system composed of coupled subsystems. However, the coupling between
two systems makes the conventional local Markovian master equation become inconsistent. By using the
self-consistent Markovian master equation, we show that there is no EP in the system composed of two bosonic
subsystems suffering from the incoherent gain and loss. We further prove that the conventional local Markovian
master equation can be valid when the coupling strength is much smaller than the difference in resonance
frequency between the two subsystems, rather than the resonance frequencies. In a system composed of three
bosonic subsystems, the EP can be obtained by adiabatically eliminating one of the three subsystems.
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I. INTRODUCTION

The Hamiltonian governing the evolution of the closed
system is Hermitian, and thus only degeneracy of the energy
levels is possible. The inevitable coupling to the surrounding
environment makes the effective Hamiltonian of the open
system become non-Hermitian. The non-Hermitian degener-
acy, known as the exceptional point (EP) [1,2], denotes that
both eigenvalues and eigenstates coalesce. EPs have recently
attracted more and more research, mainly by finding a large
number of meaningful applications and exotic phenomena
such as loss-induced lasing [3], stopped light [4], quantum
state control [5,6], asymmetric backscattering [7], asymmetric
mode switching [8,9], energy transfer [10], phase accumula-
tion [11,12], and enhancement of quantum heat engine [13].
More importantly, EPs have been found to play an important
role in improving the measurement sensitivity [14–21].

EPs can appear in PT - and anti-PT -symmetrical
systems. In the presence of PT symmetry [22,23], non-
Hermitian Hamiltonians can have entirely real eigenvalues.
EPs are the separate points between purely real eigenvalues
and the normally complex eigenvalues. Similarly, EPs are the
separate points between the purely imaginary eigenvalues and
the normally complex eigenvalues of anti-PT -symmetrical
non-Hermitian Hamiltonians [24,25].

PT - and anti-PT -symmetrical non-Hermitian effec-
tive Hamiltonians can be constructed by the coupled bosonic
systems suffering from the local Markovian dissipation and
driving [26–31]. By transforming the conventional Lind-
blad master equation into the quantum Heisenberg-Langevin
equation, the effective PT - and anti-PT -symmetrical non-
Hermitian effective Hamiltonians for the evolution of bosonic
modes can be obtained. However, the local master equa-
tion may fail when there is coupling between the systems. It

*xiedong@mail.ustc.edu.cn

has been shown that the local master equation may violate the
second law of thermodynamics [32] and give rise to nonphys-
ical results [33–36], even in the limit of small bath couplings.
Recently, it is shown that the local master equation may fail
to describe dissipative critical behavior [37]. It is, therefore,
necessary to be careful about the coupling between systems
when constructing EPs.

Taking into account light-matter interaction, a self-
consistent nonlocal Markovian master equation in the dressed
picture has been proposed [38,39]. Recently, a self-consistent
nonlocal Markovian dissipation master equation for an
open quadratic quantum system has been derived [40]. In
this article, we further derive the self-consistent nonlocal
Markovian driving master equation for constructing the PT -
symmetrical system. We show that a fermionic bath with a
strong enough chemical potential is required to obtain the
incoherent driving. By transforming the self-consistent equa-
tion into the corresponding quantum Heisenberg-Langevin
equation, we prove that EPs cannot appear in a system com-
posed of two subsystems suffering from the incoherent gain
and loss. The conventional local Markovian master equation is
reasonable, which not only requires the coupling strength to
be much smaller than the bare resonance frequency difference
but also requires the baths tobe symmetric. Finally, we show
that adiabatically eliminating one of the three coupled subsys-
tems can construct EPs.

