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Relaxed Bell inequality as a trade-off relation between measurement dependence and hiddenness
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Quantum correlations that violate the Bell inequality cannot be explained by any local-hidden-variable theory
that is measurement independent. However, this violation merely signifies the incompatibility of the underlying
assumptions of reality, locality, and measurement independence, without providing a quantitative measure
of the extent to which each assumption is violated. In contrast, Hall introduced a measure for each of the
following assumptions: indeterminism, signaling, and measurement dependence, and Hall also generalized the
Bell-Clauser-Horne-Shimony-Holt inequality, which provides a quantitative trade-off relationship between these
assumptions. In this paper, we consider the introduction of hidden variables to be an essential assumption of
Bell’s theorem and introduce a quantification of hidden variables, which we term “hiddenness.” We derive a
trade-off relation between hiddenness and measurement dependence that applies to any local-hidden-variable
theory.

DOI: 10.1103/PhysRevA.108.022214

I. INTRODUCTION

In 1964, Bell made a surprising discovery that quantum
correlations cannot be explained by local realism [1,2]. He
introduced an inequality satisfied by all local-hidden-variable
models and showed that there are quantum correlations that
violate the inequality when an appropriately chosen set of
measurements is made. The inequality is now known as the
Bell inequality, and the sequence of results is referred to as
Bell’s theorem [3]. Importantly, the quantities appearing in
the inequality are made up of measurable values (expected
values or probabilities). As a result, these inequalities can
be directly verified through experiments. Since the discov-
ery of Bell’s theorem, many experiments have confirmed
(along with the verification of various loopholes) that certain
quantum correlations violate the inequality as predicted by
quantum theory [4–10]. Consequently, it is widely believed
that quantum theory is correct and, more importantly, that
phenomena that cannot be explained by local realism indeed
exist. Subsequently, these quantum correlations have been
found to be useful resources for various areas of quantum
information processing, such as quantum computers, quantum
teleportation, and quantum cryptography [11,12]. Notably, the
experimental fact of the violation of the Bell inequality is
recognized as the key feature that makes some information
processes completely secure, such as key distribution [13–15]
and random-number generation [16,17].

In Bell’s argument, however, the violation of the Bell
inequality tells us just that the underlying assumptions are
logically incompatible. In particular, nothing can be said about
how much each assumption must be violated to explain the
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experimental facts. In addition, clarifying the assumptions
behind Bell’s theorem is not very obvious because some of
them are often implicit and can also vary between studies.
In Bell’s original paper [1], he explicitly assumed (i) deter-
minism and (ii) locality in hidden-variable models. There is
also another essential assumption that is often “overlooked”;
namely, (iii) the choice of measurement setting is independent
of the hidden variable [18–21], usually reflecting the existence
of “free will” or true randomness.1 Hence, Hall proposed
quantitative measures for these three assumptions, referring
to them as indeterminism I , signaling S, and measurement
dependence M, respectively. Moreover, he successfully gen-
eralized the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH)
inequality [23] that provides a trade-off relation between the
empirical value C (the CHSH value) and measures I , S, and
M in the simplest Bell scenario (with binary measurement
settings and binary outcomes) [24,25]. To the best of our
knowledge, this was the first attempt to shed light on Bell’s
theorem in this way.

Subsequently, several works appeared to follow this line
of research. Another relaxed Bell inequality was derived for
models in which only one party can violate measurement
independence [26] and was further generalized in [27] by
the introduction of the measures for measurement depen-
dence for each party. In [28], the authors discovered a relaxed
Bell inequality in any local model, which includes the upper
and lower bounds of the probability of measurement con-
texts. Their finding shows that an arbitrarily small amount of
measurement independence is sufficient to manifest quantum

1Strictly speaking, we also assume that the measurement choice
can be described by a probability theory. In contrast, free will that
happens noncausally [22] regardless of whether it can be described
by a probability theory has also been discussed.
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nonlocality. Hall and Branciard observed a related relaxed
Bell inequality and discussed quantum nonlocality within the
context of both causal and retrocausal models [29]. Ghadimi
considered a model that relaxed the signaling property (usu-
ally referred to as parameter dependence [3,30] or active
nonlocality [31]) and derived another relaxed Bell inequality
[32].

The significance of these studies extends to applications in
informatics, where the underlying variables can be interpreted
as potential resources for eavesdroppers. Koh et al. showed
a trade-off relation between the CHSH value, the guessing
probability, and the free-will parameter (related to the mea-
surement dependence introduced above) with the application
of secure randomness expansion [33].

