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Influence of spin on tunneling times in the super-relativistic regime
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For the relativistic tunneling effect described using Dirac’s equation, Winful et al. [Phys. Rev. A 70, 052112
(2004)] presented the deduction of a general result that allows for the determination of the phase time (group
delay) as the sum of the particle dwell time inside a potential barrier and of the self-interference delay associated
with the incident and reflected wave functions interaction. In this paper, a mathematical model is derived through
a construction analogous to the proposal mentioned above, but based on an alternative representation for Dirac’s
equation. This representation is similar to the one introduced by Ajaib [Found. Phys. 45, 1586 (2015)]. Thus,
from the application of this model in the study of the tunneling effect in the absence of an external magnetic field,
the influence of spin on the tunneling times is described. More specifically, the tunneling time is obtained as the
sum of the dwell times inside the potential barrier for particles with spin up and spin down and the self-interaction
time associated with the incident and reflected wave functions for particles with spin up.
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I. INTRODUCTION

The unusual behavior of saturation in the tunneling times
of nonrelativistic particles in scattering problems, uncovered
by Hartman in 1962 [1], is known in the literature as the
Hartman effect (HE). The discovery of the HE stimulated
an intense debate about what is the correct definition for the
traveling time when such incident particles manage to cross
the potential barrier, and many related investigations were
carried out [2–21]. The definitions obtained from the direct
application of the Schrödinger equation in these situations
would lead to the apparent paradox of particles tunneling at
hyperluminous speeds [22,23].

In fact, the two most acceptable tunneling times definitions
in the literature are the dwell time, that is defined as the
integral of the probability density within the potential barrier,
and the phase time, that is defined as the variation of the trans-
mitted phase with respect to the energy [24,25]. By virtue of
such definitions, Winful, Ngom, and Litchinitser generalized
the previous tunneling time definitions by deducing an exact
relation that defines the phase time, for relativistic particles
that satisfy the Dirac equation (DE), as the sum of the dwell
time and of the self-interaction time between the incident and
reflected wave packets [26]. In the nonrelativistic limit, their
expressions lead to the results obtained from the direct appli-
cation of the Schrödinger equation [25]. In these works, the
existence of saturation of the tunneling times with the width
of the barrier is indicated, extending Hartman’s prediction also
to the relativistic regime.

But accepting such definitions as transit timescales would
imply accepting that the particle would somehow be aware of
the increase in barrier width. The particle would increase its
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speed by just the right amount to be able to cover a greater
distance in the same time, a statement that in the context
of quantum mechanics seems untenable. As a result, Winful
et al. [26,27] made the suggestion to consider the width of the
wave packet as a significant quantity to characterize the transit
time in quantum tunneling. The wave packet can be much
larger than the width of the barrier, which translates into a
loss of sense of the notion of the transit time of any individual
particle through the potential barrier when the uncertainty of
its position is greater than the width of the barrier itself, a
situation that can arise in quantum tunneling.

An alternative view for getting a correct definition of such
timescales was developed in the works of Büttiker [28] and
Rámos et al. [29], where definitions are presented that allow
for the determination of the tunneling time as a function of
the electron-spin evolution when crossing a potential barrier
in the presence of a magnetic field and the experimental
measurement of such a tunneling time, respectively. However,
once one cannot apply this technique for arbitrary systems,
it cannot be taken as a general method for quantifying and
measuring tunneling times. Furthermore, in Ajaib’s works
[30,31], it was presented how the influence of spin can be
obtained in scattering over potential barriers even without the
presence of a magnetic field. In this paper, this result is used to
develop a model that allows us to extend the results obtained
by Winful et al. and with that to determine the influence of
the spin in the definitions of the tunneling times deduced from
the sensitivity theorem of the wave function with respect to
energy variations, but in the super-relativistic regime.

The remainder of this paper is organized as follows. In
Sec. II, the deduction of an alternative representation of the
DE is presented. Subsequently, in Sec. III, the deduction of the
sensitivity theorem of the wave function to energy variations
in the alternative representation is discussed. In Sec. IV, we
introduce the solution of the DE and apply the expressions
deduced in the previous section to determine the tunneling
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times in the lowest-energy solution for relativistic and nonrel-
ativistic regimes in this alternative representation. In Sec. V,
by means of a procedure similar to the one applied in the
previous section, we report the solution of the DE and the
expressions for the tunneling times involving the influence of
the spin, introduced in the alternative representation, in the
super-relativistic regime and in the absence of an external
magnetic field. Finally, in Sec. VI, we give our concluding
remarks.