This article is organized as follows. In Sect. II, we
introduce the EPs in a PT -symmetrical non-Hermitian
Hamiltonian by the conventional local Markovian master
equation. In Sec. III, the self-consistent Markovian master
equation for the general system is reviewed. In Sec. IV, we
obtain the dressed Markovian master equation for the general
quadratic system and the condition of incoherent driving is
proposed. In Sec. V, we show that there is no EP in the system
composed of two bosonic subsystems by the incoherent gain
and loss. In Sec. IV, we show that the EP can be obtained by
adiabatically eliminating one of the three coupled subsystems.
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FIG. 1. Schematic diagram of the non-Hermitian Hamiltonian.
Two cavity modes are coupled with the strength g. Cavity mode 1
suffers from dissipation bath 1 with the loss rate γ1. Cavity mode 2
is incoherently driven by bath 2 with the gain rate γ2.

A simple summary and the possibility of experimentation are
proposed in Sec. VII.

II. EPs OBTAINED BY THE CONVENTIONAL LOCAL
MARKOVIAN MASTER EQUATION

A typical non-Hermitian system is composed of coupled
cavities with two resonant modes a1 and a2, as shown in
Fig. 1, with the non-Hermitian Hamiltonian (setting h̄ = 1)

H = (ω1 − iγ1)a†
1a1 + (ω2 + iγ2)a†

2a2 + g(a†
1a2 + a†

2a1),
(1)

where ω1 and ω2 are the resonance frequencies of modes 1
and 2, respectively; γ1 and γ2 are the total loss and gain rates
of modes 1 and 2, respectively.

When resonance frequencies are tuned to be equal (i.e.,
ω1 = ω2 = ω) and the gain rate is equal to the loss rate (i.e.,
γ1 = γ2 = γ ), the non-Hermitian Hamiltonian is PT sym-
metrical. The eigenvalues of the non-Hermitian Hamiltonian
H are given by

E± = ω ±
√

g2 − γ 2. (2)

When g = γ , the eigenvalues and the eigenstates are degener-
ate. Hence, g = γ represents the EP.

The non-Hermitian Hamiltonian comes from the conven-
tional local Markovian master equation [26]

dρ

dt
= −i[HS, ρ] + γL(a1)ρ + γL(a†

2)ρ, (3)

where the superoperator L(a)ρ = 2aρa† − a†aρ − ρa†a,
with a = {a1, a2}, and the Hamiltonian HS = ω1a†

1a1 +
ω2a†

2a2 + g(a†
1a2 + a†

2a1). The quantum Langevin equation
can be achieved by the formula [41–43]

da

dt
= i[HS, a] − [a, a†

1](γ a1 −
√

2γ a1in) + (γ a†
1 −

√
2γ a†

1in)

× [a, a1] − [a, a2](γ a†
2 −

√
2γ a†

2in)

+ (γ a2 −
√

2γ a2in)[a, a†
2], (4)

where the noise operators satisfy that

〈a jin〉 = 0, 〈a jinakin〉 = 0, (5)

〈a†
jinakin〉 = 0, 〈a jina†

kin〉 = δ jk . (6)

III. SELF-CONSISTENT MARKOVIAN
MASTER EQUATION

However, the master equation in Eq. (3), is not self-
consistent due to the coupling between the two subsystems. A
self-consistent master equation can be derived by the dressed
master equation [38–40,44]

dρ

dt
= −i[HS + HLS, ρ] + D[ρ], (7)

where HLS = ∑
α,β,ω Lαβ (ω)O†

α (ω)Oβ (ω) is a Lamb-shift
correction, and the superoperator D[ρ] is described by

D[ρ] =
∑
α,β,ω

λαβ (ω)[2Oβ (ω)ρO†
α (ω) − Oβ (ω)O†

α (ω)ρ

− ρOβ (ω)O†
α (ω)]. (8)

Here, the dressed operator is given by

Oα (ω) =
∑
k,q

δωq−ωk |k〉〈k|Qα|q〉〈q|, (9)

and the factors are

λαβ (ω) = 1

2

∫ ∞

−∞
dτeiωτ 〈R̃†

α (τ )Rβ〉, (10)

Lαβ (ω) = 1

2i

∫ ∞

0
dτ [eiωτ 〈R̃†

α (τ )Rβ〉 − e−iωτ 〈R̃†
α (τ )Rβ〉],

(11)

where ωk and |k〉 are the kth eigenvalue and eigenstate of the
system Hamiltonian HS, the undressed operator Oα acts on the
system in the interaction Hamiltonian Hint = ∑

α Oα

⊗
Rα

(Rα acts on the environment), 〈.〉 denotes the expectation
value calculated with the environment density operator ρE,
and R̃α (τ ) = eiHEτ Rαe−iHE τ , with HE being the environment
Hamiltonian.