However, the very assumption of introducing hidden vari-
ables has not been subject to quantification thus far. We claim
that this assumption should also be quantitatively measured
as one of the fundamental underlying assumptions in Bell’s
theorem. In this paper, we introduce such a measure by H =
#(�) − 1, where #(�) is the size (i.e., the cardinality) of the
set of hidden variables � and H refers to the “hiddenness.” If
the variable is in the hands of the eavesdropper, the measure
can be interpreted as the amount of information he or she
can store. We derive a trade-off relation (Theorem 1) between
H and measurement dependence M which is satisfied for all
(measurement-dependent) local models [28]. In the case of
M = 0 (measurement independent), the relation recovers the
Bell-CHSH inequality. On the other hand, with the observed
data that violate the Bell-CHSH inequality, M and H have a
trade-off relation: To decrease M, H must increase and vice
versa. Interestingly, the trade-off relationship saturates when
H � 3 and coincides with Hall’s inequality [25] in the case
of local models. Therefore, this result is also a generalization
of Hall’s inequality for local models. We also show that our
inequalities describe the necessary and sufficient condition of
a local model in the sense that not only do all local models
satisfy them but also there is a local model for which M and
H satisfy the inequalities.

To demonstrate these results, we technically derive the
optimal CHSH value Copt [see (17)] that can be attained by
some local model and establish the lower and upper bounds
of Copt with given measurement dependence M and hidden-
ness H (Propositions 1 and 2). While the upper bound gives
the trade-off relation mentioned above, the lower bound also
gives a quantitative estimate of the fact that the violation
of the Bell-CHSH inequality can still be explained by a
local-hidden-variable model if we relax the measurement-
independence assumption.

This paper is organized as follows: In Sec. II, we provide a
brief introduction of hidden-variable theory and the measure
for hiddenness. In Sec. III, we show a relaxed Bell inequality
as a trade-off relation with the measurement dependence and
hiddenness. In Sec. IV, we construct tight models that attain
the equality of our trade-off relation. Finally, in Sec. V, we
present our conclusion and discussion.

II. MEASURE FOR HIDDENNESS

Let us consider a bipartite physical system A and B (for
Alice and Bob) in which the measurements are supposed to

be performed in spacelike separated regions. The experimen-
tally accessible probability is the set of joint probabilities
p(a, b|x, y), where x and y denote the measurements per-
formed by Alice and Bob and a and b denote their respective
outcomes. In the hidden-variable theory, we introduce a hid-
den variable λ ∈ � so that the empirical joint probabilities are
obtained by averaging over the hidden variable:

p(a, b|x, y) =
∑
λ∈�

p(λ|x, y)p(a, b|x, y, λ), (1)

where p(λ|x, y) is the probability of λ given the values of
(x, y) and p(a, b|x, y, λ) represents the joint probability of
the outcome (a, b) given the values of (x, y) and λ. Notice
that one should replace the summation to the integral in the
general situation. However, a nontrivial structure arises when
we consider a model in which the size (i.e., cardinality) of
the set � of hidden variables is finite. Bearing this in mind,
we use a summation symbol for the hidden variables, except
in Appendix B, where we provide a proof for (continuously)
infinite models. In order to prove the Bell inequality, we need
to assume both the locality condition and the measurement
independence: The locality condition states that the out-
comes a and b with fixed λ are statistically independent, i.e.,
p(a, b|x, y, λ) = p(a|x, λ)p(b|y, λ). (It is worth noting that the
locality condition is equivalent to assuming both parameter
independence and outcome independence [3,30,31].) On the
other hand, measurement independence asserts that the mea-
surement context (x, y) and λ are independent: p(λ|x, y) =
p(λ). To summarize, in the context of local-hidden-variable
theory with measurement independence, the following equa-
tion holds true:

p(a, b|x, y) =
∑
λ∈�

p(λ)p(a|x, λ)p(b|y, λ). (2)

In this paper, we relax the measurement independence and
consider a (measurement-dependent) local model [28]:

p(a, b|x, y) =
∑
λ∈�

p(λ|x, y)p(a|x, λ)p(b|y, λ). (3)

Following Ref. [20], we shall use the same measure for the
measurement dependence:

M := sup
x,y,x′,y′

∑
λ

|p(λ|x, y) − p(λ|x′, y′)|. (4)

Note that 0 � M � 2 and M = 0 if and only if the model is
measurement independent. However, it is useful to express
M in terms of the total variation distance [34] (sometimes
known as the trace distance [11] or the Kolmogorov distance
[35,36]) as follows. The total variation distance between two
probability measures P and Q is defined as

δ(P, Q) := sup
E

|P(E ) − Q(E )|, (5)

where the supremum is taken over all the events E ⊂ �. In the
discrete model � = {λ1, λ2, . . . }, it is easy to see the relation
δ(P, Q) = 1

2

∑
λ |pλ − qλ|, where P and Q are given by the

probability distributions (pλ)λ∈� and (qλ)λ∈�, respectively.
Therefore, we can express M as

M = 2 sup
x,y,x′,y′

δ(Pxy, Px′y′ ), (6)

022214-2



RELAXED BELL INEQUALITY AS A TRADE-OFF … PHYSICAL REVIEW A 108, 022214 (2023)

where Pxy = [p(λ|x, y)]λ∈� denotes the probability distribu-
tion for λ with the measurement context (x, y).

