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Gauge dependence of the Aharonov-Bohm phase in a quantum electrodynamics framework
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The Aharonov-Bohm (AB) phase is usually associated with a line integral of the electromagnetic vector
potential generated by an external current source, such as a solenoid. According to this interpretation, the AB
phase of a nonclosed path cannot be observed, as the integral depends on the gauge choice of the vector potential.
Recent attempts to explain the AB effect through the interaction between a charged particle and an external
current, mediated by the exchange of quantum photons, have assumed that the AB phase shift is proportional to
the change in interaction energy between the charged particle and the external current source. As a result, these
attempts argue that the AB phase change along a path does not depend on the gauge choice, and that the AB
phase shift for a nonclosed path is in principle measurable. In this paper, we critically examine this claim and
demonstrate that the phase obtained through this approach is actually gauge dependent and not an observable for
a nonclosed path. We also provide a brief critical discussion of the proposed experiment for observing the AB
phase shift of a nonclosed path.
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I. INTRODUCTION

The Aharonov-Bohm (AB) effect [1,2] is a quantum
mechanical phenomenon in which a charged particle is influ-
enced by the electromagnetic potential even in regions where
the electromagnetic field can be neglected. For reviews, see,
e.g., Refs. [3–6]. The existence of the AB effect was first
experimentally demonstrated by Tonomura and co-workers
using electron beam holography techniques [7,8].

In a typical scenario of the AB effect, we consider an
external current source, such as a solenoid, and assume that
a charged particle is moving in a region where the magnetic
field generated by the current source is negligible but the
corresponding vector potential is finite. In the standard in-
terpretation of the AB effect, the Schrödinger equation for
the charged particle includes a coupling term between the
particle and the background vector potential generated by the
external current. As a result, the charged particle acquires
an extra phase even in regions where no magnetic field is
present. This phase (the AB phase) is represented by a line
integral of the background vector potential along the path of
the particle. Therefore it is widely accepted that the AB phase
is a gauge-dependent quantity and is not an observable unless
the particle’s path forms a closed loop.

However, there are some interesting unconventional ap-
proaches to understand the AB phase. For instance, Vaidman
made an attempt to explain the AB phase without rely-
ing on gauge-dependent potentials [9]. According to this
explanation, the AB phase is attributed to the local interac-
tion between the charged particle’s field and the potential
source. For further discussions on this approach, refer to
Refs. [10–13].

There have been yet other proposals of new attempts based
on a quantum electrodynamics framework [14–17]. In this
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approach, it is considered that a charged particle and an ex-
ternal current source interact by the exchange of quantum
electrodynamics photons, with the AB phase being directly
proportional to the change in interaction energy. Since energy
is commonly regarded as a gauge-invariant observable, it is
asserted that the AB phase shift is also gauge invariant and
can be measured even when the particle’s path is not closed
[15–17]. In this paper, however, we will disprove this claim by
showing that the energy correction computed in the quantum
electrodynamics framework generally depends on the choice
of gauge.

In Sec. II, we first review the approach to the AB phase
in the quantum electrodynamics framework. This approach
primarily involves perturbations in both the charge of the par-
ticle, denoted as e, and the strength parameter of the external
current, denoted as g. Next, we introduce a different scheme
using the coherent state, where the assumption of g being
small is no longer required. In this scheme, while the results
remain unchanged, the calculations are simplified, providing
us with a deeper understanding of how the energy correction
depends on the gauge condition. The Coulomb gauge or the
Lorenz gauge is commonly used in the quantum electrody-
namics approach to the AB phase. In Sec. III, we adopt the
axial gauge condition A3 = 0 and demonstrate that the energy
correction is a gauge-dependent quantity, implying that the
AB phase for a nonclosed path is not an observable. Discus-
sions including brief comments on the proposed experiment
for measuring the AB phase for a nonclosed path are given in
Sec. IV.