IV. DRESSED MASTER EQUATION FOR A GENERAL
QUADRATIC SYSTEM

For a general quadratic bosonic system, the Hamiltonian is
described by [45]

H ′ =
N∑

n=1

Hn +
N∑

i=1,i< j

Hi j, (12)

in which

Hn = ωna†
nan +

(
χn

2
a2

n + H.c.

)
, (13)

Hi j = (gi jaia j + λi jaia
†
j ) + H.c., (14)

where Hn denotes the Hamiltonian for the nth subsystem with
n = {1, . . . , N}, ωn is the resonance frequency of the bosonic
subsystem with the annihilation operator a and the creation
operator a†, |χn| denotes the strength of two-photon driving,
and λi j (gi j) denotes the coupling strength of the rotating
(counter-rotating)-wave interaction between the two subsys-
tems.

By using a Hopfield-Bogoliubov (HB) transformation
[46,47], for the stable normal phase, the total Hamiltonian can
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be rewritten as a diagonal form:

H ′ =
N∑

n=1

�nb†
nbn + 1

2
(�n − ωn), (15)

where the collective bosonic mode operators bn satisfy the
commutation relation [bi, b†

j] = δi j ,

bn =
N∑

i=1

(μniai + νnia
†
i )/ξn, (16)

in which the normalization factor is described by ξn =√∑N
i=1(|μni|2 − |νni|2). In the Nambu space, it can be rewrit-

ten as

�b = T �a, (17)

where the Nambu field vector is defined as

�x = (x1, . . . , xN , x†
1, . . . , x†

N ), (18)

and the canonical transformation matrix

T =
(

μ̃ ν̃

ν̃∗ μ̃∗

)
, (19)

where the elements of the matrix are μ̃ni = μni/ξn and ν̃ni =
νni/ξn. The coefficient vectors (μn1, . . . , μnN , νn1, . . . , νnN )T

are eigenvectors of the HB matrix M, which is derived by the
commutation relation [bn, H ′] = �nbn [45]:

M =
(

A −B
B∗ −A∗

)
, (20)

with submatrices

A =

⎛
⎜⎜⎝

ω1 λ12 . . . λ1N

λ∗
12 ω2 . . . λ2N
...

...
. . .

...

λ∗
1N λ∗

2N . . . ωN

⎞
⎟⎟⎠, (21)

B =

⎛
⎜⎜⎝

χ1 g12 . . . g1N

g12 χ2 . . . g2N
...

...
. . .

...

g1N g2N . . . χN

⎞
⎟⎟⎠. (22)

Incoherent dissipation and driving

For the dissipation environment, there are N independent
thermal baths with the Hamiltonian described by

HE,n =
∫

dk(εn(k) − ηn)c†
n(k)cn(k), (23)

where the spectrum εn(k) � 0 is non-negative and ηn denotes
the chemical potential of the nth thermal bath at temperature
Tn.

The bath operators cn(k) satisfy the rules

{cn(k), c†
n(q)}ζn = δ(k − q), (24)

{cn(k), cn(q)}ζn
= 0, [cn(k), cm(q)] = 0, (25)

where {X,Y }ζn = XY + ζnY X , and ζn = +1 (−1) belongs to
fermionic (bosonic) systems. The density matrix of the ther-

mal bath can be described by

ρE =
N⊗

n=1

e−HE,n/Tn

Tr(e−HE,n/Tn )
. (26)

Based on the above equations, the two-point expectation val-
ues can be obtained as

〈cn(k)cm(q)〉 = 0, (27)