As mentioned previously, the introduction of hidden vari-
ables is one of the essential assumptions underlying Bell’s
theorem. Therefore, we believe it is important to quantify this
assumption in order to understand its meaning. In this paper,
we introduce the following simple measure H , which we term
hiddenness:

H := #(�) − 1, (7)

where #(�) is the cardinality of the set �. Obviously, H � 0
and takes only a discrete natural number (including infinity).
This measure quantifies the degree to which we need to in-
troduce hidden variables in order to explain the empirical
statistics. Another interpretation is the memory size available
to the eavesdropper if the hidden variable is in his or her
possession.

The minimum case, where H = 0, corresponds to a trivial
scenario where there is only one elementary event for the hid-
den variable. This essentially means there is no introduction
of any hidden variable. The simplest, but nontrivial, case is
H = 1, where there are two hidden elementary events, � =
{λ1, λ2}. This scenario is logically possible because one can
imagine a world with a “hidden coin” (e.g., λ1 = “tails” or
λ2 = “heads”). Similarly, for H = 2, 3, . . ., we need 3, 4, . . .

hidden elementary events for the hidden variable, respectively.
The following section introduces a relaxed Bell inequality that
establishes a trade-off relation between M and H , which holds
in all local models.

III. RELAXED BELL INEQUALITY

In this section, we examine the simplest Bell scenario,
often referred to as the CHSH setting, which involves binary
measurement settings x, y = 0, 1 and binary measurement
outcomes a, b = ±1. As an experimentally accessible quan-
tity, we consider the CHSH value defined by

C := 〈00〉 + 〈01〉 + 〈10〉 − 〈11〉, (8)

where 〈xy〉 := ∑
a,b=±1 ab p(a, b|x, y) (x, y = 0, 1) denotes

the expectation value of the product of the measurement out-
comes for joint measurement setting (x, y). It is well known
[23] that for any measurement-independent local-hidden-
variable model (2), the CHSH value is always bounded from
above by 2, which is known as the Bell-CHSH inequality:

C � 2. (9)

It should be emphasized that Bell-CHSH inequalities [the set
of eight inequalities obtained by taking the absolute value and
changing the position of the minus sign in (8)] provide not
only a necessary condition but also a sufficient condition for
the statistics to be explainable by measurement-independent
local-hidden-variable models [37]. This fact causes Bell-
CHSH inequalities to be of special interest.

Our main finding is the following.
Theorem 1. For any local model,

C � min[H, 3]M + 2 (10)

FIG. 1. The upper bound of the CHSH value C in (10) is plotted
as a trade-off relation between H and M. The red dashed line cor-
responds to the maximal violation of the Bell-CHSH inequality in
quantum systems: C = 2

√
2. The region above the blue dot-dashed

line is a trivial violation: C = 4.

(in addition to the trivial bound C � 4).2 The inequality is
tight in the sense that there is a local model that can attain
the equality in (10).

Inequality (10) is a generalization of Bell-CHSH inequality
since it recovers the inequality by setting M = 0 (measure-
ment independence). In general, it provides a trade-off relation
between the CHSH value C, measurement dependence M,
and hiddenness H . With a given violation of the Bell-CHSH
inequality (C > 2), one can estimate the trade-off between M
and H : The less hiddenness H there is, the more measure-
ment dependence M is required and vice versa (see Fig. 1).
Suppose, for instance, that we observe the maximum vio-
lation of the Bell-CHSH inequality in quantum theory, i.e.,
the Tsirelson bound C = 2

√
2 � 2.8. Then, for H � 3, one

should give up measurement independence of at least M =
2
3 (

√
2 − 1) � 0.276. For H = 2, M should be greater than or

equal to
√

2 − 1 � 0.414, and for H = 1, M � 2(
√

2 − 1) �
0.828.

An immediate corollary of Theorem 1 is that, for any local
model,

C � 3M + 2. (11)

This fact was previously observed by Hall [25], and therefore,
the relation (10) generalizes his result for local models. Since
this holds for any H , an ultimate lower bound for M exists:

C − 2

3
� M (⇔ C � 3M + 2). (12)

2Hence, the inequality can be written as C � min [ min[H, 3]M +
2, 4]. We adopt the form (10) just to avoid this ugly expression.
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Note that the case H = 0, which essentially corresponds to a
local model without the introduction of hidden variables, also
gives the Bell-CHSH inequality.

