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Vacuum radiation versus shortcuts to adiabaticity
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The nonadiabatic dynamics of the electromagnetic field triggers photon generation from the quantum vacuum.
Shortcuts to adiabaticity, instead, are protocols that mimic the field’s adiabatic dynamics in a finite time. Here,
we show how the counterdiabatic term of the transitionless tracking algorithm cancels out exactly the term
responsible for the photon production in the dynamical Casimir effect. This result suggests that the energy
of producing photons out of the vacuum is related to the energetic cost of the shortcut. Furthermore, if the
system operates under a quantum thermodynamic cycle, we confirm the equivalence between the adiabatic and
nonadiabatic work outputs. Finally, our study reveals that identifying these observations can only be possible
using the so-called effective Hamiltonian approach.
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I. INTRODUCTION

From where there is no light (vacuum), photons can be
created if the electromagnetic field is subject to nonadiabatic
changes. This impressive phenomenon is known as the dy-
namical Casimir effect (DCE) [1,2]. It was first predicted
using a variable-length cavity [3] and experimentally con-
firmed within the architecture of superconducting quantum
circuits [4,5]. Besides being fundamental to quantum field
theory [6], the DCE may have applications in nanophotonics,
nanomechanics, and chemistry since it modifies the static
Casimir force [1,7,8]. Moreover, the DCE is a finite-time
quantum electrodynamics process and is expected to be rel-
evant in finite-time quantum thermodynamics [9–11]. For
example, in a quantum refrigerator at low temperatures, the
DCE dominates and imposes the ultimate limit for cooling
[12]. The reason is a heating process produced by the nonadi-
abatic excitations of the DCE enforcing the third law [13].

On the other hand, shortcuts to adiabaticity (STA) are
protocols that imitate adiabatic systems’ dynamics (quantum
or classical) at finite times [14–16]. STA are receiving much
attention in quantum thermodynamics since they increase the
power output of quantum heat engines by shortening their
adiabatic (isentropic) strokes [17–21]. STA act as quantum
lubricants [22], producing frictionless evolution by counter-
acting nonadiabatic excitations. Theoretically, we may study
the STA and the DCE with the harmonic oscillator. For in-
stance, the work by Muga et al. [23] introduced one of the
first STA based on transitionless quantum driving [24]; it
changed an oscillator’s frequency without transitions in finite
time. For the DCE, one of its simplest versions occurs in a
single-mode nonstationary cavity modeled by an oscillator
with time-dependent frequency.

In this paper, using an effective Hamiltonian approach [25],
we describe in detail how the nonlocal potential arising from
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the STA combats the generation of photons in the DCE. We
show that the squeezing terms appearing in the DCE and
the STA are the same but with opposite signs, implying that
the energy of producing photons from the vacuum relates
to the energetic cost of the shortcut. Furthermore, with the
effective Hamiltonian approach, we make transparent results
of the STA in quantum thermodynamics, for instance, the
equivalence between the adiabatic and nonadiabatic work out-
puts.

To make our paper as self-consistent as possible, we struc-
ture it as follows. First, Sec. II A reviews the STA based on the
transitionless tracking algorithm, and Sec. II B discusses the
STA of the quantum harmonic oscillator with time-dependent
frequency. Next, Sec. III A describes the effective Hamilto-
nian approach of the DCE and shows that the squeezing term
responsible for generating photons is the same (with the op-
posite sign) as the counterdiabatic term obtained in Sec. II B.
This observation simplifies the corresponding Hamiltonian
structure and makes it easier to compute the work output when
the system operates under a quantum thermodynamic cycle
(Sec. III B). Finally, we show our conclusions in Sec. IV.