II. THE SYSTEM OF A CHARGED PARTICLE, QUANTUM
ELECTROMAGNETIC FIELD, AND
AN EXTERNAL CURRENT SOURCE

We consider the combined system of a charged particle,
quantum electromagnetic field, and a static external current
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source such as a solenoid. The mass, the charge, and the coor-
dinate of the particle are denoted as m, e, and q, respectively.
The charged particle interacting with the electromagnetic field
is also subject to the action of a certain potential V (q).
The quantum electromagnetic field also couples to the cur-
rent Jμ(x) = (0, J(x)) produced by the static external current
source. The equations of motion for the charged particle and
the electromagnetic fields can be written as follows:

m
d2q
dt2

= −∂V

∂q
+ e(E(q, t ) + q̇ × B(q, t )), (1a)

∇ · E(x, t ) = j0(x, t ), (1b)

∇ × B(x, t ) = j(x, t ) + gJ(x) + ∂E(x, t )

∂t
, (1c)

where jμ(x) is the current of the charged particle given by

j0(x, t ) = eδ(x − q), (2)

j(x, t ) = eq̇δ(x − q), (3)

and we introduced the strength parameter g for the external
current J(x) for later convenience. Note that the static external
current J(x) is conserved: ∇ · J = 0. Furthermore, we take
into account that the external current is localized in space.
As a result, we can safely assume that all the fields rapidly
approach zero at infinity. Throughout this paper we employ
the Heaviside-Lorentz (rationalized Gaussian) system of units
with h̄ = c = 1.

We start by adopting the Coulomb gauge, where the vector
potential A satisfies the transverse condition ∇ · A = 0, and
for clarity the vector potential with this condition is denoted
by A⊥. The Hamiltonian of this system is then given by

HC = 1

2m
(p − eA⊥(q))2 + V (q)

+
∫

d3x
E2

⊥ + B2

2
− g

∫
d3xJ(x) · A⊥(x), (4)

where E⊥ is the transverse component of the electric field E,
and the longitudinal component E‖ and the time component
A0 are given by

E‖ = −∇A0, A0(x, t ) = 1

4π

e

|x − q| . (5)

We have the following equal-time commutation relations:

[qi, pj] = iδi j, (6)

[A⊥
i (x, t ), E⊥

j (x′, t )] = −iδtr
i j (x − x′), (7)

for i, j = 1, 2, 3, and all the other commutation relations van-
ish. Here, δtr

i j (x − x′) is the transverse delta function defined
by

δtr
i j (x − x′) =

∫
d3k

(2π )3
eik·(x−x′ )

(
δi j − kik j

k2

)
. (8)

The fields A⊥ and E⊥ are expanded in terms of the photon
creation and annihilation operators as

A⊥(x) =
∫

d3k√
(2π )32ω

2∑
λ=1

e(k, λ)

× (a(k, λ)eik·x + a†(k, λ)e−ik·x), (9)

E⊥(x) = i
∫

d3k√
(2π )3

√
ω

2

2∑
λ=1

e(k, λ)

× (a(k, λ)eik·x − a†(k, λ)e−ik·x), (10)

where ω = |k| and e(k, λ) is the transverse polarization vector
satisfying e(k, λ) · k = 0 for λ = 1, 2.

A. The effective Hamiltonian for the charged particle:
The second order in g and e

The system described by the Hamiltonian of Eq. (4) con-
sists of the charged particle and the electromagnetic fields. To
obtain an effective Hamiltonian for the charged particle, we
need to eliminate the degrees of freedom of the electromag-
netic fields. In this section we mainly follow the derivation by
Saldanha [16]. See also Refs. [14,15,17].

We write the Hamiltonian HC as

HC = p2

2m
+ V (q) + H ′

C, (11)

H ′
C = HEM + Hg + He + O(e2), (12)

where

HEM =
∫

d3x
E2

⊥ + B2

2
=

2∑
λ=1

∫
d3kωa†(k, λ)a(k, λ),

Hg = −g
∫

d3xJ(x) · A⊥(x), He = −e
p
m

· A⊥(q).

In this section we assume that the parameters e and g are small,
and we calculate the energy of H ′

C up to the second order
in e and g. The resultant energy depends on the dynamical
variables of the charged particle, q and p, and it contributes
part of the effective Hamiltonian of the charged particle.

