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Parametric hypersensitivity in many-body bath-mediated transport: The quantum Rabi model
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We demonstrate that nonequilibrium steady states of the dissipative Rabi model show dramatic spikes in
transport rates over narrow parameter ranges. Similar results are found for the Holstein and Dicke models. This
is found to be due to avoided energy level crossings in the corresponding closed systems, and correlates with
spikes in the entanglement entropy of key eigenstates, a signature of strong mixing and resonance among system
degrees of freedom. Further, contrasting the Rabi model with the Jaynes-Cummings model reveals this behavior
as being related to quantum integrability.
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I. INTRODUCTION

Transport in open quantum systems is of fundamental
interest applicable from chemical processes to quantum tech-
nologies, where the transported quantity could be energy,
charge, or information [1,2]. When complicated many-body
quantum dynamics are subject to dissipative effects (measure-
ment and environmental fluctuations) and/or external driving,
these act to interfere and dephase the wavelike motion, to
supply energy for barrier crossing, and to dissipate energy
along specific pathways. The results are novel dynamical
phenomena not present in closed systems but possible in
nonequilibrium steady states (NESSs) and in metastable ver-
sions of NESSs (long-lived trapped states) [3–6].

Such NESSs are significant and arise, for example, in
photophysical and photochemical processes sustained by sun-
light, an incoherent light source with turn-on/-off timescales
much longer than typical relaxation times relevant to energy
harvesting and vision [7–16]. Our recent simulations of the
steady-state photoisomerization reaction quantum yield of
model rhodopsin (first step in vision) show [17,18] extremely
sensitive dependence on system parameters while the transient
dynamics remain nearly unaffected. This is unexpected and
important given the ongoing enthusiasm for analyzing biolog-
ical systems using a pulsed laser and monitoring the resulting
transient dynamics. Short-time studies miss this hypersensi-
tivity of NESSs to system parameters.

Here we expose the roots of such extreme sensitivity with
a study of a variety of light-matter interaction models and the
corresponding many-body quantum dissipative dynamics. We
start with the open quantum Rabi model, which is a two-level
system (“spin”) bilinearly coupled to a simple harmonic
oscillator (“boson”), each subsystem subject to a separate
environmental interaction. We find that even this basic model
manifests NESSs with transport properties that are extremely
sensitive to parameter variation. Such behavior is also present
in a number of related models detailed in Appendix A. Some
unrelated systems [19,20] have also presented an interesting,
somewhat different transport rate sensitivity, discussed in
Appendix A. We demonstrate that in each of our cases,

a dramatically altered NESS transport in the open system
corresponds to low-energy avoided crossings (LACs) in the
closed-system spectrum, and that the entanglement entropy
of key eigenstates spikes at precisely the same parameter
values. We also show that this parametric dependence of
NESSs is related to the integrability of the system. The
Jaynes-Cummings (JC) model, which has greater symmetry
than the Rabi model, and is therefore more integrable, does
not have this sensitive parametric dependence. Although
the main investigation used the Lindblad open quantum
system formalism, valid assuming a weakly interacting
Markovian environment, similar results were found under
generalizations in the nonsecular and multibath Redfield
formalism framework as detailed in Appendix E [21].

II. OPEN RABI SYSTEM RESULTS

The Lindblad master equation dynamics for the
reduced—i.e., after tracing out environmental degrees of
freedom—density matrix ρ is

ρ̇(t ) = Lρ(t ) = (Lsys + Ls + Lb)ρ(t )

= −i[Hsys, ρ(t )] +
∑

y=s,b

Lyρ(t )L†
y − 1

2
{L†

y Ly, ρ(t )}, (1)

where L are the Liouvillian superoperators. The quantum
Rabi Hamiltonian is

Hsys = �

2
σz + ωa†a + λσx(a† + a), (2)

with σi the Pauli matrices, and a†, a the creation and
annihilation operators. The parameters � and ω set energy
scales for the spin and the boson degrees of freedom (DOFs),
respectively, and λ is the coupling strength between the two.
We are interested in the steady-state density operator ρss for
this system under generalized measurement, including
environmental decoherence. This dissipative coupling
is induced by two Lindblad operators Ls = √

rsσ− and
Lb = √

rba, and it introduces finite lifetimes (r−1
s and r−1

b )
for excitations of the two DOFs. [In the λ � min(rb, rs) limit,
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FIG. 1. (a) Steady-state spin flux Js for the open quantum Rabi model as a function of the model parameters �̃ = �/ω and λ̃ = λ/ω. (b) Js

at λ̃ = 0.2 and λ̃ = 1. The Lindblad rates are set to (rs, rb)/ω = (5 × 10−12, 5 × 10−6) and the flux is in units of rs.

care must be taken with the use of Eq. (1) as the bath-induced
dissipation becomes nonperturbative.]