〈c†
n(k)cm(q)〉 = δmnδ(k − q) fn(εn(k)), (28)

in which

fn(ε) = [ζn + e(ε−ηn )/Tn ]−1. (29)

We consider that N subsystems interact linearly with the
corresponding bath separately, which are described by

Hint =
N∑

n=1

(an + a†
n) ⊗

∫
dkgn(k)[cn(k) + c†

n(k)]

=
N∑

n=1

On ⊗ Rn. (30)

In the basis of the Hamiltonian HS, the eigenoperator associ-
ated with On can be obtained as

On(ω) =
N∑

k=1

[φn,kδω,�k bk + φ∗
n,kδω,−�k b†

k], (31)

where the element φn,k = (T−1)n,k + (T−1)∗n,k+N .
The factor λnm in Eq. (10) can be derived by the correlation

functions [40]

λnm(ω) = δnmλnn(ω), (32)

λnn(ω) =
⎧⎨
⎩
Jn(ω)[1 − ζn fn(ω)] if ω > 0
Jn(−ω) fn(−ω) if ω < 0
Jn(0)[1 + (1 − ζn) fn(0)] if ω = 0

⎫⎬
⎭, (33)

where the spectral density for the nth bath is given by

Jn(ω) = π

∫
dk|gn(k)|2δ(ω − εn(k)). (34)

In a general case, where the system is not degenerate (i.e.,
�n 	= �m when n 	= m) and the eigenspectrum is not 0 (i.e.,
�n 	= 0), the superoperator D(ρ) can be described by

D(ρ) =
∑
n,k

γn,k{[1 − ζn fn(�k )]L(bk )ρ + fn(�k )L(b†
k )ρ},

(35)

where the coupling constants γn,k = Jn(�k )|φn,k|2.
Combining Eqs. (4) and (35), we can see that the total

change rate of the nth mode bk is

�k =
∑

n

�k,n =
∑

n

γn,k[1 − ζn fn(�k ) − fn(�k )]. (36)

When all the baths are composed of bosons, the total change
rate �k = ∑

n γn,k > 0 denotes that the mode is suffering from
the dissipation process.

In order to obtain the incoherent gain, several baths must
be composed of fermions, i.e., ζn = 1. In this case, the change
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rate �k,n = γn,k[1 − 2 fn(�k )] should be negative. As a result,
it leads to �k < ηn, which means that a strong enough chemi-
cal potential is needed to drive the system incoherently. It can
also be considered that the bath is composed of spins, which
are in the excited states. In other words, a bosonic bath is not
suitable for implementing incoherent driving.

V. THE EP DOES NOT EXIST IN TWO-BOSON SYSTEMS

In this section, we investigate whether an EP can exist in
the system composed of two bosonic subsystems with the self-
consistent Markovian master equation.

The bosonic system composed of two subsystems is domi-
nated by the Hamiltonian

HS1 = ωa†
1a1 + ωa†

2a2 + g(a†
1a2 + a†

2a1). (37)

Subsystem 1 interacts with bath 1 composed of bosons at zero
temperature, and subsystem 2 interacts with bath 2 composed
of fermions at zero temperature. The corresponding interac-
tion Hamiltonian is described by

Hint1 =
2∑

n=1

(an + a†
n) ⊗

∫
dkgn(k)[cn(k) + c†

n(k)]. (38)

The Hamiltonian can be diagonalized as

HS1 = (ω + g)b†
1b1 + (ω − g)b†

2b2, (39)

where the dressed operators are b1 = (a1 + a2)/
√

2 and b2 =
(a1 − a2)/

√
2. Then, using the consistent master equation in

Eq. (35) for g 	= 0, we can achieve

dρ

dt
= − i[HS1, ρ] + [J1(ω + g)L(b1)ρ + J2(ω + g)L(b†

1)ρ

+ J1(ω − g)L(b2)ρ + J2(ω − g)L(b†
2)ρ]. (40)