It would be interesting to consider the implications of our
results for information security. For example, let us imagine
that the hidden variable is in the possession of an eavesdropper
and that H corresponds to the size of an exploitable infor-
mation source. Our results suggest the following: In order to
cheat legitimate users with an apparent violation of the Bell
inequality based on a local model, the eavesdropper has to
have great control over the measurements of the legitimate
users if the memory size H is small. Conversely, if the eaves-
dropper has a large H , he or she does not need to worry much
about controlling the measurements. Interestingly, however,
there is a threshold (H � 3) beyond which the measurement
dependence M cannot be reduced any further.

In the following, we provide a proof of Theorem 1 in
two steps: First, we introduce the optimal CHSH value Copt

that can be achieved by a local model. Second, we establish
the tight upper bound (as well as the tight lower bound) for
Copt, which yields (10). Although the proof is done with a
discrete model, the result is still valid for an uncountable
model [#(�) = ∞], which saturates to (12). However, since
the proof requires a slightly different approach for the un-
countable case, it is presented in Appendix B.

A. Optimal CHSH value for the local model

Using local expectation values Ax := ∑
a ap(a|x, λ) (x =

0, 1) and By := ∑
b bp(b|y, λ) (y = 0, 1), the CHSH value (8)

for any local model (3) is given by

C =
∑

λ

(z1A0B0 + z2A0B1 + z3A1B0 − z4A1B1), (13)

where zi := p(λ|i) and i = 1, 2, 3, 4 corresponds to the
measurement context (x, y) = (0, 0), (0, 1), (1, 0), (1, 1), re-
spectively. [In what follows, we often use the same labeling i
for measurement contexts (x, y) for convenience.] Notice here
that all λ dependences in Ax, By, and zi are omitted. We have
a tight inequality:

C �
∑

λ

(
4∑

i=1

zi − 2 min
i

zi

)
(14)

from the following lemma.
Lemma 1. For any positive tuple z := (z1, z2, z3, z4) ∈ R4,

we have

max
A,A′∈[−1,1]
B,B′∈[−1,1]

(z1AB + z2AB′ + z3A′B − z4A′B′) (15)

= g(z) :=
4∑

i=1

zi − 2 min
i

zi. (16)

See Appendix A for the proof. Now we introduce the
optimal CHSH value for local models as

Copt := max
p(a|x,λ),p(b|y,λ)

C.

By utilizing the normalization condition, i.e.,∑
j

∑
λ p(λ| j) = ∑

j 1 = 4 and (14), we have an alternative

form:

Copt =
∑

λ

g(z) = 4 − 2
∑

λ

min
i

p(λ|i). (17)

We observe the trivial inequality Copt � 4 directly from this
form. It also can be shown that the equality is attained by
appropriate local probabilities p(a|x, λ) and p(b|y, λ) such
that they attain the maximums in Lemma 1 for each λ.

In the subsequent sections, we derive the lower and upper
bounds of Copt with given H and M. The trivial case with H =
0 is described separately here. This case can be described by
introducing a trivial set of hidden variable, i.e., a singleton set
� = {λ1}, so that

p(a, b|x, y) = p(a|x, λ1)p(b|y, λ1) (18)

and p(λ1|x, y) = 1 for all x, y. Since M = 0 is always satisfied
in this case, the measurement dependence will not occur.
We also have Copt := 4 − 2 mini p(λ1|i) = 2. Hence, only the
case

M = 0, Copt = 2 (19)

is possible for the trivial case H = 0.
For nontrivial cases where H = 1, 2, 3, . . . , measurement

dependence M can take any value in the range [0,2]. However,
we will see below that nontrivial lower and upper bounds of
Copt appear.

B. Lower bound of Copt for the local model

Proposition 1. For any local model,

M + 2 � Copt. (20)

The inequality is tight.
Proof. We use the same notation zi := p(λ|i) and the label-

ing i = 1, 2, 3, 4 for (x, y) = (0, 0), (0, 1), (1, 0), (1, 1) as in
the previous section. Recalling the definition (4), let i1 < i2 ∈
{1, 2, 3, 4} such that

M =
∑

λ

|zi1 − zi2 |.