II. SHORTCUTS TO ADIABATICITY

A. Transitionless tracking algorithm

We review Berry’s formulation of the shortcuts to adia-
baticity based on the transitionless tracking algorithm since
it is more straightforward and enlightening [14,24]. For the
time-dependent Hamiltonian Ĥ0(t ) satisfying Ĥ0(t )|n(t )〉 =
En(t )|n(t )〉, the adiabatic approximation states that |ψn(t )〉 =
eiγn (t )eiθn (t )|n(t )〉 is an approximate solution of the Schrödinger
equation when Ĥ0(t ) varies slowly (see Ref. [26] for a
pedagogical discussion of the adiabatic approximation in
quantum mechanics). Here, γn(t ) = i

∫ t
0 dt ′〈n(t ′)|[∂t ′ |n(t ′)〉]

and θn(t ) = − ∫ t
0 dt ′En(t ′)h̄−1 are the geometrical and dy-

namical phases. The aim of the transitionless tracking
algorithm is to find a quantum Hamiltonian Ĥ (t ) such
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that |ψn(t )〉 is an exact solution of the corresponding
Schrödinger equation ih̄ ∂t |ψn(t )〉 = Ĥ (t )|ψn(t )〉. The time-
evolution operator Û (t ) also satisfies the Schrödinger equa-
tion ih̄ ∂tÛ (t ) = Ĥ (t )Û (t ), then Ĥ (t ) can be extracted from
Ĥ (t ) = ih̄ ∂tÛ (t ) Û †(t ). The next step is to find an explicit
form of the evolution operator. Fortunately, by choosing
Û (t ) = ∑

n|ψn(t )〉〈n(0)|, we obtain Û (t )|m(0)〉 = |ψm(t )〉.
Therefore, Û (t ) is indeed an appropriate choice, where its
time derivative is

∂Û (t )

∂t
=

∑
n

{
i γ̇n(t ) |ψn(t )〉〈n(0)|

+i θ̇n(t )|ψn(t )〉〈n(0)|

+eiγn (t )eiθn (t )

[
∂

∂t
|n(t )〉

]
〈n(0)|

}
. (1)

Multiplying the above equation with Û †(t ) we get

∂Û (t )

∂t
Û †(t ) =

∑
n

{
i γ̇n(t ) |n(t )〉〈n(t )|

+i θ̇n(t ) |n(t )〉〈n(t )| +
[

∂

∂t
|n(t )〉

]
〈n(t )|

}
.

(2)

Therefore, the searched Hamiltonian is

Ĥ (t ) =
∑

n
{En|n〉〈n| + ih̄(|∂t n〉〈n| − 〈n|∂t n〉|n〉〈n|)}. (3)

Note we have adopted the simplified notation |n〉 = |n(t )〉,
En = En(t ), and |∂t n〉 = ∂|n(t )〉/∂t . One can split Ĥ (t ) in
two parts, Ĥ (t ) ≡ Ĥ0(t ) + Ĥ1(t ), where Ĥ0(t ) = ∑

nEn|n〉〈n|
and Ĥ1(t ) = ∑

nih̄ (|∂t n〉〈n| − 〈n|∂t n〉|n〉〈n|) are known as the
reference and counterdiabatic Hamiltonian, respectively [24].

B. Time-dependent quantum harmonic oscillator

We choose the reference Hamiltonian Ĥ0(t ) as the quan-
tum harmonic oscillator Hamiltonian with time-dependent
frequency ω(t ) (with m = 1),

Ĥ0(t ) = p̂2

2
+ 1

2
ω2(t )x̂2, (4)

where x̂ and p̂ are, respectively, the position and momen-
tum quantum mechanical operators satisfying the canonical
commutation relation [x̂, p̂] = ih̄. The corresponding instan-
taneous eigenvalues are En(t ) = h̄ω(t )(n + 1/2). Note we did
the mass of the oscillator to the unit to connect with the quan-
tum Hamiltonian of the nonstationary electromagnetic field in
Sec. III A. To get Ĥ1(t ) one needs to know the instantaneous
eigenstates |n(t )〉 of Ĥ0(t ). In the coordinate representation,
these are

〈x|n(t )〉 = 1√
2nn!

[
ω(t )

π h̄

] 1
4

Hn[x
√

ω(t )/h̄] exp

(
−ω(t )

2h̄
x2

)
,

(5)

where Hn are the Hermite polynomials. Using the recurrence
relation of Hn, Muga et al. [23] proved that 〈n|∂t n〉 = 0,
simplifying Ĥ1(t ) = ih̄

∑
n |∂t n〉〈n|. By computing the time

derivative of (5) one can show that the counterdiabatic term

for the time-dependent quantum harmonic oscillator is [23]

Ĥ1(t ) = − ω̇(t )