The unperturbed state is the photon vacuum |0〉 that is the
ground state of HEM. It is evident that the first-order energy
correction vanishes, as the expectation value of A in the vac-
uum |0〉 is 0. The second-order energy in parameters e and g
is given by

〈0| (He + Hg)
Q

E0 − HEM
(He + Hg) |0〉 , (13)

where Q = 1 − |0〉 〈0| and E0 is the unperturbed energy of
the vacuum |0〉. Note that the terms of O(e2) and O(g2) are
constants; they are independent of the dynamical variables of
the charged particle. The relevant energy is therefore of O(ge)
and given by

�ε = 〈0| Hg
Q

E0 − HEM
He |0〉 + c.c. (14a)

=
∫

d3k
2∑

λ=1

〈0|Hg|k, λ〉 −1

ω
〈k, λ|He|0〉 + c.c., (14b)

with c.c. representing the complex conjugate of the terms
preceding it. The intermediate state |k, λ〉 is the one-photon
state of momentum k and polarization λ = 1, 2. Using the
Fourier expansion of A⊥ of Eq. (9), we have

Hg = − g
2∑

λ=1

∫
d3k

1√
2ω

e(k, λ)

× (a(k, λ)J∗
k + a†(k, λ)Jk)), (15)

022212-2



GAUGE DEPENDENCE OF THE AHARONOV-BOHM PHASE … PHYSICAL REVIEW A 108, 022212 (2023)

where Jk is the Fourier transform of the external current
source J(x):

Jk = 1√
(2π )3

∫
d3xJ(x)e−ik·x. (16)

We can now calculate �ε of Eq. (14). We find

�ε = −eg
p
m

· A⊥
ext (q), (17)

where A⊥
ext (x) is defined to be

A⊥
ext (x) = 1√

(2π )3

∫
d3k

Jk

k2 eik·x

= 1

4π

∫
d3x′ J(x′)

|x − x′| , (18)

which is just the vector potential generated by the current
source J(x) according to the Biot-Savart law. This A⊥

ext (x) sat-
isfies the transverse condition ∇ · A⊥

ext (x) = 0, which follows
from the current conservation law ∇ · J(x) = 0.

Thus the effective Hamiltonian for the charged particle is
given by

hC = p2

2m
+ V (q) − eg

p
m

· A⊥
ext (q) + O(e2). (19)

Note that the hC takes the gauge-covariant form

hC = (p − egA⊥
ext (q))2

2m
+ V (q), (20)

if the appropriate higher-order term of O(g2e2) is added.
This can be interpreted as representing the Hamiltonian of a
charged particle moving under the influence of the external
potential A⊥

ext (q).
In this approach, the coupling term in the effective Hamil-

tonian given by Eq. (17) is the second-order energy correction.
Suppose that the charged particle moves along a path L: from
t = t1 to t = t2. The AB phase shift acquired by the particle is
then given by a time integral of �ε:

	AB = −eg
∫ t2

t1

dt
p
m

· A⊥
ext (q) = −eg

∫
L

dq · A⊥
ext (q),

while energy is generally considered to be a gauge-invariant
observable. It is this observation that underlies the claim that
the AB phase shift is a gauge-invariant and measurable ob-
servable even when the path L is not closed [15–17].

In the subsequent sections, we will refute this assertion
by showing that the energy correction �ε is generally gauge
dependent. In the Lorenz gauge, the form of �ε given in
Eq. (14a) remains unaltered, although the intermediate states
should include scalar and longitudinal photon states alongside
the transverse ones. However, it is not difficult to see that
the energy correction �ε coincides with that in the Coulomb
gauge. In Sec. III, we will choose the axial gauge to demon-
strate that the energy correction �ε is a gauge-dependent
quantity. In Sec. II B, however, we present the scheme using
the coherent state where the parameter g is not assumed to be
small. We will see that this scheme gives the same result as
the one presented here but provides more insight into how the
energy correction depends on the gauge condition.

B. Coherent state scheme: The first order in e

In this section, we present the method that uses photon
coherent states without assuming that the parameter g is small.
The results we will obtain are the same as those in Sec. II A.
However, the calculations are simplified in this method. It
also provides better insight into the gauge dependence of the
energy correction in question. In this method we treat H ′

C of
Eq. (12) in the first-order perturbation in e. The unperturbed
Hamiltonian is then HEM + Hg, which is expressed as

HEM + Hg =
2∑

λ=1

∫
d3kωa†(k, λ)a(k, λ)

−g
2∑

λ=1

∫
d3k√

2ω
e(k, λ) · (a(k, λ)J∗

k+a†(k, λ)Jk).