Adding the normalization conditions
∑

λ zi3 = ∑
λ zi4 =

1, where i3 < i4 ∈ {1, 2, 3, 4} \ {i1, i2}, we observe
M + 2 = ∑

λ(|zi1 − zi2 | + zi3 + zi4 ) � ∑
λ max[(zi1 − zi2 +

zi3 + zi4 ), (−zi1 + zi2 + zi3 + zi4 )]. The last expression
is bounded from above by Copt since Copt = ∑

λ g(z) =∑
λ max[z1 + z2 + z3 − z4, z1 + z2 − z3 + z4, z1 − z2 + z3 +

z4,−z1 + z2 + z3 + z4].
The tightness of the inequality will be shown in Sec. IV. �
Proposition 1 shows that for any given measurement de-

pendence M ∈ [0, 2], a local hidden-variable model in which
the CHSH value can reach M + 2 exists. This reflects the often
overlooked fact that a Bell inequality can be violated even by
a local-hidden-variable model if measurement independence
is relaxed [18–21].
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FIG. 2. Relation between the measurement dependence M and the optimal CHSH value Copt for local models with (a) H = 1, (b) H = 2,
and (c) H � 3. The blue shaded regions are feasible regions in local models.

C. Upper bound of Copt for the local model

Proposition 2. For any local model,

Copt �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 (H = 0),
M + 2 (H = 1),

2M + 2 (H = 2),
3M + 2 (H � 3).

(21)

The inequalities are tight.
Since there always exists a local model in which the CHSH

value reaches Copt, this result proves Theorem 1.
In particular, for H = 1 [#(�) = 2] together with Proposi-

tion 1, we have

Copt = M + 2. (22)

Namely, in this case, the optimal CHSH value and M have a
one-to-one relation [see Fig. 2(a)].

Proof for H = 0. We have already shown (19), so the
relation trivially holds.

For H = 1, we provide a direct proof of (22) [i.e., (20) and
(21) simultaneously].

Proof for H = 1. Let � = {λ1, λ2}. We denote for each
i = 1, 2, 3, 4, zi := p(λ1|i), so by the normalization condi-
tion, 1 − zi = p(λ2|i). Without loss of generality, we can
assume z1 � z2 � z3 � z4 � 0. Noting that |z1 − z4| + |(1 −
z1) − (1 − z4)| = 2(z1 − z4), etc., it is easy to see that M =
2(z1 − z4). Letting wi = ∑4

j=1 z j − 2zi (i = 1, 2, 3, 4) and in-
voking (17), we have Copt = 4 − 2[mini zi + mini(1 − zi)] =
2 − 2z4 + 2z1. Therefore, we have shown the equality Copt =
2 + M. �

In what follows, we let n = H − 1 = #(�) (n � 3) and
label a hidden variable as � = {1, 2, . . . , n} instead of writing
� = {λ1, λ2, . . . , λn}.

Proof for H = 2, 3. To prove the cases H = 2, 3
(n = 3, 4), we use the following lemma.

Lemma 2. For n = 3, 4, there exist i∗, j∗ = 1, 2, 3, 4 and
λ∗ = 1, 2, 3 such that

n∑
λ=1

p(λ|iλ) + (n − 1)|p(λ∗|i∗) − p(λ∗| j∗)| � 1, (23)

where iλ ∈ {1, 2, 3, 4} denotes an index which attains the min-
imum of p(λ|i):

p(λ|iλ) = min
i

p(λ|i). (24)

The proof of this lemma is given in Appendix A.
By using (6), (17), and the notation (24), inequality (21)

for H = 2, 3 (n = 3, 4) can be rewritten as

n∑
λ=1

p(λ|iλ) + (n − 1) max
i, j

δ(Pi, Pj ) � 1, (25)

where Pi = [p(λ|i)]λ∈�. Let i∗, j∗, λ∗ be a set with which (23)
is satisfied in Lemma 2. Then, we have

n∑
λ=1

p(λ|iλ) + (n − 1) max
i, j

δ(Pi, Pj )

�
n∑

λ=1

p(λ|iλ) + (n − 1)δ(Pi∗ , Pj∗ )

�
n∑

λ=1

p(λ|iλ) + (n − 1)|p(λ∗|i∗) − p(λ∗| j∗)| � 1. (26)

In particular, the second inequality follows by invoking the
definition of the total variation distance in the form (5) and
applying the singleton event E = {λ∗}. �

The cases with H � 4 will be proved by reducing the
problems to the case with H = 3 in the following manner.

Proof for H � 4. In a similar manner, what we have to
show is that, for n � 5,

n∑
λ=1

p(λ|iλ) + 3 max
i, j

δ(Pi, Pj ) � 1. (27)

022214-5



GEN KIMURA, YUGO SUSUKI, AND KEI MORISUE PHYSICAL REVIEW A 108, 022214 (2023)

TABLE I. Tight model for H = 1 (p ∈ [0, 1]).