We solve Eq. (1) for the steady states ρss satisfying
ρ̇(t ) = 0. This is done by expressing the quantum Rabi
Hamiltonian in the number basis of the harmonic oscillator
and truncating at Nb = 20 (further increasing Nb yields the
same results). The steady-state solution can be found by
normalizing the (single) null vector of the corresponding
Liouvillian, which is also confirmed by numerically
propagating a selection of physical initial states to a timescale
much longer than r−1

s and r−1
b . It should be noted that the

system ground state is typically not the NESS state, since
the local Lindblad formalism does not conform with detailed
balance [22]. Transport rates are studied via the steady-state
spin flux Js ≡ Trs[Trb[Lsρss]σz]/2 [23].

Figure 1(a) shows Js as a function of the two independent
parameters �̃ = �/ω and λ̃ = λ/ω, where each unique pair
{�̃, λ̃} corresponds to a different NESS. The spin flux is seen
to depend in very structured ways on system parameters: (a)
there are narrow dips in the limit λ̃ → 0 at odd integer values
of �̃, except for �̃ = 1, which shows a broad dip, and this is
most pronounced for �̃ = 3, 5; (b) as λ̃ increases, dips appear
at �̃ ≈ 7, 9, . . . and all dips shift to smaller values of �̃; (c)
the dips flatten with increasing λ̃; (d) secondary and tertiary
dips with �̃ � 7, of lower intensity and narrower line shapes,
also exist. Two different slices across this figure are plotted in
Fig. 1(b) showing Js as a function of �̃ for λ̃ = 0.2, 1.

We have observed similar sharp parametric sensitivity of
transport rates in several other many-body open quantum
model systems including a generalization of the Rabi model
to a few-level system coupled to a harmonic oscillator, the
few-atom Dicke model, and the few-site Holstein models,
where we used a variety of open system setups. These are
summarized in Appendix A. Notably, in the JC model, for its
few-level and few-spin generalizations, there is no parametric
sensitivity.

III. THE ROLE OF LOWEST AVOIDED CROSSINGS

To unravel the mechanism behind these unusual transport
rate dips, we turn to the energy eigenvalues of the correspond-
ing closed many-body system. In Fig. 2 we show the energy
eigenvalues as functions of �̃ for the same two λ̃ ∈ {0.2, 1}
slices. This spectrum changes in a complicated fashion with
�̃. It is easier to understand this if we label the eigenval-
ues according to their parity (dashed lines are positive parity
and solid lines are negative parity), which is the eigenvalue
of the parity operator P̂ = σz ⊗ ∑

n(−1)n|n〉〈n|, where |n〉 =
(a† )n√

n!
|0〉 is the nth excited state of the boson DOF. The focus on

parity is motivated by a critical difference between the JC and
Rabi models, which we discuss in more detail below. For the
Rabi model, we see directly the important role of parity: lines
of different parities tracing eigenvalues as functions of sys-
tem parameters can cross freely (are degenerate at crossings),
while those of the same parity avoid crossings (are prevented
from degeneracy); these avoided crossings are indicated by
diamonds.

The parametric dips in transport rates in Fig. 1 occur at the
LAC in Fig. 2. The LACs for λ̃ = 0.2 are at odd integer values
of �̃, as are the dips of Js(�̃). Further, the secondary struc-
ture of Js(�̃, λ̃) is also related, since the secondary dips for
Js(�̃, λ̃ = 1) in Fig. 1(b) coincide with the second lowest en-
ergy avoided crossings in Fig. 2(b). Lastly, the prominence of
the dips correlates with the size and sharpness of the avoided
crossings, as defined by either dip width (e.g., comparing the
widths of the three dips at �̃ ≈ 1, 3, 5 for λ̃ = 0.2) or dip
magnitude (e.g., comparing the main and the secondary dips
for λ̃ = 1). Thus, the parametric spikes are seen to arise due
to resonant coupling between the two DOFs comprising the
same parity eigenstates of the closed system, which are then
exploited by the open system dynamics.