We assume that baths have a very large bandwidth, leading to
γ = Jj (ω + g) = Jj (ω − g), with j = 1 and 2, and the Lamb-
shift correction HLS1 = 0. The quantum-Heisenberg Langevin
equation is given as follows by using Eq. (4):

i

(
ḃ1

ḃ2

)
=

(
ω + g 0

0 ω − g

)(
b1

b2

)
+

√
2γ

(
b1in + b†

1in

b2in + b†
2in

)
,

(41)
where bin denotes the noise operator. The effective Hamilto-
nian is described by

Heff1 =
(

ω + g 0
0 ω − g

)
. (42)

Because Heff1 is Hermitian, the EP does not exist. This result
shows that the EP cannot be constructed in a resonance-
coupled incoherent driven-dissipative system. Because of the
resonant coupling, both the driving and the dissipation act
synchronously on each subsystem. The asymmetric effects of
driving and dissipation cannot be obtained.

The self-consistent master equations
with degenerate eigenvalues

In the nondegenerate case, the dressed modes bk are inde-
pendent, leading to the EP not existing. Then, we consider the
degenerate eigenenergies of the system Hamiltonian.

The system possesses M different energy eigenspaces, la-
beled by an index ι = 1, . . . , M. There are Nι eigenvectors
for the eigenvalue ωι. The consistent Markovian master equa-
tion for the baths with large bandwidth can be given by [40]

dρ

dt
= − i[HS, ρ] +

∑
n,ι

Nι∑
α=1,β=1

[
�(n,ι)

μν λnn(ωι)(2bμρb†
ν

− {b†
νbμ, ρ}+) + �(n,ι)

νμ λnn(−ωι)

× (2b†
μρbν − {bνb†

μ, ρ}+)
]
, (43)

where the factors �(n,ι)
μν = φn,μφ∗

n,ν .
A simple degenerate case is one in which there is only

pairing coupling between two bosonic subsystems with the
Hamiltonian

HS2 = ωa†
1a1 + ωa†

2a2 + g(a1a2 + a†
1a†

2). (44)

Subsystem 1 interacts with bosonic bath 1 at zero tempera-
ture, and subsystem 2 interacts with fermionic bath 2 at zero
temperature.

The transformation matrix between Nambu field vectors
�a = (a1, a2, a†

1, a†
2) and �b = (b1, b2, b†

1, b†
2) can be expressed

as

T−1 =

⎛
⎜⎜⎝

W+ 0 0 W−
0 W+ W− 0
0 W− W+ 0

W− 0 0 W+

⎞
⎟⎟⎠, (45)

where the values are defined as W± = ±
√

ω

2
√

ω2−g2
± 1

2 .

In the rotating reference frame, we can obtain the dynamic
of the expectation values of the dressed operators b1 and b2

according to Eq. (43):

i

(
˙〈b1〉
˙〈b2〉

)
=

⎛
⎝−i(W λ−+λ+ )

2
−i

√
W 2−1λ−

2
−i

√
W 2−1λ−

2
−i(W λ−−λ+ )

2

⎞
⎠(〈b1〉

〈b2〉
)

, (46)

where the factors are defined as W = ω

2
√

ω2−g2
and

λ± = J1(
√

ω2 − g2) ± J2(
√

ω2 − g2). Therefore, the effec-
tive Hamiltonian Heff2 can be expressed as

Heff2 =
⎛
⎝−i(W λ−+λ+ )

2
−i

√
W 2−1λ−

2
−i

√
W 2−1λ−

2
−i(W λ−−λ+ )

2

⎞
⎠. (47)

The eigenvalues of Heff2 can be derived and are given by

E± = i

2
[
√

λ2+ + (W 2 − 1)λ2− ± W λ−]. (48)

Because the eigenvalues are still imaginary, there are no EPs
that separate the real and the imaginary values. Therefore, in
the degenerate eigenspace, EPs are not allowed in the self-
consistent Markovian master equation.

As a summary, EPs cannot appear in the driven-dissipative
bosonic system irrespective of whether the eigenvalues of the
eigensystem are degenerate or not.