II. ALTERNATIVE REPRESENTATION
FOR DIRAC’S EQUATION

In the works presented by Ajaib in 2015 and 2016 [30,31],
an alternative representation for the Dirac equation was de-
duced in which the Schrödinger-Pauli equation is contained
when considering local invariance. Such equation allows for
the description of how the spin of the particle affects the
reflection and transmission coefficients when applied to quan-
tum scattering problems. This stimulated us to apply this
approach to study how the spin of the particles influences the
tunneling time when they cross a constant potential barrier.

In this sense, the objective of this section is to determine a
suitable alternative representation for the DE [32]:

{ih̄γ μ∂μ − iγ5mc}ψ (xκ ) = 0, for μ, κ = 0, 1, 2, 3. (1)

Above i = √−1, h̄ is Planck’s constant, m is the rest mass of
the particle, and γ μ are the Dirac matrices

γ 0 = α4 =
(
I2 O2

O2 −I2

)
, (2)

γ j = α4α j =
(
O2 σ j

−σ j O2

)
, for j = 1, 2, 3, (3)

γ 5 = iγ 0γ 1γ 2γ 3 = − i

4!
εμνκλγ

μγ νγ κγ λ, (4)

that satisfy relationships

γ μγ ν + γ νγ μ = 2gμνI4, for μ, ν = 0, 1, 2, 3, (5)

and

(γ 5)2 = I4, γ 5γ μ + γ μγ 5 = O4, for μ = 0, 1, 2, 3. (6)

Above,

εμνκλ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+ 1 if (μ, ν, κ, λ) is an even permu-

tation of (0,1,2,3),

−1 if (μ, ν, κ, λ) is an odd permu-

tation of (0,1,2,3),

0 otherwise

(7)

is the Levi-Civita symbol in four dimensions, gμν =
diag(1,−1,−1,−1) is the Minkowski metric, Id and Od are
the d × d identity and null matrix, respectively, and σ j are the
Pauli matrices:

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
. (8)

The DE of Eq. (1) can be rewritten as

{Eγ0 − ih̄cγ j∂ j − iγ5mc2}ϕ(xl ) = 0, (9)

with j, l = 1, 2, 3. Following a procedure similar to that
applied by Ajaib [30,31], we can obtain an alternative rep-
resentation for the one-dimensional DE,

γ0 = β = η + η†

√
2

, γ3 = ±α3 = η†η − I4 (10)

and

iγ5 = η − η†

√
2

, (11)

using the matrix

η = 1√
2

(
I2 σ3

−σ3 −I2

)
, (12)

that is an antisymmetric (ηT �= η) non-Hermitian matrix
(η† �= η) of null trace and null determinant, with real eigen-
values, that have the properties

η2 = (η†)2 = 0 and {η, η†} = 2I4. (13)

The particular one-dimensional case of Eq. (9) can then be
rewritten as

±{ih̄cα3∂3}ϕ(x3) + {E1η + E2η
†}ϕ(x3) = 0, (14)

where E1 = (E − mc2)/
√

2 and E2 = (E + mc2)/
√

2.
On the other hand, Eq. (9), with j = l = 3, written in terms

of the alternative representation, allows obtaining the continu-
ity equation. To do this, we multiply Eq. (9) by ψ†(xl )α3β by
the left, obtaining

ih̄ψ†(xl )α3ηη†∂0ψ (xl ) + ih̄ψ†(xl )I4∂0ψ (xl )

− ih̄cψ†(xl )α3βα3∂3ψ (xl ) − mc2ψ†(xl )I4ψ (xl ) = 0.

(15)

Then, we calculate the complex conjugate of Eq. (9), and we
multiply it by βα3ψ (xl ) on the right-hand side to get

− ih̄ψ†(xl )ηη†α3ψ (xl ) − ih̄[∂0ψ
†(xl )]I4∂0ψ (xl )

+ ih̄c[∂3ψ
†(xl )]α3βα3ψ (xl ) − mc2ψ†(xl )I4ψ (xl ) = 0.

(16)

By subtracting this last equation from Eq. (15), the continuity
equation is finally obtained:

∂tρ(xl ) + ∂3J (xl ) = 0. (17)

Above, ρ(xl ) = ψ†(xl )α3ψ (xl ) is the probability density
while J (xl ) = ψ†(xl )cα3βα3ψ (xl ) is the probability current
density.