Only the LACs contribute, which is consistent with our
understanding that for a zero-temperature environment only
the low-lying part of the spectrum matters. Notably, as shown
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FIG. 2. Low-lying energy levels of the Rabi model as functions of �̃. Solid lines represent positive parity, and dashed lines represent
negative parity. Diamonds mark the locations of energy avoided crossings. (a) λ̃ = 0.2. (b) λ̃ = 1. All values are in units of ω.

in Fig. 2(a), which specific pair of states are the LAC is
dependent on �̃.

A. Entanglement entropy and transport

To further probe the quantitative connection between open
system transport and closed system properties, we consider
the entanglement entropy of the LAC eigenstates of the Rabi
model. The entanglement entropy measures the mixing in a
given state among various DOFs of the system. For a pure
state |k〉 in the Hilbert space of the quantum Rabi model, it is
natural to define the entanglement entropy through

Sk = −Trb[ρk,s log ρk,s] = −Trs[ρk,b log ρk,b], (3)

where ρk,s = Trb|k〉〈k| and ρk,b = Trs|k〉〈k|. By construction,
a product state has zero entanglement entropy, whereas finite
entropy indicates mixing, with its magnitude indicating the
strength of the resonant interaction between the spin and the

boson DOFs. Figure 3(a) shows Sk for the red LAC state in
Fig. 2(a), compared to the NESS spin flux Js(�̃). We find
excellent agreement between the dip locations for the two.
Figure 3(b) highlights both these primary dip states as well
as the sequence of states tracking the second lowest energy
avoided crossings (all of negative parity), indicated by the blue
line in Fig. 2(b), associated with the secondary dips shown
in Fig. 1. For λ̃ = 1 in particular, the primary dips coincide
with the spikes in entanglement entropy of the lowest LAC
state [red in Fig. 2(b)] while the secondary dips coincide with
that of the second LAC state (blue). It is also worth noting
that in the large λ̃ regime where the NESS flux dips flatten
[e.g., in the range of 0 < �̃ < 4 for λ̃ = 1 in Fig. 3(b)], there
exist overlapping resonances with broad line shapes in terms
of Sk . This evidences that potential transport sensitivity can
be masked by an overabundance of overlapping resonances
within a phase-space region.

FIG. 3. The entanglement entropy of sequences of energy eigenstates as functions of �̃ (dashed and dotted lines). The corresponding
steady-state spin flux Js(�̃) is also shown (solid lines). (a) λ̃ = 0.2, the states correspond to those highlighted in red in Fig. 2(a). (b) λ̃ = 1, the
dashed and dotted lines correspond to the states highlighted in red and blue, respectively, in Fig. 2(b).
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FIG. 4. (a) �̃-dependence of Js for various values of s in Eq. (4). λ̃ is set to 0.04. Red is the Rabi model (s = 1) and blue the JC model
(s = 0), with intermediate colors in increments of �s = 0.2. (b) Entanglement entropy of the sequence of energy eigenstates defined similar
to those highlighted in Fig. 2(a). Successive s values are shifted vertically by unity for clarity. The insets zoom in on the vicinity of �̃ = 3.

Thus, the delocalization of LAC many-body states corre-
lates with observed transport sensitivity in the open system.
While this single Sk measure of the LAC states provides
information about the transport “resonance,” it is not trivial
to generalize, especially as the number of DOFs increases.
There, for example, a subset of system DOFs might come
into resonance (resulting in one or multiple avoided crossings)
that are immaterial to the transport in other subspaces of
the Hilbert space, particularly given the critical role of the
chosen Lindblads. Here, an appropriate bipartition for the
entanglement entropy could be designed to match with the
transport in question: For example, if transport takes place
primarily within a single DOF, then a coarse-grained mea-
sure can be taken within said DOF [24] to assess the degree
of wave-function delocalization across the reactant-product
barrier. Studies of these issues, as well as the fact that the
NESS transport anomaly due to level avoided crossings also
manifests as a deviation from an appropriate thermal state in
a quantum thermodynamics perspective [25], are in progress.