VI. EPs BY ADIABATIC ELIMINATION

In this section, we try to construct the EP by adiabatic
elimination in multiple boson systems.
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First, we find the condition that the conventional local
Markovian master equation can be close to the nonlocal
self-consistent master equation. For two nonresonant coupled
subsystems, the Hamiltonian is described by

HS3 = ω1a†
1a1 + ω2a†

2a2 + g(a†
1a2 + a†

2a1). (49)

In the diagonalized form, the Hamiltonian is rewritten
as HS3 = �+b†

1b1 + �−b†
2b2 with the eigenvalues �± =

ω1+ω2±
√

4g2+�2

2 . The canonical transformation matrix is given
by

T−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1+Y

2 −
√

1−Y
2 0 0√

1−Y
2

√
1+Y

2 0 0

0 0
√

1+Y
2 −

√
1−Y

2

0 0
√

1−Y
2

√
1+Y

2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (50)

where the value Y is defined as Y = �√
�2+4g2

, and the res-

onance frequency difference � is given by � = ω1 − ω2.
Without loss of generality, next we consider that both the
resonance frequency difference and the coupling strength are
larger than 0, i.e., � > 0 and g > 0.

When the coupling strength is much less than the resonance
frequency difference (g � �), we can obtain

a1 � b1 − g

�
b2 + O

(
g2

�2

)
b1 + O

(
g3

�3

)
b2, (51)

a2 � b2 + g

�
b1 + O

(
g2

�2

)
b2 + O

(
g3

�3

)
b1, (52)

�1 � ω1 + g2

�
+ O

(
g3

�3

)
, (53)

�2 � ω2 − g2

�
− O

(
g3

�3

)
, (54)

γ21 = γ12 � O

(
g2

�2

)
, (55)

where O( g2

�2 ) denotes the second-order small quantity, and

O( g3

�3 ) denotes the third-order small quantity. Ignoring all
the small quantities, the local Markovian master equation is
recovered as

dρ

dt
≈

2∑
k=1

{−i[ωka†
kak, ρ] + Lloc(ρ)}, (56)

in which,

Lloc(ρ) = γk,k{[1 − ζk fk (ωk )]L(ak )ρ + fk (ωk )L(a†
k )ρ}. (57)

In the above local Markovian master equation, the two
bosonic modes ak are independent. Therefore, EPs cannot
occur in the local Markovian master equation.

Up to the first-order small quantity (i.e., on the order of
g/�), the self-consistent Markovian master equation can be

given by

dρ

dt
≈ − i[HS3, ρ] + Lloc(ρ) + g

�

2∑
k=1

(−1)k−1γk,k

× {[1 − ζk fk (ωk )](2a1ρa†
2 + 2a2ρa†

1)

+ fk (ωk )(2a†
1ρa2 + 2a†

2ρa1)

− [1 + (1 − ζk ) fk (ωk )](a†
1a2 + a†

2a1)ρ

+ ρ(a†
1a2 + a†

2a1)}. (58)

When the two baths are identical and their temperatures
are close to zero degrees [ζ1 f1(ω1) = ζ2 f2(ω2)], and the
couplings between the subsystems and the corresponding
baths are the same (γ11 = γ22), we can achieve the follow-
ing conventional Markovian master equation from the above
equation:

dρ

dt
≈ −i[HS3, ρ] + Lloc(ρ). (59)

It shows that the conventional local Markovian master equa-
tion is reasonable, which not only requires the coupling
strength g to be much smaller than the resonance frequency
difference � (rather than the resonance frequencies) but also
requires the baths to be symmetric.

Then, we consider a system composed of three bosonic
subsystems, with the Hamiltonian described by

HS4 =
3∑

i=1

ωia
†
i ai + g(a†

1a3 + a†
3a1) + g′(a†

2a3 + a†
3a2),

(60)

where ωi denotes the frequencies of the ith subsystem, and g
(g′) denotes the coupling strength between modes 1 (2) and 3.