This Hamiltonian can be “diagonalized” in terms of the pho-
ton annihilation and creation operators, ã(k, λ) and ã†(k, λ),
which are defined through

a(k, λ) = ã(k, λ) + α(k, λ), (21)

with α(k, λ) = g/
√

2ω3e(k, λ) · Jk. Up to a constant the result
is given by

HEM + Hg =
2∑

λ=1

∫
d3k ω ã†(k, λ)ã(k, λ). (22)

The ground state of HEM + Hg, denoted by |0̃〉, is then the
state that is annihilated by ã(k, λ); that is, ã(k, λ) |0̃〉 = 0. The
state |0̃〉 is therefore an eigenstate of the annihilation operator
a(k, λ), the coherent state of photons [18].

a(k, λ) |0̃〉 = α(k, λ) |0̃〉 . (23)

Note that the expectation value of A⊥ with respect to the
coherent state |0̃〉 is not 0, but given by g times A⊥

ext (x) of
Eq. (18).

〈0̃|A⊥(x)|0̃〉 =
∫

d3k√
(2π )32ω

2∑
λ=1

e(k, λ)

× (α(k, λ)eik·x + α†(k, λ)e−ik·x)

= g
1

4π

∫
d3x′ J(x′)

|x − x′| = gA⊥
ext (x). (24)

The unperturbed energy Ẽ0, which is a constant, can be taken
to be 0. The first-order energy correction in e is simply given
by the expectation value of He in the unperturbed state |0̃〉:

�E = 〈0̃|He|0̃〉 = −e
p
m

· 〈0̃|A⊥(q)|0̃〉

= −eg
p
m

A⊥
ext (q). (25)

This is exactly equal to the energy correction �ε of Eq. (17)
that is the result of the second-order perturbation in e and g.
Thus we have obtained the same effective particle Hamilto-
nian hC as that given in Eq. (19).

A few remarks are now in order. First, the results obtained
in Sec. II A hold true regardless of the magnitude of g. This
is not a coincidence, but is due to the following reasons:
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Equation (24) shows that the expectation value 〈0̃|A⊥(x)|0̃〉 is
linear in g though the coherent state |0̃〉 itself contains higher-
order terms in g. Suppose that we calculate the expectation
value of A⊥(x) in the state |01〉 that is the approximate ground
state of HEM + Hg in the first-order perturbation in g.

|01〉 = |0〉 + Q

E0 − HEM
Hg |0〉 .

We then have

〈0̃|A⊥(x)|0̃〉 = 〈01|A⊥(x)|01〉 + δ

= 〈0| Hg
Q

E0 − HEM
A⊥(x) |0〉 + c.c. + δ,

where the error δ is O(g2). Notice that the left-hand side is
order O(g). This implies that δ should be exactly 0 as the terms
other than δ on the right-hand side are order O(g). Thus we
find

〈0̃|He|0̃〉 = 〈0| Hg
Q

E0 − HEM
He |0〉 + c.c., (26)

which is just the second-order energy correction of Eq. (14)
obtained in Sec. II A.

Second, as can be seen in Eq. (25), the coupling term in
the effective Hamiltonian, which is identified with the energy
correction �E = �ε, is expressed in terms of the expectation
value of the vector potential in the coherent state. This ex-
pectation value should reflect the gauge condition imposed on
the vector potential. This strongly suggests that the coupling
term depends on the gauge that we choose. We will examine
specifically the case of the axial gauge in Sec. III.

Third, this concerns the change in magnetic field energy
due to the motion of the charged particle. Using classical
electromagnetism, Boyer calculated this quantity and obtained
the following result [19]:

�EBoyer = eg
p
m

A⊥
ext (q), (27)

which has the same form as the coupling term between the
charged particle and the external potential A⊥

ext (q). However,
no attention seems to have been paid to the fact that the signs
are different. Where does the Boyer’s energy (27) appear in
our treatment, in which the energy correction of O(e) is given
by 〈0̃|He|0̃〉 only? The answer is that it is hidden as part of the
expectation value of the unperturbed Hamiltonian. Let |φ̃1〉 be
the first-order perturbed eigenstate of HEM + Hg + He.

|φ̃1〉 = |0̃〉 + Q̃

Ẽ0 − (HEM + Hg)
He |0̃〉 , (28)

with Q̃ = 1 − |0̃〉 〈0̃|. Now consider the expectation value
of the unperturbed Hamiltonian in the state |φ̃1〉. The result
should be given by

〈φ̃1|HEM + Hg|φ̃1〉 = Ẽ0 + O(e2), (29)

with no terms of order O(e). This, however, does not neces-
sarily imply that neither 〈φ̃1|HEM|φ̃1〉 nor 〈φ̃1|Hg|φ̃1〉 contains
a contribution of order O(e). It turns out that 〈φ̃1|HEM|φ̃1〉
is given by �EBoyer up to a constant but is canceled by the
contribution from 〈φ̃1|Hg|φ̃1〉. See the Appendix for details.