B. The role of integrability

Our previous work of a model photochemical reaction
found parametric sensitivity in the presence of Wignerian
nearest-neighbor energy level spacing distribution, an estab-
lished measure of quantum chaos in closed systems [17].
At the same time, a normal-to-superradiant quantum phase
transition has been demonstrated to occur in the quantum
Rabi model in the �̃ → ∞ limit at the critical coupling
strength λc = √

�ω/2 [26]. This transition has been recently
associated with the onset of quantum chaos as measured by
out-of-time-order correlation functions [27]. In the present
work, the Rabi model is well within the normal phase, and
we conclude that a quantum chaotic closed system—in either
sense above—is not necessary for parametric hypersensitiv-
ity in open system transport rates. Instead, each individual
spike/dip in the transport rate is associated with a resonant

level avoided crossing that does not necessarily belong to a
Wignerian-distributed system.

Consider, however, the role of integrability and conserved
quantities (including parity) [28,29]. The Rabi model, whose
Hamiltonian commutes with the parity operator, is solvable
[29]. Its rotating-wave approximated version, the JC model,
has more operators that commute with the Hamiltonian, which
has been exploited to yield closed-form expressions for eigen-
values [30]. Since the open version of the quantum Rabi
model shows parametric hypersensitivity while that of the JC
model does not, we examine the role of integrability via a
system with tunable counter-rotating terms

Hsys(s) = �

2
σz + ωa†a + λ[σ−a† + σ+a

+ s(σ−a + σ+a†)], (4)

where σ± = σx ± iσy and 0 � s � 1 [28], yielding the JC
model at s = 0 and the Rabi model at s = 1. It should be
noted that for the JC model, all the avoided crossings become
level crossings except for those at �̃ = 1, representing the
level repulsion between the so-called JC doublets. In Fig. 4(a)
we show Js(�̃) as in Fig. 1(b), with s linearly scaling from
0 (blue) to 1 (red). No �̃-dependence is observed for the
JC model, and the parametric sensitivity for s �= 0 grows as
s increases. The rotating-wave approximation holds best at
�̃ ≈ 1. Indeed, we find the least difference between the NESS
solutions to the two models in this regime.

IV. DISCUSSION

This preliminary study, therefore, indicates that many-body
open system transport is affected by the integrability of the
system through its effect on avoided crossings. In Fig. 4(b)
we map Sk for the relevant LAC energy eigenstates defined
as before [31], and again we see correlation between entan-
glement entropy and transport. However, for the JC model,
there is a broadened �̃ = 1 peak for the entanglement entropy
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TABLE I. Examples of quantum models commonly employed in the study of quantum physics. Parametric sensitivity and locations of
Lowest Avoided Crossings in selected model quantum systems.

Model JC Rabi JC, Broken U (1) Rabi, Broken Z2

Sensitivity No Yes Yes Yes
Resonance (λ̃ → 0) Odd Integer �̃ �̃ = 0 Integer �̃

Model Multilevel JC Multilevel Rabi Dicke Dimer/Trimer Holstein Nmer (N = 2, 3, 4)
Sensitivity No Yes Yes Yes
Resonance (λ̃ → 0) Odd Integer �̃a Odd Integer �̃ �̃ = n

m
b

aThe main peaks; there are more subtle ones.
bn, m = 0, 1, . . . , N − 1.

while there is vanishing open system flux regardless of �̃.
Thus, avoided crossings are not a sufficient condition for open
system rate sensitivity. However, we conjecture that it is a
necessary condition, i.e., that all parametric spikes in open
system transport are correlated with an avoided crossing in
the closed system arising from a resonance among its DOF.
This has held true across all of our investigations.