4 ω(t )
(x̂ p̂ + p̂x̂), (6)

where the dot in ω(t ) represents its time derivative. The above
result implies that |ψn(t )〉 (see Sec. II A) is an exact solution
of the Schrödinger equation when using

Ĥ (t ) = p̂2

2
+ 1

2
ω2(t )x̂2 − ω̇(t )

4 ω(t )
(x̂ p̂ + p̂x̂). (7)

Hamiltonian (6) is a nonlocal operator, representing a non-
local potential. Since it has a quadratic structure in terms of
x̂ and p̂, Hamiltonian (7) can be viewed as a generalized har-
monic oscillator. Although the finite-time dynamics generated
by Ĥ (t ) follows exactly the adiabatic solution of the refer-
ence Hamiltonian Ĥ0(t ), we want to emphasize that by only
looking at the algebraic structure of Eq. (7), it is not obvious
understanding why this happens. In other words, at this point,
we do not know in detail how the new counterdiabatic term,
proportional to x̂ p̂ + p̂x̂, combats the nonadiabatic evolution
generated by the Hamiltonian of the time-dependent harmonic
oscillator (4). Clarifying such a question is precisely the aim
of this work.

First, note that Ĥ1(t ) in (6) is associated with the squeez-
ing operator of quantum optics [27–29], as demonstrated in
Refs. [23,30,31]. Second, it is well known that the time-
dependent quantum harmonic oscillator generates, during its
evolution, a squeezing effect in the system’s quadratures.
Therefore, it is reasonable to think that in (7) the coun-
terdiabatic term Ĥ1(t ) should somehow compensate for the
squeezing evolution generated by Ĥ0(t ).

Due to the above discussion, we want to write (7) in terms
of ladder operators. However, writing the proper creation and
annihilation operators of the time-dependent quantum har-
monic oscillator, equivalent to a time-dependent spacetime
metric, is by no means a trivial task [31–36]. We, for instance,
may work with the “instantaneous” ladder operators given by
[23] (h̄ = 1)

ât = 1√
2ω(t )

[ω(t )x̂ + i p̂], â†
t = 1√

2ω(t )
[ω(t )x̂ − i p̂].

(8)
Evidently, for any given protocol that starts at t = t0 and ends
at t = t f , the oscillator’s frequency ω(t ) has fixed values ω0
and ω f for t � t0 and t � t f , respectively. For those cases,
Eq. (8) reduces to the well-known definition of the ladder
operators of the harmonic oscillator with constant frequency
[26]. Equation (8) implies that x̂ = (â†

t + ât )/
√

2ω(t ) and
p̂ = i(â†

t − ât )
√

ω(t )/2, which upon substitution in (7) one
gets [23]

Ĥ (t ) = ω(t )

(
â†

t ât + 1

2

)
− i

ω̇(t )

4 ω(t )

(
â†2

t − â2
t

)
. (9)

Again, the above equation does not provide us with a clear
view of how it generates the adiabatic dynamics of reference
Hamiltonian Ĥ0(t ). Instead, it brings us an important result,
that the second (squeezing) term of (9) can be written with-
out the temporal subscript t [23]. This can be done due to
the fact that for any frequency modulation ω(t ), the com-
bination iâ†2

t − iâ2
t is always equal to the time-independent
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term x̂ p̂ + p̂x̂, thus, the former can be safely computed at
any given time. In particular, and for convenience of the
discussion of Sec. III A, we evaluate it at the beginning of a
given time-dependent protocol, i.e., throughout the paper we
shall always write Ĥ1(t ) = −iω̇(t )(â†2

0 − â2
0)/4ω(t ). On the

contrary, the first term of (9), â†
t ât + 1/2, does not equal any

time-independent combination of x̂ and p̂. Actually, the ref-
erence Hamiltonian (4) written in terms of the instantaneous
ladder operators (8) at t = t0 looks as

Ĥ0(t ) =ω0

(
â†

0â0 + 1

2

)[
ω2(t )

2 ω2
0

+ 1

2

]

+ ω0

(
â†2

0 + â2
0

)[ω2(t )

4 ω2
0

− 1

4

]
. (10)

To avoid any confusion, keep in mind that ω(t ) in the above
comes from the bare Hamiltonian (4), while ω0 is the fre-
quency at which the instantaneous ladder operators (8) are
defined. As expected, if ω(t ) → ω0, Ĥ1(t ) = 0 and Ĥ (t ) →
Ĥ0(t ) = ω0(â†