III. THE AB PHASE OF A NONCLOSED PATH
IS NOT OBSERVABLE

In this section we show that the coupling term in the ef-
fective Hamiltonian depends on the gauge. To do so, we treat
the same system as that discussed in the preceding section by
imposing the axial gauge condition, A3 = 0. Note that this
condition completely fixes the vector potential as we assume
all the fields should approach zero at infinity. For canonical
quantization of electromagnetic fields in the axial gauge, we
refer the reader to Ref. [20]. The Hamiltonian is given by

HX = 1

2m
(p − eA(q))2 + V (q) +

∫
d3x

E2 + B2

2

− g
∫

d3xJ(x) · A(x). (30)

Here, for q, p and the x and y components of A and E, the fol-
lowing typical canonical commutation relations are assumed:

[qk, ql ] = [pk, p,l ] = 0, [qk, pl ] = iδkl ,

[Ai(x), Aj (x′)] = [Ei(x), Ej (x′)] = 0,

[Ai(x), Ej (x′)] = −iδi jδ(x − x′),

[qk, Ai(x)] = [qk, Ei(x)] = [pk, Ai(x)] = [pk, Ei(x)] = 0,

for k, l = 1, 2, 3 and i, j = 1, 2. The other commutation rela-
tions are determined by the constraint conditions in the axial
gauge. First, we have the gauge fixing condition: A3(x) = 0.
Second, the z component of E is constrained to be

E3(x) = − 1

∂3

(
2∑

i=1

∂iEi(x) + j0(x)

)
, (31)

so that Gauss’s law ∇ · E = j0 is fulfilled. Third, the com-
ponent A0 is given by A0(x) = ∂−1

3 E3(x), which respects the
relations E3 = ∂3A0 − ∂0A3 with A3 = 0. Under these com-
mutation relations and constraints, one can verify that the
Hamiltonian HX correctly reproduces the equations of motion
of Eq. (1).

The vector potential A(x) and the electric field E(x) in the
axial gauge are related to the transverse vector potential A⊥(x)
and the transverse electric field E⊥(x), respectively:

Ai(x) = A⊥
i (x) − ∂i

∂3
A⊥

3 (x), i = 1, 2, 3, (32)

Ei(x) = E⊥
i (x) − δi3

1

∂3
j0(x), i = 1, 2, 3, (33)

with the Fourier expansions of A⊥(x) and E⊥(x) given in
Eqs. (9) and (10), respectively. Using these Fourier expan-
sions, one can verify that the three aforementioned constraints
in the axial gauge are satisfied and all the related commu-
tation relations follow. The Hamiltonian of Eq. (30) can be
written as

HX = 1

2m
(p − eA(q))2 + V (q) +

∫
d3k ω

2∑
λ=1

a†(k, λ)a(k, λ)

− e
1

(∂3)2

(
2∑

i=1

∂iEi(q)

)
− g

∫
d3xJ(x) · A(x).
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We are now ready to calculate the effective Hamiltonian
for the charged particle in the axial gauge. As in the case of
the Coulomb gauge, we write

HX = p2

2m
+ V (q) + H ′

X , (34)

H ′
X = HEM + Hg + H (1)

e + H (2)
e + O(e2), (35)

where

HEM =
2∑

λ=1

∫
d3kωa†(k, λ)a(k, λ),

Hg = −g
∫

d3xJ(x) · A(x),

H (1)
e = −e

p
m

· A(q),

H (2)
e = −e

1

(∂3)2

(
2∑

i=1

∂iEi(q)

)
.

We evaluate H ′
X in terms of the first-order perturbation

theory of e, as we did for the Coulomb gauge in Sec. II B.
The Hamiltonian Hg is expanded as

Hg = − g
2∑

λ=1

∫
d3k

1√
2ω

eX (k, λ)

× (a(k, λ)J∗
k + a†(k, λ)Jk)), (36)

where

eX
i (k, λ) = ei(k, λ) − ki

k3
e3(k, λ), i = 1, 2, 3, (37)

is the polarization vector of the vector potential A(x) in the
axial gauge. In the above expression of Hg, however, this
polarization vector eX (k, λ) can be replaced by the trans-
verse polarization vector e(k, λ), as the current conservation
of the external current, k · Jk = 0, implies eX (k, λ) · Jk =
e(k, λ) · Jk. Thus the unperturbed Hamiltonian HEM + Hg is
the same as that, given by Eq. (22), in the Coulomb gauge.
The unperturbed ground state is therefore the coherent state
|0̃〉 defined through a(k, λ) |0̃〉 = α(k, λ) |0̃〉 with α(k, λ) =
g/

√
2ω3e(k, λ) · Jk.