In conclusion, we have examined the parametric sensi-
tivity of NESS transport rates in the open quantum Rabi
model, a prototypical model for light-matter interaction, and
we linked its appearance to the avoided crossings of energy
eigenvalues of the corresponding closed system arising from
resonances between the DOFs within the system. For the
zero-temperature dissipative environment studied, the dips
in the transport rates can be individually mapped to spe-
cific low-energy avoided crossings. Several other few-body
quantum systems, as well as several variations of dissipative
environments, show similar behavior. Further, the entangle-
ment entropy of selected eigenstates of the closed many-body
Hamiltonian is useful in predicting parametric sensitivity in
the open system. We work deep in the so-called “normal
regime” of the Rabi model in the context of quantum phase
transition so that in this case it is clear that quantum chaos is
not intimately related to parametric hypersensitivity. Finally,
our study of Hamiltonians that interpolate between the JC
model and the Rabi model that have different degrees of
quantum integrability indicates that some form of quantum
integrability is key in determining such parametric sensitivity
in open quantum systems.
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APPENDIX A: OTHER QUANTUM MODEL SYSTEMS

In addition to the Rabi and the Jaynes-Cummings models
discussed in the main text, we also examined a number of
different quantum models commonly employed in the study
of quantum physics. They are listed below and tabulated in
Table I. They can be considered as generalizations of the Rabi
model, composed of discrete degree(s) of freedom (DOFs)
coupled to a harmonic DOF. In Table I we not only summa-

rize the existence of sensitivity by lowest avoided crossings
(LACs) but also their locations in the weak interparticle cou-
pling limit (λ̃ → 0). For example, in the Rabi model the
LAC-induced sensitivity is located at odd integer �̃ values in
this limit.

In all of the cases, we apply the same Lindblad formalism
to these model and solve for the nonequilibrium steady state
(NESS), ∂ρ/∂t = 0. Detailed analysis of the correspondence
between the LAC and the transport sensitivity will be docu-
mented in a forthcoming report. Here we briefly summarize
the results of symmetry-broken Rabi and Jaynes-Cummings
models, which are the most relevant to our current discussion.

1. Symmetry-broken Rabi and Jaynes-Cummings models

In Braak’s examination of the quantum integrability of the
Rabi model, he proposed the addition of a Z2 symmetry-
breaking term εσx that renders the model nonintegrable [29].
We apply the same modification to the base Rabi and Jaynes-
Cummings models while keeping the same open system setup
and parameters (Lindbladian), and we calculate the NESS.
The results are shown in Fig. 5.

In the broken-symmetry Rabi model, the resonance occurs
at all integer values of �̃ in the weak spin-boson coupling
limit, whereas in the original Rabi model it is restricted to odd
integers of �̃. This is a direct consequence of the symmetry
breaking, which makes the LAC between unlike-parity states
at the even �̃ values. In the case of the broken-symmetry
Jaynes-Cummings model, the effect is even more dramatic,
where resonance sensitivity comes into existence from where
there is none. Note that in this case, the larger symmetry
group of the Jaynes-Cummings model, U (1), is broken. This
renders the model nonintegrable in Braak’s sense since the
only quantum number is the energy [29].

2. NESS transport in many-spin systems in the literature

Several previous studies of many-spin systems reported a
parametric dependence of NESS transport. For example, in
Ref. [19] the parametric dependence of NESS transport was
shown to signify quantum phase transitions at critical points.
This can be considered as a special case, as the LAC responsi-
ble for the parametric dependence is that between the ground
and the first excited states. It is worth noting that additional
information on the system character under this scenario can
be extracted if a thermodynamically consistent treatment of
the environment is carried out [20].

On the other hand, from a quantum thermal engine point of
view, it has been shown that NESS transport through spin sys-
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FIG. 5. Spin flux at NESS, taking ε/ω = 0.15, rs/ω = 5 × 10−12, and rb/ω = 5 × 10−6. Left: Broken-Z2 Rabi model. Right: Broken-U (1)
Jaynes-Cummings model.

tems with nontrivial geometry shows a parametric dependence
that correlates to the magnitude of the deviation from thermal
states [25]. In other words, this suggests that the maximum
amount of extractable work in this situation, referred to as
ergotropy, is also closely related to the behavior of NESS
transport and its parametric dependence.

APPENDIX B: SYSTEM-BATH
PARAMETER DEPENDENCE

In the main text and up to this Appendix, we have been
focusing on the variation of system parameters while keeping
the same system-bath parameters, specifically the dissipation
rates rs and rb. While a more detailed exploration and analysis
of the form of the dissipator, the level of treatment for open
quantum systems, as well as their effects on the resonance
sensitivity are left for future study, we briefly examine the
effect of changing the relative dissipation rate (rs, rb).