III. GENERAL THEOREM OF WAVE-FUNCTION
SENSITIVITY TO ENERGY VARIATIONS IN THE

ALTERNATIVE REPRESENTATION

In this section, various algebraic procedures are applied
to Eq. (14) in order to derive the expression for the general
sensitivity theorem of the wave function to energy variations,
in a representation alternative to the one presented by Winful
et al. [26]. First, we take the derivative of Eq. (14), with
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negative sign, with respect to energy, and we multiply it on
the left by ϕ†(x3), obtaining the following expression:

− ϕ†(x3){ih̄cα3∂3}∂Eϕ(x3)

=−ϕ†(x3)

{
η + η†

√
2

}
ϕ(x3)−ϕ†(x3){E1η + E2η

†}∂Eϕ(x3).

(18)

Secondly, we take the conjugate transpose of Eq. (14), with
a positive sign, and multiply this result by ∂Eϕ(x3). Thus, we
obtain

− {ih̄c∂3ϕ
†(x3)α3}∂Eϕ(x3)

= −ϕ†(x3){E1η + E2η
†}†∂Eϕ(x3). (19)

By subtracting Eqs. (18) and (19), we obtain

− ih̄c∂3{ϕ†(x3)α3∂Eϕ(x3)}

= −ϕ†(x3)

{
η + η†

√
2

}
ϕ(x3) − ϕ†(x3)[{E1η + E2η

†}

+ {E1η + E2η
†}†]∂Eϕ(x3), (20)

which allows to analyze two cases of interest in the present
paper for the expressions of energy. In the first case, the
rest energy value is considered predominant, (Ej ≈ (−1) jmc2

with j = 1, 2), which leads to

E1η + E2η
† =

√
2mc2

(
O2 −σ3

σ3 O2

)
. (21)

Therefore, Eq. (21) implies the equality

{E1η + E2η
†}† = −{E1η + E2η

†}, (22)

and allows us to rewrite Eq. (20) as

−ih̄c∂3{ϕ†(x3)α3∂Eϕ(x3)} = −ϕ†(x3)

{
η + η†

√
2

}
ϕ(x3). (23)

Consequently, if the expression (23) is integrated in the inter-
val from zero to a, we obtain

−ih̄c{ϕ†(x3)α3∂Eϕ(x3)}|a0 = −
∫ a

0
dx3ϕ†(x3)βϕ(x3). (24)

The second case analyzed in this paper is obtained by
considering the particle energy being large with respect to its
rest energy (E ≈ Ej with j = 1, 2), which allows us to write

E1η + E2η
† ≈ E{η + η†}, (25)

and consequently

{E [η + η†]}† = E{η + η†}. (26)

We then repeat the procedure applied to obtain Eq. (20), but in
this case we consider only the expression (14) with a positive
sign and Eq. (26). It can be obtained again the equation cor-
responding to Eq. (23), and consequently (24), which is the
general sensitivity theorem of the wave function to energy
variations, but in the alternative representation. Clearly, the
expression (24) obtained by considering large-energy regimes
(E � mc2 → E ≈ Ej) is valid only for massive particles (as
in the first case) and would also imply the appearance of the
Klein tunneling phenomenon [26].

FIG. 1. Schematic representation of a potential barrier with
width a and height V0 for a particle with energy E . In the figure,
we identify the regions I, II, and III.

IV. SOLVING DIRAC’S EQUATION
IN THE ALTERNATIVE REPRESENTATION

In this section, we obtain exact relationships among the
tunneling times, similar to the ones obtained by the authors in
Ref. [26]. We then study the the manifestation of Hartman’s
effect in this case. Additionally, we give the correct expres-
sions that should be obtained for the tunneling times when
considering the nonrelativistic limit, correcting thus the typos
that appear in Ref. [26].

We start by writing Eq. (14) as(
02 ih̄cσ 3∂3

ih̄cσ 3∂3 02

)(
ϕl

ϕs

)
=

(
E12 mc2σ 3

−mc2σ 3 −E12

)(
ϕl

ϕs

)
,

(27)

with ϕl ≡ ϕl (x3) and ϕs ≡ ϕs(x3). By its turn, this matrix
equation can be recast as the following scalar equations:

ϕ j
s (x3) = (−1)1− j 1

E

{
ih̄c∂3ϕ

j
l (x3) + mc2ϕ

j
l (x3)

}
, (28)

1

h̄2c2
{m2c4 − E2}ϕ j

l (x3) + ∂33ϕ
j
l (x3) = 0, (29)

with j = 1, 2 indicating the jth component of ϕl or ϕs. We
then consider the problem of particles incident from the left
on a constant potential barrier, as illustrated in Fig. 1, with
height V0 and width a defined by