The expectation value of A(x) in the coherent state |0̃〉 can
be calculated as

〈0̃|A(x)|0̃〉 = 〈0̃|A⊥(x) − ∇
∂3

A⊥
3 (x)|0̃〉

= g

(
A⊥

ext (x) − ∇
∂3

A3
⊥,ext (x)

)

≡ gAX
ext (x), (38)

where A⊥
ext (x) is defined in Eq. (18). Remember that A⊥

ext (x)
is the transverse vector potential generated by the external
current. This implies that AX

ext (x) is also the vector potential
generated by the external current, but with the axial gauge
condition AX,3

ext (x) = 0. As for the electric field E, it can be
readily checked that 〈0̃|Ei(x)|0̃〉 = 0 for i = 1, 2.

The unperturbed energy is constant and taken to be 0, and
the first-order energy correction in e is given by

�E = 〈0̃|H (1)
e + H (2)

e |0̃〉 = −eg
p
m

· AX
ext (q), (39)

which leads to the particle effective Hamiltonian:

hX = 1

2m
p2 + V (q) − eg

p
m

· AX
ext (q) + O(e2). (40)

In general the vector potentials A⊥
ext (q) and AX

ext (q) are dif-
ferent for a given external current J(x), implying that the
AB phase acquired by the charged particle along a nonclosed
path depends on the gauge that we choose, and it is not an
observable.

We obtained the effective Hamiltonian hX by using the
first-order perturbation theory of e, as we did in Sec. II B
for the case of the Coulomb gauge. The result should be un-
changed if we perform the second-order perturbation in g and
e as the calculation described in Sec. II A. Before concluding
this section, we will confirm this equivalence.

In the perturbation in g and e, the unperturbed state is |0〉
given by the ground state of HEM, and Hg + H (1)

e + H (2)
e is the

perturbation. Since the first-order energy correction is 0, we
consider the energy correction of order O(ge):

�ε = 〈0|Hg
1

E0 − HEM

(
H (1)

e + H (2)
e

)|0〉 + c.c. (41)

As in the case of the Coulomb gauge, this �ε can be expressed
as

�ε = 〈01|H (1)
e + H (2)

e |01〉 + O(g2), (42)

with |01〉 being the approximate ground state of HEM + Hg in
the first-order perturbation in g. In this way, we can see that
the calculation of perturbation in g and e will eventually lead
to the result of Eq. (39), but let us now analyze �ε in Eq. (41)
explicitly. First, after some involved calculation, we find

〈0|Hg
1

E0 − HEM
H (1)

e |0〉

= − eg

2m
p ·

(
A⊥

ext (q) − ∇
∂3

A3
⊥,ext (q)

)

= − eg

2m
p · AX

ext (q). (43)

Second, the following matrix element turns out to be purely
imaginary:

〈0|Hg
1

E0 − HEM
H (2)

e |0〉 . (44)

Combining these results, we conclude that �ε is eventually
given by �E of Eq. (39), which is as expected from Eq. (42).

IV. DISCUSSION AND CONCLUSIONS

The purpose of this paper is to investigate whether the AB
phase shift in the case of a nonclosed path is independent of
the gauge and therefore measurable. In the recent approach
[14–17], the coupling term between the charged particle and
the electromagnetic potential is identified with the energy
change �E resulting from the quantum mechanical electro-
magnetic interaction between the charged particle and the
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external current source. Since energy is generally thought to
be gauge invariant, this leads to the claim that the AB phase
shift is a gauge-invariant and measurable observable even for
a nonclosed path [15–17]. We have disproved this claim by
explicitly showing that the energy correction �E is generally
gauge dependent.