The results are shown in Fig. 6. Here all system parameters
are kept the same except for �̃, whose value is scanned to
compare the resonance sensitivity between different sets of
dissipation rates (rs, rb). The LAC-induced peaks in the NESS
are seen in all cases, both in terms of the spin-down population
as well as the boson ground-state population. Their locations
are the same (odd integer �̃) regardless of the values of the
dissipation rates. However, it is clear that the prominence of
peaks is sensitive to (rs, rb).

Specifically, the peak prominence for spin population is
most significant when rs/rb � 1. The opposite is true for
that of the boson population. This can be rationalized by
considering that with or without the LAC-induced sensitivity,
intrasystem transport takes place due to the interplay be-
tween the system Hamiltonian and the dissipation. However,
the sensitivity is most dramatic when the transport is the
slowest among the competing kinetic processes. Taking the
NESS spin-down population as an example, LAC sensitivity is

FIG. 6. (Left) Spin-down population as a function of (rs, rb) and �̃, λ̃ = 0.2 for the Rabi model. From red to blue: (rs, rb) = 5 ×
(10−12, 10−6), 5 × (10−11, 10−7), . . . , 5 × (10−6, 10−12). Right: The lowest bosonic level population.
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FIG. 7. The temporal dynamics of a typical Rabi model system with (�̃, λ̃) = (0.6, 0.05), truncated at Nb = 10. The Lindblad rates are set
to (rs, rb)/ω = 5 × (10−12, 10−6). The initial state is a product state of spin up and boson Fock state |nb = 5〉. The NESS solutions are shown
as symbols to the right of each panel: nonsecular (circles) and secular (crosses). Left: Population dynamics in the site (direct product state)
basis. Right: Population dynamics in the energy eigenbasis.

minimal when rs is large, since it is not the bottleneck for
the kinetic network described by the Lindblad equation of
motion. Consequently, regardless of the existence of LACs,
the transport of spin population is unhindered. Conversely if rs

is small, then LACs can make a large impact on the transport.
We expect this general principle to apply to other systems and
a more general setup of NESS transport.

APPENDIX C: SECULAR APPROXIMATION
TO LINDBLADIAN

In simulating the dynamics as well as the steady-state
solution to the Lindblad equation of motion, we construct
the corresponding Liouvillian superoperators of the size
N2-by-N2, where N is the dimension of the system.
With larger systems this quickly becomes unmanageable.
However, in the case of extreme weak system-environment
coupling, i.e., |∑y L†

y Ly| � |Hsys|, the timescale of pure
system evolution is much faster than that of the transitions
induced by the Lindblad terms. In this limit, one can use
the secular approximation which decouples the dynamics
of the population and coherence in the system energy
eigenbasis. (Note that this is different from the usual secular
approximation applied to Redfield dynamics, which turns
it into a Lindblad form.) This significantly reduces the
numerical effort and results in a master equation for the
eigenstate population that takes a simple form as follows:

∂P(e)

∂t
=

∑

y

WyP(e), (C1)

〈m(e)|Wy|n(e)〉 = ∣∣L(e)
y,mn

∣∣2 − δmn

∑

k

∣∣L(e)
y,kn

∣∣2
, (C2)

where the superscript (e) indicates system energy eigenbasis.
The coherence terms ρ (e)

mn oscillate at the corresponding
system energy gap Em − En and decay at the rate of∑

y(Wy,mm + Wy,nn)/2.

In Fig. 7 we compare the dynamics of the full nonsecular
Lindblad equation of motion and its secular approximated
counterpart in both the site (spin-boson product state, left)
basis and in the energy eigenbasis (right). First, notice that in
all cases the temporal dynamics converges to the correspond-
ing NESS solution (symbols). Second, the NESS solutions
are insensitive to the secular approximation. While minute
deviation between the two trajectories can be detected in
the transient regime and in the site basis (inset), they are in
general near identical in all other regimes. On the other hand,
for observables that depend on the eigenstate coherence, this
method becomes unreliable, and the full nonsecular Lindblad
calculation is needed.