V (x3) = V0�(x3)�(a − x3), (30)

where � is the Heaviside function defined as

�(x3) =
{

0 for x3 < 0

1 for x3 � 0
. (31)

When solving Eq. (29), considering j = 1 (stationary solu-
tion of the particle scattering problem), the component l can
be written as

ϕ1
l (x3) = Aeikx3 + Be−ikx3

, (32)

where A and B are coefficients to be determined. Then, the s
component is obtained by substituting Eq. (32) into Eq. (28).
Thus we get

ϕ1
s (x3) = �1Aeikx3 + �2Be−ikx3

, (33)

where �1 = mc2/E − h̄ck/E and �2 = mc2/E + h̄ck/E .
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The expressions (32) and (33) allow us to write the general
solution for each of the regions of interest as

ϕI(x
3) = A

⎛
⎜⎜⎝

1
0

−�

0

⎞
⎟⎟⎠eikx3 + B

⎛
⎜⎜⎝

1
0
�

0

⎞
⎟⎟⎠e−ikx3

, (34)

ϕII(x
3) = C

⎛
⎜⎜⎝

1
0

i�′
0

⎞
⎟⎟⎠eqx3 + D

⎛
⎜⎜⎝

1
0

−i�′
0

⎞
⎟⎟⎠e−qx3

, (35)

ϕIII(x
3) = F

⎛
⎜⎜⎝

1
0

−�

0

⎞
⎟⎟⎠eik(x3−a), (36)

where the coefficients � and �′ are obtained from
Eq. (33) when considering the lowest-energy regimes
(�1 ≈ −h̄ck/E = −�, �2 ≈ +h̄ck/E = � with h̄ck =√

m2c4 − E2 and �′ = h̄cq/E ′ with E ′2 = 2m2c4 − (E −
V0)2 and q2 = k2(E ′) < 0), in which the Klein tunneling
phenomenon does not occur (mc2 � E and V0).

Applying the continuity conditions

ϕr (x3)|x3 = ϕrI (x3)|x3, (37)

dx3ϕr (x3)|x3 = dx3ϕrI (x3)|x3 , (38)

with r = {I, II} and x3 = {0, a}, we can obtain the expressions
for each of the coefficients:

B = − i

2

(1 + �2)

�
sinh {qa}F, (39)

C = 1

2
(1 + i�)e−qaF, (40)

D = 1

2
(1 − i�)eqaF, (41)

F =
{

cosh {qa} − i

2

[
� − 1

�

]
sinh {qa}

}−1

A, (42)

with � = kE ′/qE . For our purposes here, we can assume,
without loss of generality, that A = 1. Using |T |2 + |R|2 = 1
we can rewrite the expressions B = R = |R| exp iφR and F =
T = |T | exp iφT . The above considerations allow us to write
Eqs. (34)–(36) in terms of the reflection, R, and transmission,
T , coefficients, which when substituted into Eq. (24) give us

− 2h̄c�

{
|T |2∂EφT + |R|2∂EφR + 1

�
Im(R)∂E�

}

= −a|T |2
2

{
(1 + �2)(1 − �′2)

sinh 2qa

2qa

+ (1 − �2)(1 + �′2)

}
. (43)

Definitions of the group time for particles transmitted and
reflected, the self-interaction time, and the time group are
given by the expressions

τ̂gT = h̄∂EφT , (44)

τ̂gR = h̄∂EφR, (45)

τ̂i = −h̄Im(R)(∂E�)/�, (46)

τ̂g = |T |2τ̂gT + |R|2τ̂gR. (47)

From Eq. (43) we can write

|T |2τ̂gT + |R|2τ̂gR − τ̂i = τ̂g − τ̂i = τ̂d . (48)

Substituting �, �′, and Im(R) into Eq. (48), we obtain the
mathematical expressions for the dwell, interaction, and group
times in the alternative representation:

τ̂d = a|T |2
4h̄c2q�E ′

{
m2c4(1 + �2)

sinh {2qa}
2qa

+ [3m2c4 − 2(V0 − E )2](1 − �2)

}
, (49)

τ̂i = m2c4|T |2
4h̄c2k2�E

(1 + �2) sinh {2qa}, (50)

τ̂g = a|T |2
4h̄c2q�E ′

{
m2c4(1 + �2)

sinh {2qa}
2qa

+ [3m2c4 − 2(V0 − E )2](1 − �2)

}

+ m2c4|T |2
4h̄c2k2�E

(1 + �2) sinh {2qa}. (51)