λ P00 P01 P10 P11

λ1 0 p p p
λ2 1 1 − p 1 − p 1 − p

We define the partition of � = {1, 2, . . . , n} by

Eγ = {λ ∈ � | iλ = γ } (γ = 1, . . . , 4).

[Recall the notation (24).] Clearly, we have ∪γ Eγ =
�, Eγ ∩ Eγ ′ = ∅ (γ �= γ ′). Some of Eγ could be the
empty set. Now, we introduce a new set of hidden variables
� = {γ }γ=1,2,3,4 with coarse-grained probabilities P̃i =
[ p̃(γ |i)]γ for each measurement context i = 1, . . . , 4, where
p̃(γ |i) := Pi(Eγ ) = ∑

λ∈Eγ
pi(λ|i). Following the notation

(24), we denote ĩγ ∈ {1, 2, 3, 4} (γ ∈ �), with which it holds
that p̃(γ |ĩγ ) = mini=1,2,3,4 p̃(γ |i). However, by the definition
of Eγ , we can assume ĩγ = γ for all γ . To see this, we need
to show p̃(γ |γ ) � p̃(γ |i) for any γ and i. But p̃(γ |γ ) =
Pγ (Eγ ) = ∑

λ∈Eγ
p(λ|γ ). Since iλ = γ for any λ ∈ Eγ ,

we have
∑

λ∈Eγ
p(λ|γ ) = ∑

λ∈Eγ
p(λ|iλ) � ∑

λ∈Eγ
p(λ|i) =

Pi(Eγ ) = p̃(γ |i). Applying Lemma 2 with n = 4 for � [noting
#(�) = 4], p̃, and ĩγ , there exist i∗, j∗, γ∗ = 1, . . . , 4 such that

4∑
γ=1

p̃(γ |ĩγ ) + 3| p̃(γ∗|i∗) − p̃(γ∗| j∗)| � 1. (28)

Since ĩγ = γ and iλ = γ for λ ∈ Eγ , we have

4∑
γ=1

p̃(γ |ĩγ ) =
4∑

γ=1

∑
λ∈Eγ

p(λ|γ ) =
n∑

λ=1

p(λ|iλ). (29)

By applying the events Eγ in the original definition of the
total variation distance (5), we have

max
i, j

δ(Pi, Pj ) � |Pi∗ (Eγ∗ ) − Pj∗ (Eγ∗ )|
= | p̃(γ∗|i∗) − p̃(γ∗| j∗)|. (30)

The combination of (28), (29), and (30) implies (27).
The tightnesses for all of the cases above will be shown in

the next section. �

IV. TIGHT MODELS

In this section, we demonstrate the tightnesses of inequal-
ities in both Propositions 1 and 2 by constructing explicit
models of p(λ|x, y) that achieve equalities. Since there is a
local model with some p(a|x, λ) and p(b|y, λ) that achieves
Copt, this demonstrates the tightness of Theorem 1.

Note that the case with H = 0 trivially attains the bounds
shown in (19). In the following, we show the tightnesses for
the upper bounds in Proposition 2 for the cases with H = 1, 2
and H � 3.

Case with H = 1. Let � = {λ1, λ2}. Let Pxy =
[p(λ|x, y)]λ∈� be given by Table I with a one-parameter
p ∈ [0, 1]. For this model, we have Copt = 2p + 2 and
M = 2p. Hence, Copt = M + 2, where M runs over [0,2] for
p ∈ [0, 1].

TABLE II. Tight model for H = 2.

λ P00 P01 P10 P11

p ∈ [0, 1/2]

λ1 0 p p p
λ2 p 0 p p
λ3 1 − p 1 − p 1 − 2p 1 − 2p

p ∈ [1/2, 1]

λ1 0 1 − p 1 − p 2p − 1
λ2 p 0 p 1 − p
λ3 1 − p p 0 1 − p

Case with H = 2. Let � = {λ1, λ2, λ3}. Let Pxy =
[p(λ|x, y)]λ∈� be given by Table II with a one-parameter p ∈
[0, 1]. For this model, we have Copt = 4p + 2 and M = 2p for
p ∈ [0, 1/2]; hence, Copt = 2M + 2, where M runs over [0,1].
And we have Copt = 4 and M = 2p for p ∈ [1/2, 1]; hence,
Copt = 4, where M runs over [1,2].

Case with H � 3. Let � = {λ1, λ2, λ3, λ4, . . .}. Let Pxy =
[p(λ|x, y)]λ∈� be given by Table III with a one-parameter p ∈
[0, 1]. For this model, we have Copt = 6p + 2 and M = 2p
for p ∈ [0, 1/3]; hence, Copt = 3M + 2, where M runs over
[0, 2/3]. And we have Copt = 4 and M = 2p for p ∈ [1/3, 1];
hence Copt = 4, where M runs over [1,2].