In the rotating reference frame, the Hamiltonian HS4 can be
rewritten as

HS4 = �′a†
1a1 + (�′ − ε)a†

2a2 + g(a†
1a3 + a†

3a1)

+ g′(a†
2a3 + a†

3a2), (61)

where �′ = ω1 − ω3 and ε = ω1 − ω2.
We consider that the condition satisfies �′ � g, so that

the self-consistent Markovian master equation is close to the
local Markovian master equation according to Eq. (56). Then,
we obtain the unitary transformation matrix U defined in
(b1, b2, b3)T = U (a1, a2, a3)T for ε � O(g), which is close to

U ≈

⎛
⎜⎝

1 g
�′

g
�′

−g
�′ 1 g

�′
−g
�′

−g
�′ 1

⎞
⎟⎠. (62)

When the temperature in all three baths is 0, the self-
consistent Markovian master equation can give the Langevin
equation with the diagonalized modes

i

⎛
⎝ ˙〈b1〉

˙〈b2〉
˙〈b3〉

⎞
⎠ ≈ −

⎛
⎝ϒ1 0 0

0 ϒ2 0
0 0 �2

⎞
⎠

⎛
⎝〈b1〉

〈b2〉
〈b3〉

⎞
⎠, (63)

where the values are defined as ϒ1 = �1 + i�′, ϒ2 = �2 +
i(�′ − ε), �1 = J1(ω1) = �2 = J2(ω2), and �3 = J3(ω3).
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Based on the above equation, the evolution of modes aj can
be derived by

i

⎛
⎝ ˙〈a1〉

˙〈a2〉
˙〈a3〉

⎞
⎠ ≈ −U −1

⎛
⎝ϒ1 0 0

0 ϒ2 0
0 0 �2

⎞
⎠U

⎛
⎝〈a1〉

〈a2〉
〈a3〉

⎞
⎠. (64)

After calculation from the above equation, we can achieve the
detailed evolution dynamic

i

⎛
⎝ ˙〈a1〉

˙〈a2〉
˙〈a3〉

⎞
⎠ ≈ −�

⎛
⎝〈a1〉

〈a2〉
〈a3〉

⎞
⎠, (65)

where the evolution matrix is given by

� =

⎛
⎜⎜⎝

ϒ ′ g2(�3−�1 )
�′2

g(�1−�3 )
�′

g2(�3−�1 )
�′2 ϒ ′ g(�1−�3 )

�′
g(�1−�2 )

�′
g(�1−�3 )

�′ �3

⎞
⎟⎟⎠, (66)

in which ϒ ′ = �1 + g2(2�1+�3 )
�′2 . When �2 � �1 � �′, mode

〈a3〉 can be eliminated because mode 〈a3〉 reaches the steady
state much faster than the other two modes. By assuming
〈ȧ3〉 = 0, we can obtain

〈a3〉 ≈ g

�′�2
(�2 − �1)(〈a1〉 + 〈a2〉). (67)

Using the above equation, we can obtain the evolution equa-
tion for modes 1 and 2:

i

(
˙〈a1〉
˙〈a2〉

)
= Heff3

(〈a1〉
〈a2〉

)
, (68)

where the effective Hamiltonian of the reduced two subsys-
tems is depicted as

Heff3 = i

(
−�1 − i�′ − g2�1

�′2

− g2�1

�′2 −�1 − i(�′ − ε)

)
. (69)

Moving to the reference frame rotating with frequency
�′ − ε/2, the effective Hamiltonian can be reduced to

Heff3 = i

(
−�1 − iε/2 − g2�1

�′2

− g2�1

�′2 −�1 + iε/2

)
. (70)

The eigenvalues of Heff3 are given by �± = i(−�1 ±√
g4�2

1/�
′4 − ε2/4). As a consequence, the EP appears at

ε = 2g2�1/�
′2, which separates the purely imaginary eigen-

value and the normally complex eigenvalue. Therefore, the EP
appears in the effective anti-PT -symmetrical Hamiltonian.