When considering very wide potential barriers (a → ∞),
these equations are reduced to the expressions

τ̂d = m2c4

h̄c2q2E ′
�

(1 + �2)
, (52)

τ̂i = 2m2c4

h̄c2k2E

�

(1 + �2)
, (53)

τ̂g = m2c4

h̄c2

�

(1 + �2)

(
1

q2E ′ + 2

k2E

)
. (54)

The graphical representation of these expressions, shown in
Fig. 2, allows us to see how the group time curve, τ̂g, is com-
posed through the sum of the curve of the dwell time of the
particles inside the barrier, τ̂d , with the curve of the interaction
time between the incident and reflected wave pulses, τ̂i. In
addition, the group time saturation is seen when E/V0 goes
toward 1. However, it is important to point out that in the
alternative representation, Eqs. (10) and (11), the timescales
are altered when compared with the the ones obtained in
Ref. [26], since here the interaction time, τ̂i, and dwell time,
τ̂d , are modulated by E−1 and (2E ′)−1, respectively. This
causes a distortion in the group time curve, that is, a more
pronounced growth of τ̂g when E/V0 → 1.0, which can be
attributed to the loss of symmetry associated with the matrix
η. On the other hand, it is evident that, as a result of the
chosen representation, there is an exchange in the behaviors
of the dwell and self-interaction times in relation to what was
reported in Ref. [26].

The nonrelativistic limit of the expressions (49)–
(51) is obtained by substituting E = √

2E1 = Ek − mc2

in h̄ck = √
m2c4 − E2, E = √

2E2 = Ek + mc2 in h̄cq =√
m2c4 − (V0 − E )2, and E ′ =

√
2m2c4 − (V0 − E )2. This
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FIG. 2. Group time, τ̂g/τ0, dwell time, τ̂d/τ0, and self-interaction
time, τ̂i/τ0, as a function of the ratio of energies E/V0. The expres-
sions for the times are normalized with respect to the transmission
time at the vacuum light speed, τ0 = a/c. Additionally, for these
plots, we set V0a/h̄c = 2π and mc2/V0 = 0.98.

allows us to write k′ = √
2mEk/h̄, q′ = √

2m(V0 − Ek )/h̄,
E ≈ mc2, and E ′ = mc2 ⇒ � = k′/q′. Consequently,

τ̂i =m|T ′|2a

2h̄k′

(
1 + q′2

k′2

)
sinh {2q′a}

2q′a
, (55)

τ̂d =m|T ′|2a

4h̄k′

{(
1 + k′2

q′2

)
sinh {2q′a}

2q′a
+

(
1 − k′2

q′2

)}
, (56)

τ̂g = m|T ′|2a

2h̄k′

{[
1

2

(
1 + k′2

q′2

)
+

(
1 + q′2

k′2

)]
sinh {2q′a}

2q′a

+
(

1 − k′2

q′2

)}
, (57)

where T ′ = ( cosh {q′a} − (i/2)[k′/q′ − q′/k′] sinh {q′a})−1.
Thus, when considering very wide barriers (a → ∞), these
equations are reduced to

τ̂d = m�

h̄q′2(1 + �2)
, (58)

τ̂i = 2m�

h̄k′2(1 + �2)
, (59)

τ̂g = m�

h̄(1 + �2)

(
1

q′2 + 2

k′2

)
. (60)

The graphical representation of the expressions (58)–(60) is
given in Fig. 3. We see how the group time curve, in the
nonrelativistic limit, is again composed by the sum of the
time curve of the dwell time and of the interaction time
curve between, as in the model deduced in Refs. [13,26].
Additionally, Fig. 3 shows again the saturation effect of the
group time, when Ek/V0 goes toward 1. Furthermore, it is
important to point out the shift to the right we observe in the
minimum of the curve of the group time, when Ek/V0 → 1.0.
This effect is caused by the halving (in orders of magnitude)
of the dwell time τ̂d with respect to the dwell time τd obtained
in Ref. [26]. This effect can be attributed, in the same way as

FIG. 3. Group time, τ̂g/τ0, dwell time, τ̂d/τ0, and self-interaction
time, τ̂i/τ0, as a function of the energies ratio Ek/V0 in the non-
relativistic limit. The expressions for the times are normalized with
respect to the transmission time for the vacuum light speed, τ0 = a/c.
Additionally, for these plots, we set V0a/h̄c = 2π .

the relativistic case, to the loss of symmetry associated with
the matrix η, that was used in the alternative representation
for Dirac’s equation we use here. On the other hand, in the
nonrelativistic limit, the dwell time τ̂d and interaction time τ̂i

keep the same behavior they had in the representation chosen
in Ref. [26].