Next, the lower bound in Proposition 1 can be attained
with the model given in Table I with the trivial addition of
p(λ|x, y) = 0 for λi (i � 3).

Moreover, we can show that the regions between the lower
and upper bounds of Copt are feasible for any M and H .
Technically, this is far from trivial since both M and Copt are
not affine functions of p(λ|x, y) in general. However, for the
probabilities given in Table I (with a trivial extension for any
H � 0) for the lower bound and the ones given in Tables II
and III for the upper bound, we can easily show that both
M and Copt are affine for their convex combination. Hence,
with these special choices of lower and upper bounds, their
convex combinations fill the sandwiched regions. In Fig. 2,

TABLE III. Tight model for H � 3.

λ P00 P01 P10 P11

p ∈ [0, 1/3]

λ1 0 p p p
λ2 p 0 p p
λ3 p p 0 p
λ4 1 − 2p 1 − 2p 1 − 2p 1 − 3p
λ5 0 0 0 0
...

...
...

...
...

p ∈ [1/3, 1]

λ1 0 1−p
2

1−p
2 p

λ2 p 0 1−p
2

1−p
2

λ3
1−p

2 p 0 1−p
2

λ4
1−p

2
1−p

2 p 0
λ5 0 0 0 0
...

...
...

...
...
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the feasible regions for M and Copt given H are shown by blue
shaded regions.

V. CONCLUSION AND DISCUSSION

In this paper, we have introduced the measure of hidden-
ness H and investigated a trade-off relation between H and
the measurement dependence M for any local-hidden-variable
models. In the CHSH setting, we derived a relaxed Bell in-
equality (10) that generalizes the Bell-CHSH inequality. Note
that the introduction of hiddenness can generalize all known
relaxed Bell’s inequalities to date, especially in terms of the
tightness of these inequalities. For instance, while inequality
(11) was already known to give the tight bound within local
models [25], our results show that the smallest cardinality of
the set of hidden variables to attain the bound must be 4 (or,
equivalently, H = 3). Given its potential impact, this aspect
would hold particular importance for applications in computer
science and also in cryptography. Interestingly, the structure
of the trade-off changes between H � 2 and H � 3: While
the trade-off reduces to Hall’s inequality (11) for H � 3, a
nontrivial dependence for H appears when H � 2. Moreover,
the trade-off relation completely characterizes the range of
measurement-dependent local models.

In the present paper, hiddenness H was introduced simply
by the cardinality of the set of hidden variables, making H
a discrete quantity. In addition, this measure does not reflect
the statistics of the hidden variables. In an upcoming paper
[38], we overcome this disadvantage by introducing another
measure of hiddenness that uses the max entropy. This mea-
sure will provide a better reflection of the hidden-variable
statistics. Furthermore, it would be interesting to generalize
the results obtained in this paper by relaxing the condition of
locality. To do this, we need to introduce measures for both
parameter and outcome dependence.
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APPENDIX A: PROOFS OF LEMMAS

Proof of Lemma 1. Since the objective function
fz(A, A′, B, B′) := z1AB + z2AB′ + z3A′B − z4A′B′ in (15) is
affine for all variable A, A′, B, B′, the maximum is attained by
the extreme points A, A′, B, B′ = ±1. There are four cases to
consider: (I) A = A′, B = B′, (II) A = A′, B = −B′, (III) A =
−A′, B = B′, and (IV) A = −A′, B = −B′. Direct computa-
tions show that in case I f = ±(z1 + z2 + z3 − z4) = ±(z −
2z4), in case II f = ±(z − 2z2), in case III f = ±(z − 2z3),
and in case IV f = ±(z − 2z1), where z := ∑4

j=1 z j . This
shows that

max
A,A′,B,B′∈[−1,1]

fz(A, A′, B, B′) = max
i

|z − 2zi|. (A1)

However, as is easily shown, the maximum is always attained
by a positive z − 2zi. �

Proof of Lemma 2. We provide the proof for n = 3. The
case for n = 4 can be shown in parallel. Assume for all i, j ∈
{1, 2, 3, 4} and λ ∈ {1, 2, 3} that

3∑
λ′=1

p(λ′|iλ′ ) + 2|p(λ|i) − p(λ| j)| < 1. (A2)

There always exists an s ∈ {1, 2, 3, 4} which is different from
all i1, i2, and i3. Moreover, for each λ, one can choose jλ, kλ ∈
{1, 2, 3, 4} such that iλ, jλ, kλ, and s are all different from each
other; that is, for any λ, {iλ, jλ, kλ, s} = {1, 2, 3, 4}.