Then, we try to construct the EP without the condition
g � �′; i.e., there is no need to approach the local Markovian
master equation. We redefine ε = 2�′. In this case, the unitary
transformation matrix U can be exactly derived, which is
described by

U =

⎛
⎜⎜⎝

�′+�g

2�g

g2

�g(�g+�′ )
g

�g

�′−�g

2�g

g2

�g(�′−�g)
g

�g
−g�g

�′2
g�g

�′2
�g

�′

⎞
⎟⎟⎠, (71)

where �g =
√

�′2 + 2g2. In this case, the evolution matrix �

defined in Eq. (65) can be reformulated as

� = U −1

⎛
⎝�1 + i�′ 0 0

0 �1 − i�′ 0
0 0 �3

⎞
⎠U

=

⎛
⎜⎜⎜⎜⎝

Z−
�2

g

ig2(�1−�3 )
�2

g

ig�′(�3−�1 )−g�2
g

�2
g

ig2(�1−�3 )
�2

g

Z+
�2

g

ig�′(�1−�3 )−g�2
g

�2
g

ig�′(�3−�1 )−g�2
g

�2
g

ig�′(�1−�3 )−g�2
g

�2
g

−i(2g2�1+�3�
′2 )

�2
g

⎞
⎟⎟⎟⎟⎠,

(72)

where Z± = i[g2(�1 +�2) + �1�
′2] ± �′�2

g. For |�3| � |�1|
and |�′|, we can adiabatically eliminate mode a3. As a re-
sult, the effective Hamiltonian for modes a1 and a2 can be
described by

Heff4 =
(

�2�
′�2

g − iκ −iχ
−iχ −�2�

′�2
g − iκ

)
, (73)

where κ = �′2(g2 + �1�3) + g2(2g2 + �2
1 + �1�3) and χ =

g2(�2
g + �2

1 − �1�3). The eigenvalues of Heff4 are given by

E± = −iκ ±
√

(�3�′�2
g)2 − χ2. When modes 1, 2, and 3

are suffering from incoherent dissipation, i.e., �1 > 0 and
�3 > 0, |χ | = �3�

′�2
g denotes the anti-PT -symmetrical

EP. Therefore, the relation �1 ≈ �′(�′2+2g2 )
g2 is required to find

the anti-PT -symmetrical EP.
In order to find the PT -symmetrical EP, the condition

κ = 0 is necessary. Modes 1 and 2 are incoherent driven, i.e.,

�1 < 0. As a result, we can achieve �2 = g2(2g2+�′2+�2
1 )

(g2+�′2 )|�1| . The

PT -symmetrical EP can also appear at �1 ≈ �′(�′2+2g2 )
g2 .

VII. CONCLUSION

We investigate the construction of EPs in the effective
non-Hermitian Hamiltonian from the self-consistent Marko-
vian master equation. Unlike the result from the conventional
local Markovian master equation, we prove that the EPs
cannot exist in the system composed of two bosons suf-
fering from the incoherent gain and loss. For constructing
the PT -symmetrical system, we further derive the self-
consistent nonlocal Markovian driving master equation. We
show that a fermionic bath with a strong enough chemical
potential is required to obtain the incoherent driving. It can
also be considered that the bath is composed of spins, which
are in the excited states by extra controls. A bosonic bath is
not suitable for implementing the incoherent driving, and we
show that the conventional local Markovian master equation is
reasonable, which not only requires the coupling strength
to be much smaller than the resonance frequency difference
(rather than the resonance frequencies) but also requires the
baths to be symmetrical. By adiabatically eliminating one of
the three coupled subsystems, we can reconstruct the EPs
with two different parameter choices: one is that the coupling
strength is much less than the resonance frequency difference,
and the other is that the coupling strength is not much less
than the resonance frequency difference. The former can only
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construct anti-PT -symmetrical EPs. The latter can construct
anti-PT - and PT -symmetrical EPs.

The system composed of three coupled bosonic subsystems
in this article can be realized in a magnon-cavity-magnon
coupled system [25,48] or in a variety of different photonic
and phononic systems [49]. Our work lays the foundation for
constructing real EPs in non-Hermitian systems.
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