In contrast to the expressions (55)–(57), in Ref. [26], the
authors present a set of mathematical expressions for the
nonrelativistic case, from which it is clearly not possible to
recover the characteristic saturation curve of tunneling times
(the Hartman effect) when considering a very wide potential
barrier. However, such nonrelativistic expressions would be
correct if the quantity m|T ′|2a/2h̄k′ [33] multiplied all the
terms that define the phase time τg and the dwell time τd , and
if, in addition, the first term in brackets in τg were squared (see
Refs. [13,27]).

V. INFLUENCE OF SPIN ON TUNNELING TIMES

By considering the solution of Dirac’s equation [Eqs. (34)–
(36)] associated with the lower-energy regime where Klein
tunneling is not present, in Sec. IV we showed that the alter-
native representation for Dirac’s equation [Eqs. (10) and (11)]
leads to exact relationships between tunneling times similar
to those reported in Ref. [26]. However, the most relevant
aspect of this alternative representation is obtained by writing
Eq. (14), with the negative sign, in the momentum basis. That
is, by considering P̂ = −ih̄∂3 and ϕ = ϕ′(pl ) exp −ip�x =
ϕ′(pl ) exp −i[Et − pl xl ] = ϕ(pl ) exp −iEt [34], we derive
the equations

Ekϕ
j
l (p3) + (−1)1− jcpϕ j

s (p3) = 0, (61)

(−1)1− jcpϕ j
l (p3) − Ekϕ

j
s (p3) = 0, (62)

with j = 1, 2. Considering the super-relativistic energy
regime (Ek � mc2 → E ≈ Ek = h̄2 p2/2m and cp ± mc2 ≈
cp), in which the Klein tunneling phenomenon is again not
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appreciable (E − mc2 < V0 < E + mc2), we solve Eqs. (61)
and (62) to obtain the general solution for each of the
regions:

ϕI(x
3) = A

ϒ2

⎛
⎜⎜⎝

1
0
�

0

⎞
⎟⎟⎠eipx3+ A′

ϒ2

⎛
⎜⎜⎝

1
0

−�

0

⎞
⎟⎟⎠e−ipx3+ B′

ϒ2

⎛
⎜⎜⎝

0
1
0

−�

⎞
⎟⎟⎠e−ipx3

,

(63)

ϕII(x
3) = C

ϒ ′2

⎛
⎜⎜⎝

1
0

i�′
0

⎞
⎟⎟⎠e−p′x3 + C′

ϒ ′2

⎛
⎜⎜⎝

1
0

−i�′
0

⎞
⎟⎟⎠ep′x3

+ D

ϒ ′2

⎛
⎜⎜⎝

0
1
0

i�′

⎞
⎟⎟⎠e−px3 + D′

ϒ ′2

⎛
⎜⎜⎝

0
1
0

−i�

⎞
⎟⎟⎠ep′x3

, (64)

ϕIII(x
3) = F

ϒ2

⎛
⎜⎜⎝

1
0
�

0

⎞
⎟⎟⎠eip(x3−a) + G

ϒ2

⎛
⎜⎜⎝

0
1
0
�

⎞
⎟⎟⎠eip(x3−a), (65)

with � = cp/Ek , �′ = cp′/E ′
k , p′ = √

2m(V0 − Ek )/h̄, E ′
k =

V0 − Ek , [ϒ2]−1 = 1/

√
1 + (±cp)2/E2

k , and [ϒ ′2]−1 = 1/√
1 + (±cp′)2/E ′2

k . Furthermore, it becomes evident that the
expressions (63)–(65) are written as a linear combination of
the vectors

ϕ
↑
± = 1

ϒ2

⎛
⎜⎜⎝

1
0

±�

0

⎞
⎟⎟⎠ and ϕ

↓
± = 1

ϒ2

⎛
⎜⎜⎝

0
1
0

±�

⎞
⎟⎟⎠. (66)

These vectors satisfy the orthogonality relations

[ϕ↑
±]†ϕ

↑
± = 1, (67)

[ϕ↑
±]†ϕ

↓
± = [ϕ↓

±]†ϕ
↑
± = [ϕ↓

∓]†ϕ
↑
∓ = 0. (68)

On the other hand, the coefficients A, A′, B′, C, C′, D, D′,
F , and G in Eqs. (63)–(65) are determined by applying the
continuity condition