Applying the case with λ = 1, i = i1, j = j1 to
(A2), one has

∑3
λ′=1 p(λ′|iλ′ ) + 2|p(1|i1) − p(1| j1)| =∑3

λ′=1 p(λ′|iλ′ ) − 2[p(1|i1) − p(1| j1)] = −p(1|i1) +
p(2|i2) + p(3|i3) + 2p(1| j1). Thus, one has

−p(1|i1) + p(2|i2) + p(3|i3) + 2p(1| j1) < 1.

Also, for the case with λ = 1, i = i1, j = k1, one has

−p(1|i1) + p(2|i2) + p(3|i3) + 2p(1|k1) < 1.

Similarly, for λ = 2, 3,

p(1|i1) − p(2|i2) + p(3|i3) + 2p(2| j2) < 1,

p(1|i1) − p(2|i2) + p(3|i3) + 2p(2|k2) < 1,

p(1|i1) + p(2|i2) − p(3|i3) + 2p(3| j3) < 1,

p(1|i1) + p(2|i2) − p(3|i3) + 2p(3|k3) < 1.

Summing all six inequalities above and dividing by 2, one
gets

p(1|i1) + p(1| j1) + p(1|k1) + p(2|i2) + p(2| j2) + p(2|k2)

+ p(3|i3) + p(3| j3) + p(3|k3) < 3.

Since iλ �= jλ �= kλ �= s for all λ ∈ {1, 2, 3}, the left-hand side
can be grouped as

∑
i �=s

3∑
λ=1

p(λ|i) = 3,

which is contradictory and leads to inequality (A2). �

APPENDIX B: PROOF FOR INFINITE MODELS

In this Appendix, we provide a proof of Theorem 1 for
the case of an uncountable local-hidden-variable model with
#(�) = ∞, where inequality (10) reduces to inequality (11).
We need to replace (3) and (4) with

p(a, b|x, y) =
∫

dλp(λ|x, y)p(a|x, λ)p(b|y, λ), (B1)

M := sup
x,y,x′,y′

∫
dλ

∣∣p(λ|x, y) − p(λ|x′, y′)
∣∣, (B2)

where p(λ|x, y) is the probability density of λ conditioned on
the measurement context (x, y).

The idea of the proof is to transform the uncountable
hidden-variable model with #(�) = ∞ into another hidden-
variable model with #(�̃) = 24:

�̃ = {λ̃ = (a0, a1, b0, b1) | a0, a1, b0, b1 = 0, 1}. (B3)
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We introduce the probability distributions on �̃ as

q(a0, a1, b0, b1|x, y) :=
∫

dλp(λ|x, y)p(a0|x = 0, λ)

p(a1|x = 1, λ)p(b0|y = 0, λ)p(b1|y = 1, λ)
(B4)

and a deterministic model given by

q(a, b|x, y) :=
∑

a0,a1,b0,b1=0,1

q(a0, a1, b0, b1|x, y)δaax δbby .

It can easily be shown that p(a, b|x, y) = q(a, b|x, y), and
hence, the CHSH value does not change:

C = C̃.

Let M̃ be the measurement dependence for this new hidden-
variable model on �̃:

M̃ := sup
x,y,x′,y′

∑
a0,a1,b0,b1=0,1

|q(a0, a1, b0, b1|x, y)

− q(a0, a1, b0, b1|x′, y′)|. (B5)

By substituting (B4) into (B5), we have

M̃ = sup
x,y,x′,y′

∑
a0,a1,b0,b1=0,1

∣∣∣∣
∫

dλ[p(λ|x, y) − p(λ|x′, y′)]p(a0|x = 0, λ)p(a1|x = 1, λ)p(b0|y = 0, λ)p(b1|y = 1, λ)

∣∣∣∣
� sup

x,y,x′,y′

∑
a0,a1,b0,b1=0,1

∫
dλ

∣∣∣∣p(λ|x, y) − p(λ|x′, y′)
∣∣∣∣p(a0|x = 0, λ)p(a1|x = 1, λ)p(b0|y = 0, λ)p(b1|y = 1, λ)

= sup
X,Y,X ′,Y ′

∫
dλ

∣∣∣∣p(λ|x, y) − p(λ|x′, y′)
∣∣∣∣

= M,

where we have used the triangle inequality for the integral and the normalization conditions for p(a|x, λ) and p(b|y, λ).
Since the model on �̃ is finite, we have already shown that

C � 3M̃ + 2.

However, as shown above, we have M̃ � M; this completes the proof of (11) in the uncountable model. �
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