APPENDIX D: STEADY-STATE POPULATION
AND DEVIATION FROM THE THERMAL STATE

In the main text, we present the spin flux as the met-
ric for parametric sensitivity. Similarly, once the NESS has
been obtained given the system parameters, we find that the
NESS population also reveals the same trend. In particular,
since we are adopting an effective zero-temperature Lindblad
equation of motion, it is noteworthy that the corresponding
NESS population shows parametric sensitivity. This is be-
cause thermal states (in our case the ground state), ρ(T ) =
e−Hsys/T /Z , where Z is the partition function, do not exhibit
sensitivity toward parameter variation in all of our simu-
lations. While the fundamental reasons for the discrepancy
between the two states are explored and discussed in the next
section, here we compare the deviation of NESS from the
ground state by numerically solving the Lindblad equation
of motion.

In Fig. 8 we show both the NESS (ρss) and the ground state
[ρ(T = 0)] populations of the “local” states as functions of
�̃: the spin ground state (|↓〉) and the bosonic ground state
(|N = 0〉). While the two states deviate throughout the param-
eter range covered, it is clear that the difference is minimized
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FIG. 8. Left: Spin ground-state populations as functions of �̃ for λ̃ = 0.2 (blue) and λ̃ = 1 (brown). The Lindblad rates are (rs, rb)/ω =
5 × (10−12, 10−6). The thermal states are shown as solid lines, and the NESS states are shown as dashed lines. Right: Bosonic ground-state
populations.

at the locations of LACs, where the resonance effectively
brings the NESS close to the corresponding thermal state. This
is expected as LACs mark the maximal mixing of spin and
bosonic DOFs so that the effect of local dissipation/driving
(as in our case) is most delocalized. We will return to this
point in the following Appendix.

APPENDIX E: REDFIELD EQUATION OF MOTION:
DETAILED BALANCE AND

THERMODYNAMIC CONSISTENCY

It has been argued that at finite interparticle coupling
strengths (λ̃), the effect of environmentally induced relaxation

cannot be properly handled by the Lindblad dynamics
discussed so far [32–34]. In fact with finite λ̃, the scattering
rates among the system energy eigenstates do not obey the
detailed balance relation. Consequently, the system does not
relax to the thermal state e−βHsys/Z when the multiple baths
are kept at the same temperature T = β−1.

While it has been shown that a Lindblad-type dissipator
like the ones adopted in this study can be realized effec-
tively by driving a system in certain ways (specifically in
a driven trapped ion system [34] or in cavity-assisted Ra-
man scattering experiments [35]), it is of interest to examine
how the LAC-induced transport sensitivity takes place un-
der a thermodynamically consistent treatment of the system

FIG. 9. Left: Spin-down NESS population for the Rabi model (λ̃ = 0.2) coupled to two different temperature baths treated with the secular
Redfield method (solid). The dashed lines represent the thermal state population at the spin bath temperature. The spin bath temperature is
varied from Ts/ω = 0 (blue) to Ts/ω = 2.5 (red) with linear spacing. Right: The corresponding spin flux at NESS as a function of spin bath
temperature. The insets of both panels zoom in on the small �̃ regime to better distinguish Ts/ω = 0 and 0.5 results.
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FIG. 10. Top row: The spin-down population dynamics as a function of �̃. Left: Both baths at zero temperature. Right: (Ts, Tb)/ω =
(2.5, 0). λ̃ = 0.2. Bottom row: The corresponding purity dynamics.

in contact with passive baths without driving. To this end,
we adopt a generic open quantum system model, where the
system is the Rabi model coupled to two sets of quantum har-
monic oscillators via its spin and boson DOFs, separately and
independently,

H = Hsys + Hbath + Hsb

= Hsys +
∑

y

[ωy,ka†
y,kay,k + gy,k (a†

y,k + ay,k )Sy], (E1)

where Sy is a system operator. Specifically, we take Ss = σx

and Sb = a†
k + ak . The summation over k for the bath modes

is, in fact, an integration over continuous, bounded analytic
functions Jy(ωy) typically referred to as the bath spectral
densities. The specific form of the spectral density is im-
material in our case, here chosen to be of an Ohmic form
Jy(x) = ηyxe−x/γy . Here ηy is the coupling strength and γy is
the cutoff frequency, the latter chosen to match the respective
system energy scales, i.e., γs = � and γb = ω.