ϕr (x3)|x3 = ϕrI (x3)|x3, (69)

with r = {I, II} and x3 = {0, a}. Thus, we obtain

A′ = − i

2

(1 + �2)

�
sinh {p′a}F, (70)

C = ϒ ′2

2ϒ2
(1 − i�)ep′aF, (71)

C′ = ϒ ′2

2ϒ2
(1 + i�)e−p′aF, (72)

D = ϒ ′2

2ϒ2
(1 − i�)ep′aG, (73)

D′ = ϒ ′2

2ϒ2
(1 + i�)e−p′aG, (74)

F =
{

cosh {p′a} − i

2

[
� − 1

�

]
sinh {p′a}

}−1

, (75)

G = {cosh {p′a} − i� sinh {p′a}}−1B′. (76)

Having these equations, for our purposes here, we can choose,
without loss of generality, A = 1. So A′ ∝ |R|eiφR , B′ ∝
|R′|eiφR′ , F ∝ |T |eiφT , and G ∝ |T ′|eiφT ′ . Additionally, |T |2 +
|T ′|2 + |R|2 + |R′|2 = 1. With this, we can rewrite Eqs. (63)–
(65) in terms of these parameters, and substitute them into
Eq. (24). With this, we arrive at

2h̄c�

[ϒ2]2

{
|T |2∂Ek φT + |T ′|2∂Ek φT ′

+ |R|2∂Ek φR + |R′|2∂Ek φR′ − Im(R)
∂Ek �

�

}

= − |T |2a

2[ϒ2]2

{
(1 − �′2)(1 + �2)

sinh (2p′a)

2p′a

+ (1 + �′2)(1 − �2)

}

− |T ′|2a

2[ϒ2]2

{
(1 − �′2)(1 + �2)

sinh (2p′a)

2p′a

+ (1 + �′2)(1 − �2)

}
. (77)

From this last equation, we identify the tunneling times:

τ̂↑
g = |T |2(∂Ek φT ) + |R|2(∂Ek φR), (78)

τ̂↓
g = |T ′|2(∂Ek φT ′ ) + |R′|2(∂Ek φR′ ), (79)

τ̂i = Im(R)(∂Ek �)

�
, (80)

τ̂g = τ̂↑
g + τ̂↓

g . (81)

Then, by substituting �, �′, and Im(R) into Eq. (77), we obtain
the following expressions for tunneling times:

− 2h̄p′�
m|T |2a

τ̂
↑
d = [(Ek − V0)/2mc2 − 1](1 + �2)

sinh (2p′a)

2p′a

+ [(Ek − V0)/2mc2 + 1](1 − �2), (82)

− 2h̄p′�
m|T ′|2a

τ̂
↓
d = [(Ek − V0)/2mc2 − 1](1 + �2)

sinh (2p′a)

2p′a

+ [(Ek − V0)/2mc2 + 1](1 − �2), (83)

τ̂i = m|T |2
4h̄p2�

(1 + �2) sinh (2p′a), (84)

τ̂g = τ̂
↑
d + τ̂

↓
d + τ̂i. (85)

Now, if we regard very wide barriers (a → ∞), the expres-
sions above are reduced to

τ̂
↑
d = −2m[(Ek − V0)/2mc2 − 1]�

h̄p′2(1 + �2)
, (86)

τ̂
↓
d = −2m[(Ek − V0)/2mc2 − 1]�

h̄p′2(1 + �2)
, (87)
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FIG. 4. Group time, τ̂g/τ0, group time considering only the con-
tribution of the spin-up particles, τ̂↑

g /τ0, dwell times, τ̂
↑
d /τ0 and

τ̂
↓
d /τ0, and self-interaction time, τ̂i/τ0, as a function of the ratio of

energies Ek/V0 in the super-relativistic limit. The expressions for the
times are normalized with respect to the transmission time at the
vacuum light speed, τ0 = a/c. Additionally, for these plots, we set
V0a/h̄c = 2π and V0/mc2 = 0.98.