0â0 + 1/2). When the frequency modulation is
of the form ω(t ) = ω0 + f (t ), with f (t ) an arbitrary (usu-
ally periodic) time-dependent function, Ĥ0(t ) = ω0(â†

0â0 +
1/2) + f 2(t )(â†2

0 + â2
0 + 2â†

0â0 + 1)/4ω0 has an algebraic
structure that has been used to investigate the evolution of
coherent states in a Kerr medium [37]. It is worth mention-
ing that (10) possesses a time-independent squeezing term
(â†2

0 + â2
0), which, unfortunately, cannot be eliminated with

the one contained in Ĥ1(t ). However, in the next section,
we explicitly show how it is possible to obtain an effective
reference Hamiltonian Ĥ0(t ) containing the squeezing term
that cancels out Ĥ1(t ). This idea naturally comes from the
studies of nonstationary cavity fields in which the dynamical
Casimir effect occurs.

III. DYNAMICAL CASIMIR EFFECT

A. Effective Hamiltonian approach

The DCE, a name introduced by Schwinger [38], was pre-
dicted by Moore in 1970 [3]. However, the original theory did
not have a Hamiltonian, so for many years the DCE was stud-
ied in the Heisenberg representation. It was not until 1994 that
Law derived an effective Hamiltonian of the DCE, allowing
an equivalent Schrödinger description [39]. Essential features
of the DCE, such as the generation of photons from the vac-
uum, are captured by the single-mode version of the effective
Hamiltonian, which is the Hamiltonian of the time-dependent
harmonic oscillator [1,2]. In what follows, we show the basic
steps to obtain the single-mode effective Hamiltonian of the
time-dependent oscillator.

First, we need the Heisenberg representation for the instan-
taneous ladder operators. We replace in (8) the Heisenberg
representation of the position and momentum operators, i.e.,
âH ≡ [ω(t ) x̂H + i p̂H]/

√
2ω(t ), where the subscript H in x̂H

and p̂H indicates these are in the Heisenberg picture. Second,
we take the time derivative

dâH

dt
= 1√

2ω(t )

[
ω(t )

dx̂H

dt
+ i

d p̂H

dt

]

+ 1√
2ω(t )

dω(t )

dt
x̂H

− 1

[2ω(t )]3/2

dω(t )

dt
[ω(t )x̂H + i p̂H]

= 1√
2ω(t )

[ω(t ) p̂H − i ω2(t )x̂H]

+ 1

[2ω(t )]3/2

dω(t )

dt
[ω(t )x̂H − i p̂H]

= − i ω(t )âH + 1

2ω(t )

dω(t )

dt
â†

H. (11)

In the same manner,

dâ†
H

dt
= +i ω(t )â†

H + 1

2ω(t )

dω(t )

dt
âH. (12)

To get (11) and (12) we have substituted the corresponding
equations of motion for the position and momentum oper-
ators dx̂H/dt = p̂H and d p̂H/dt = −ω2(t )x̂H. At this point,
we stress that Eqs. (11) and (12) are not proper quantum
mechanical equations of motion [26]. Instead, we obtained
them by deriving with respect to time the definition of the
instantaneous ladder operator. However, we did use the proper
equations of motion of the position and momentum oper-
ators generated by the Hamiltonian of the time-dependent
harmonic oscillator, i.e., Ĥ0(t ) of (4) in the Heisenberg
equation dÔH/dt = i[Ĥ0(t ), ÔH], where ÔH is an arbitrary
operator in the Heisenberg representation. Note that contrary
to the constant frequency case, Eqs. (11) and (12) display an
extra term due to the explicit time dependency of the ladder
operators (8).