The effects of these independent baths are then treated
separately using the standard Markovian Redfield formulation

[36], and the final Redfield kernel is the summation of those of
the two baths. The final equation of motion can be written as

∂ρ (e)
mn

∂t
= −iεmnρ

(e)
mn +

∑

y

Ry;mn,opρ
(e)
op , (E2)

Ry;mn,op = − δnp

∑

q

y,mqqo + y,pnmo + ∗
y,pnmo

− δmo

∑

q

∗
y,pqqn. (E3)

Here εmn is the energy gap between eigenstates and

y,mnop = 〈m(e)|Sy|n(e)〉〈o(e)|Sy|p(e)〉Jy(εop)nBE(εop, Ty),

(E4)

where nBE(x) is the Bose-Einstein distribution and Ty is the
temperature of the bath. For a detailed discussion on the
applicability of Lindblad treatment of perturbative baths, see
Ref. [37].

We first examine the NESS solution to the Redfield equa-
tion of motion where we keep the boson bath at zero degrees
and vary the spin bath. In Fig. 9, we show the �̃ dependence
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of both the spin-down population and the NESS spin flux as
functions of the spin bath temperature (color-coded). Also,
we deliberately set the system-bath coupling strengths ηy such
that ηs/ηb = 0.01, i.e., weaker system-spin bath coupling than
the boson bath, for reasons mentioned in the discussion of
Fig. 6. For the population we also plot the thermal state
population by using dashed lines [ρ(βs) ∝ e−βsHsys ], where βs

is the inverse temperature of the spin bath.
A few points are notable in analyzing the results shown

in Fig. 9. First, the NESS obtained by solving the additive
Redfield baths identifies with the thermal state when the two
baths are at the same temperature, i.e., ρss ∝ exp[−Hsys/T ].
This is a direct consequence of the detailed balance require-
ment for the Redfield tensor under the secular approximation.
In this situation, no LAC-induced features are observed, as
the thermal state is a smooth function of system parameters
regardless of resonances. Second, with increasing tempera-
ture bias, the deviation from the thermal states of both baths
develops, and the associated steady-state flux is proportional
to the bias. Finally, LAC-induced parametric sensitivity be-
comes more prominent with increasing temperature bias. This
shows that the observed parametric sensitivity is not an artifact
due to the simple Lindblad treatment without accounting for
the interparticle coupling terms in the system Hamiltonian.
However, further investigation using nonperturbative treat-
ment of the baths is needed to assess the generality of this
phenomenon in the intermediate/strong system-bath coupling
regime.

We now turn to the temporal profile of the Redfield dy-
namics. As we are interested in the spin flux, it is intuitive
to initiate the dynamics with all population in the spin-up
state. Specifically, we choose the initial state to be the product
state |ψ (t = 0)〉 = |↑〉 ⊗ |Nb = 0〉. In Fig. 10 we show both
the case of (Ts, Tb) = (0, 0) and (Ts, Tb) = (2.5 ω, 0), corre-
sponding to the blue (zero bias) and the red (strong bias) lines
in Fig. 9. The spin-down population as a function of time and
�̃ for the two cases is shown in the top row, and the purity as a
function of time and �̃ is shown in the bottom row. First of all,
the transient dynamics (ωt < 102) is near identical regardless
of the bath character, as the system Hamiltonian is dominant.
This can be confirmed by the corresponding purity dynamics
shown in the bottom row of Fig. 10. While in both cases
resonance-induced spin transport sensitivity takes place (the
peaks at �̃ = 1, 3, 5), only with finite-temperature bias does
it persist to the steady state. This is expected since without
bias the steady-state solution is guaranteed to be the thermal
state e−Hsys/T /Z , which is not sensitive to parameters.

Comparing the population and the purity dynamics, it is
clear that the state mixing coincides with the emergence of
the resonance-induced transport sensitivity. In the case of an
unbiased system, the purity drops from unity (a pure initial
state) to an intermediate value and is eventually restored to
unity (a pure final state, which is the ground state of the
system). This picture changes as bias becomes finite, where
the purity is never recovered fully and a net flux is maintained
at the steady state.
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