τ̂i = 2m�

h̄p2(1 + �2)
, (88)

τ̂g = − 2m�

h̄(1 + �2)

{
[(Ek − V0)/mc2 − 2]

p′2 − 1

p2

}
. (89)

The graphical representation of these expressions is pre-
sented in Fig. 4. The curves for tunneling times obtained in
the super-relativistic regime are seen to be similar to those
obtained in Sec. IV for the relativistic and nonrelativistic
regimes. In other words, by summing the curves for the dwell
times of particles with spin up, τ̂

↑
d , and with spin down, τ̂

↓
d ,

and the curve of the interaction time between incident and
reflected particles with spin up, τ̂i, a curve for the group time
is obtained, τ̂g, which is similar to that obtained in Sec. IV for
the group time in the relativistic regime. On the other hand,
it is evident that if the term of the dwell time for particles
with spin down, τ̂

↓
d , is eliminated in that sum, a curve is

obtained with the shifted minimum for the group time, τ̂↑
g ,

as obtained in Sec. IV for the nonrelativistic regime. It is
interesting that by changing the representation in which we
express Eq. (14), the results of the saturation curves can be
obtained as a consequence of the contribution of the tunneling
times of particles with a specific spin, since in the super-
relativistic energy regime the reflection of particles with spin
down can occur even in the absence of external magnetic
fields.

VI. CONCLUSION

In this paper, we built a mathematical model to obtain
tunneling times through a procedure analogous to the one pro-
posed in Ref. [26], but based on an alternative representation
of Dirac’s equation. This allowed us to find exact relationships
between tunneling times, similar to those obtained in Ref. [26]

for relativistic and nonrelativistic energy regimes. Moreover,
the use of this alternative representation allowed us to analyze
the influence of the particle spin on the exact relationships be-
tween tunneling times obtained by studying this phenomenon
considering a constant potential barrier, super-relativistic en-
ergy regimes, and the absence of external magnetic fields.

From the mathematical expressions obtained in Sec. V, we
showed that, in this regime, the group time, τ̂g, is obtained
as the sum of the dwell times inside the potential barrier
for particles with spin up, τ̂

↑
d , and with spin down, τ̂

↓
d , and

the self-interaction time, τ̂i, associated with the incident and
reflected wave functions for particles with spin up. Indeed, the
above summation resulted in a group time curve similar to that
obtained in Sec. IV for relativistic energy regimes. In addition,
it was shown that when considering only the contribution of
the particles with spin up, the result obtained is similar to the
group time curve presented in Sec. IV, with a minimum point
shifted to the right and obtained when considering nonrela-
tivistic energy regimes.

However, it is interesting that from a purely mathematical
procedure, that is, the choice of an alternative representation
for Dirac’s equation, and the consideration of the super-
relativistic energy regimes, a model is obtained that leads to
results involving the influence of particle spin on the exact
relationships between tunneling times. Furthermore, it is im-
portant to highlight that the results presented in our paper
depend on the chosen representation, which is based on the
one introduced by Ajaib [30,31].

Consequently, it is this representation that leads to our
expressions for the tunneling times, which cannot be obtained
by direct application of the Dirac equation written in terms of
the standard representation of γ matrices. This is so because
in such an approach there is no apparent physical or mathe-
matical reason to consider an ansatz as presented in Sec. V. By
taking the nonrelativistic limit of the Dirac equation in its stan-
dard form, the Schrödinger equation is obtained in which the
influence of spin does not appear in the absence of a magnetic
field. Therefore, considering an ansatz like the one proposed
in Sec. V is interesting only for this type of alternative rep-
resentation. In addition, for the Dirac equation considered
in Sec. IV, from its first order is obtained the equation in-
troduced by Ajaib in Refs. [30,31], where the influence
of spin is mathematically appreciable even in the nonrela-
tivistic regime and in the absence of an external magnetic
field.

On the other hand, the fact that the results obtained depend
on the chosen representation seems to lead to a theoretical
model that offers the description of different tunneling times.
This may seem like a physically inconsistent result, since,
in general, any physical result should be independent of the
mathematical tool used. However, it should be noted that
the formalism of the Dirac equation dictates only that the
representations of Dirac’s have to be such that they warrant
its invariance under a Lorentz transformation and lead to a
Hermitian Hamiltonian.

For that reason, there is no impediment for a description
of different tunneling times to emerge as a consequence of
the representation change. This apparent controversy between
what seems to be the description of different types of tunnel-
ing times becomes an open problem that can only be resolved
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by carrying out the experiment itself. In other words, if it is
possible to carry out an experimental measurement of the tun-
neling time (in the absence of an external magnetic field and
for systems that can reach super-relativistic energy regimes),
our theoretical predictions could then be tested. This is left as
an open problem for future research.

Finally, the results reported in this paper could, in princi-
ple, be applied to nuclear physics phenomena in high-energy
regimes. However, it is important to highlight that the
Hartman effect is present in all our results. Therefore, more

work must be done to properly define the tunneling time of
quantum systems.
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