Second, to understand the idea of how the effective
Hamiltonian approach works, we illustrate it with the con-
stant frequency case. If ω(t ) → ω0, dâH/dt = −i ω0âH and
dâ†

H/dt = i ω0â†
H. Assuming we are, for some reason, only

provided with the information on these equations rather than
with the Hamiltonian itself. The crucial question is, which
Hamiltonian in the Schrödinger picture can generate the
equations above? If such a Hamiltonian exists, the provided
equations may be interpreted as proper quantum mechanical
equations of motion. For this simple case, it is easy to see that
Ĥeff = ω0â†

0â0 does the desired task since [Ĥeff , â0] = −ω0â0.
Now, for an arbitrary frequency drive ω(t ) and noting that

[â†2
0 , â0] = −2â†

0, it is not difficult to show that the effective
Hamiltonian,

Ĥeff (t ) = ω(t )â†
0â0 + i

1

4ω(t )

dω(t )

dt

(
â†2

0 − â2
0

)
, (13)

indeed generates Eqs. (11) and (12) [1]. This effective Hamil-
tonian first derived almost three decades ago in the context of
the DCE, describes an electromagnetic cavity with a moving
mirror, where its frequency is given by ω(t ) = π/q(t ) and
q(t ) is the prescribed mirror’s trajectory [39]. The Hamil-
tonian of Ref. [39] displays additional terms accounting
for an intermode interaction induced by the nonstationary
field’s boundary conditions. Nevertheless, subsequent stud-
ies [40–45] show that when the nonstationary cavity field
supports one single mode, (13) can be safely considered
as the simplest version where the DCE can be manifested.
For example, under the resonant conditions ω(t ) = ω0[1 +
ε sin(2ω0t )], (13) predicts an exponential photon growth
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[42–44]

〈0|Û †â†
0â0Û |0〉 = sinh2 (εω0t/2), (14)

where Û is the corresponding time-evolution operator of
Ĥeff (t ), â0|0〉 = 0 defines the vacuum state, and ε � 1 is a
small-amplitude modulation depth. Equation (14) is known as
the Casimir or vacuum radiation and is the consequence of the
nonadiabatic boundary conditions of the field represented by
the second term of (13).

Remarkably, when replacing Ĥ0(t ) by its physically equiv-
alent effective Hamiltonian Ĥeff (t ) in the definition of Ĥ (t ),
i.e., Ĥ (t ) = Ĥeff (t ) + Ĥ1(t ), we obtain

Ĥ (t ) = ω(t ) â†
0â0. (15)

This equation shows clearly that the finite-time dynamics
generated by the shortcut to adiabaticity is indeed the one
given by the quantum harmonic oscillator with an instanta-
neous frequency ω(t ). Since the counterdiabatic term Ĥ1(t ) =
−iω̇(t )(â†2

0 − â2
0)/4ω(t ) cancels out the induced nonadiabatic

squeezing term in (13), the time-evolution operator is Û =
exp[−i

∫
dt ′ω(t ′)â†

0â0], implying 〈0|Û †â†
0â0Û |0〉 = 0. There-

fore, regardless of frequency drive is used, photon generation
from the vacuum is impossible when performing a shortcut to
adiabaticity. Notice that from a different approach, a similar
conclusion was recently obtained by exploiting the conformal
symmetry of the system [46]; see also [47].

Using (15) it is easy to write the final energy, 〈Ĥ (t f )〉 =
ω f 〈â†

0â0〉, in terms of the initial energy 〈Ĥ (t0)〉 as

〈Ĥ (t f )〉 = (ω f /ω0)〈Ĥ (t0)〉. (16)

The above expression is a common result encountered in the
adiabatic limit of systems with scale-invariance dynamical
symmetry, where (ω0/ω f )1/2 is known as the adiabatic scaling
factor [48,49]. However, since (15) contains the use of an
STA, i.e., Ĥ (t ) = Ĥeff (t ) + Ĥ1(t ), the relation between initial
and final energies is valid for any physically unitary finite-
time protocol driving Ĥeff (t ) through ω(t ) and not just for
the adiabatic approximation. Certainly, Ĥ (t ) strictly follows
the adiabatic solution of the reference Hamiltonian Ĥ0(t ) but
at a finite time. An immediate consequence of this result is
in finite-time quantum thermodynamics [9]. For instance, we
may choose Ĥ (t ) as the time-dependent Hamiltonian associ-
ated with the working substance of a reciprocating quantum
heat engine [50,51]. When the nonstationary cavity undergoes
an expansion (compression), the cavity length increases (de-
creases), and the frequency decreases (increases), ending with
a lower (higher) internal energy (16). This behavior resembles
the one encountered with a thermodynamic piston. Note that
the previously discussed situation is not evident when using
the standard expressions of Ĥ (t ) found in (7) or (9).