One may still wonder why the energy change �E can
be gauge dependent. Let HC and HX be the Hamiltonians
in the Coulomb gauge and the axial gauge, respectively. As
operators we know that HC 
= HX , though we believe that
their eigenvalues are the same. However, we do not try to
directly determine the eigenvalues of HC or HX . What we do
in this approach is to eliminate the degrees of freedom of the
electromagnetic field and obtain an effective Hamiltonian h
for the charged particle:

h = 1

2m
p2 + V (q) − eg

p
m

· 〈0̃|A(q)|0̃〉 + · · · . (45)

Starting from HC yields hC , and starting from HX yields hX .
Generally, we have hC 
= hX , as A⊥

ext (x) 
= AX
ext (x). To calcu-

late the energy of the system, one must still determine the
eigenvalues of hC or hX . They should be the same. In conclu-
sion, it may be misleading to say that this approach “calculates
the energy change of the system.” It would be more appropri-
ate to say that it “derives the effective Hamiltonian for the
charged particle.” From this perspective, it seems natural for
the effective Hamiltonian to depend on the gauge choice.

We have found that the AB phase for a nonclosed path
cannot be a measurable physical quantity. On the other hand,
some experiments have been proposed [15–17] that appear to
allow the measurement of the AB phase along a nonclosed
path. This is a contradiction that necessitates an examination
of the proposed experiments. Here we take the experiment
proposed in Ref. [16] because it appears to be the simplest
conceptually. Essentially, it involves abruptly cutting off the
current in a solenoid before the charged particle completes
a closed path. The assumption here is that this would cause
the charged particle to remember its phase change at the time
of the interruption, and the interference pattern at the closed
path would reflect the phase change at the intermediate point
in the path. The problem here, however, is that a time-varying
magnetic field produces an electric field. If Aμ(x) is time de-
pendent, then the closed curve drawn by the charged particle
would be a closed curve in four-dimensional space-time. In
other words, when the solenoid current changes, the charged
particle also undergoes a phase change with a contribution of∫

C A0(x)dt , and it does not retain the phase difference at the
time when the solenoid current is suddenly cut. One way to
demonstrate this would be to assume that the current Jμ(x)
in the solenoid is time dependent and to show that the phase
difference after drawing a closed curve in four-dimensional
space-time is independent of the gauge, while the phase ac-
cumulated during the path is gauge dependent. For a more
comprehensive discussion on the four-dimensional loop inte-
gral of the time-dependent vector potential, we refer the reader
to Ref. [21].

Note added. Recently, Wakamatsu [22] showed that the AB
phase depends on the residual gauge freedom in the Coulomb
gauge within a quantum electrodynamics approach.

ACKNOWLEDGMENTS

The author would like to thank M. Wakamatsu for nu-
merous useful discussions and for critical comments on the
manuscript. It is our pleasure to thank Sebastian Horvat for
bringing Ref. [21] to our attention.

APPENDIX A: THE BOYER’S ENERGY CHANGE

We first rewrite HEM as

HEM =
∫

d3x
E2

⊥ + B2

2

=
∫

d3x
E2

⊥ + B̃
2

2
+

∫
d3xB̃ · Bext + const,

where Bext = g∇ × A⊥
ext and B̃ = B − Bext. Then we find that,

up to a constant,

〈φ̃1|HEM|φ̃1〉 =
∫

d3x 〈φ̃1|B̃|φ̃1〉 · Bext,

with |φ̃1〉 defined in Eq. (28). After some calculation, we find
that

〈φ̃1|B̃(x)|φ̃1〉 = − p
m

× ∇ 1

4π

e

|x − q| + O(e2), (A1)

which is the nonrelativistic expression of the magnetic field
generated by the charged particle moving at velocity p/m.

Using this expression, we have

〈φ̃1|HEM|φ̃1〉 = − e

4πm

∫
d3x

(
p × ∇ 1

|x − q|
)

· Bext (x)

= e

4πm
p ·

∫
d3x

1

|x − q|∇ × Bext (x)

= eg

4πm
p ·

∫
d3x

J(x)

|x − q| = eg
p
m

· A⊥
ext (q),

where A⊥
ext is defined in Eq. (18). This is the Boyer’s energy

change �EBoyer given in Eq. (27). We now observe that Hg can
be rewritten as follows:

Hg = −g
∫

d3xJ · A⊥ = −
∫

d3x∇ × Bext · A⊥

= −
∫

d3xBext · ∇ × A⊥

= −
∫

d3xBext · B̃ + const.

Therefore, up to a constant, we conclude that

〈φ̃1|Hg|φ̃1〉 = −eg
p
m

· A⊥
ext (q), (A2)

which cancels the Boyer’s energy 〈φ̃1|HEM|φ̃1〉.
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