Even though the counterdiabatic term Ĥ1(t ) typically van-
ishes at the start (t0) and end (t f ) of an STA, getting a
relationship between initial and final energies using (9) is not
straightforward. This is because the initial (final) Ĥ (t ) de-
pends on the instantaneous operators at t = t0 (t f ). In contrast,
Ĥ (t ) in (15) is always written in terms of operators at some
specific time—we used t0, but the result holds for other times.

B. Quantum thermodynamic implications

The quantum Otto cycle operates between a hot and a
cold reservoir and is a paradigmatic thermodynamic cycle
extensively used by the quantum thermodynamics community
[52,53]. The cycle consists of four branches: two adiabatic
(isentropic) strokes where the working substance (the non-
stationary cavity in our case) undergoes a compression and
expansion while isolated from the heat reservoirs, and two
quantum isochoric strokes where the system is put in contact
with one reservoir, where the cavity frequency has fixed values
and heat transfer occurs (thermalization) but no work is per-
formed. During the compression stroke, the cavity frequency
ω(t ) increases from the initial value ω1 to ω2, while in the
expansion, it goes from ω2 to ω1. At the hot (cold) isochoric
stroke, the cavity relaxes to a thermal state with temperature
Th (Tc).

For the thermal state ρ̂th = exp(−h̄ω j â
†
0â0/kBT )Z−1,

where Z is the partition function, the average number
of photons is 〈â†

0â0〉 = tr{ρ̂thâ†
0â0} = 1

2 coth(h̄ω j/2kBT ) −
1/2. With this and with the help of (16), we compute
the average energies 〈Ĥ (t )〉 of the nonstationary cavity
at each of the four strokes of the Otto cycle. Since we
use an STA, these values coincide with the ones ob-
tained during the slow adiabatic process [50]. The mean
work 〈W 〉, calculated as tr{ρ̂
Ĥ} with 
Ĥ the change in
the Hamiltonian [19], during the compression and expan-
sion strokes is 〈W 〉comp = h̄

2 (ω2 − ω1) coth(h̄ω1/2kBTc) and
〈W 〉exp = h̄

2 (ω1 − ω2) coth(h̄ω2/2kBTh), respectively. Then,
the total work per (finite-time) cycle, 〈W 〉comp + 〈W 〉exp,
equals the work output in the slow adiabatic cycle. This
expected result confirms that we have used an STA in the
thermodynamic cycle. When computing the corresponding
engine’s efficiency, without the cost of the STA, one gets the
maximum possible value η = 1 − ω1/ω2 at finite power [17].
Of course, to be fair with the slow adiabatic cycle, we still
need to consider the thermodynamic cost of implementing
the shortcut [17–21,54]. However, there is still an ongoing
debate on how to compute this cost correctly and, just as
important, how to incorporate it into the engine’s efficiency
(see Ref. [14]). Interestingly, any proposal willing to use the
counterdiabatic term Ĥ1(t ) to compute the cost of the STA will
tell us that the energetic cost of producing photons out of the
vacuum is related to the cost of the shortcut since Ĥ1(t ) is the
same as the squeezing term of the dynamical Casimir effect.

IV. CONCLUSIONS

We show that with the effective Hamiltonian approach of
quantum optics, one can quickly identify that the counterdia-
batic term of a shortcut to adiabaticity associated with the
time-dependent quantum harmonic oscillator equals (with the
opposite sign) the squeezing term inherent to the dynamical
Casimir effect. We exhibit the combat between the nonadia-
batic evolution generated by the DCE and the STA, the latter
trying to enforce an adiabatic dynamic at all times. We con-
firm the equivalence between the adiabatic and nonadiabatic
work outputs when using an STA in a quantum thermody-
namic cycle. We also show that the energy cost of producing
photons from the vacuum can be related to the shortcut cost.
As we mainly deal with ladder operators, these results may
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be difficult to obtain only with the position and momentum
operators, predominately used in the STA literature. Finally,
it would be interesting to see other counterdiabatic Hamilto-
nians, believed to be challenging to implement, and look for
their effective Hamiltonian counterpart and vice versa.
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