
PHYSICAL REVIEW A 108, 022211 (2023)

Dynamics-based quantumness certification of continuous variables using time-independent
Hamiltonians with one degree of freedom

Lin Htoo Zaw 1 and Valerio Scarani1,2

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
2Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542

(Received 3 January 2023; revised 3 April 2023; accepted 2 August 2023; published 17 August 2023)

Dynamics-based certification of quantumness is an approach to witnessing the nonclassical character of
some continuous-variable states, under the assumption that their dynamics is known. Contrary to other tests
of nonclassicality for single systems, it does not require sequential measurements. This family of protocols
was introduced for harmonic dynamics. In this work we discuss dynamics-based certification for one degree of
freedom evolving under a generic time-independent Hamiltonian. We characterize the conditions under which
such a certification is possible. Several examples are explicitly studied, some that are approximately harmonic
in the limits of low energy (Kerr nonlinearities, the pendulum, and the Morse potential) and one that is not (the
particle in an infinite well).
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I. INTRODUCTION

The demonstration of quantum effects with large objects
is a current frontier of research. Demonstrations of typical
wave effects like interference are compelling, but are not
the only options: Nonclassical features within the mechani-
cal framework are certainly more suited for trapped systems.
The most famous nonclassical features appear as negatives
compared to classical theory: For instance, a material point’s
position and momentum cannot be localized beyond the limits
of Heisenberg’s uncertainty. The detection of such negative
features relies on calibration: Only by measuring at a precision
dictated by Planck’s constant can one claim that the remaining
fluctuations are unavoidable (and the claim would not be
accepted by die-hard classical physicists, assuming there are
still some of those).

In this paper we propose a family of positive criteria of
nonclassicality, i.e., observations that are impossible to obtain
with any classical state. Our criteria are dynamics based (they
assume that the time evolution of the system is known) and
state dependent (only certain states, usually with suitable neg-
ativity in their Wigner function, can be detected). Contrary
to tests based on contextuality arguments or the Leggett-Garg
approach, our tests do not depend on sequential or simultane-
ous measurements, instead requiring only one measurement
on each system for every round of the test.

Given a Hamiltonian of the form H (x, p) = p2/2m +
V (x), Ehrenfest’s theorem proves that the Heisenberg equa-
tions of motion are the same as Hamilton’s equations, with
the canonical variables replaced by the corresponding pair
of quantum observables that satisfy the canonical commuta-
tion relations. The solutions for position and momentum as
a function of time have the same expressions for classical
variables and quantum observables. Remarkably, the first ex-
amples of dynamics-based nonclassicality criteria were built
on such ostensibly classical dynamics. An early example is
the probability backflow of a free particle whose momentum is

always found to be positive [1], which was recently extended
in the context of the demonstration of quantum advantage in
mechanical tasks [2]. By these criteria, nonclassical behavior
is found by measuring the position of the system after waiting
for a set duration. Similar signatures of quantumness can be
found in the time evolution of the harmonic oscillator, which
is a simple precession in phase space in both the classical
and quantum cases. Tsirelson introduced a nonclassicality test
that involves measuring the coordinate of the system once per
round, at a randomly chosen time each round [3]. Extending
this idea, a family of protocols was recently introduced for
detecting the nonclassicality of a single quantum system under
the sole assumption that its dynamics is a uniform precession
[4]. When applied to a normal mode of coupled oscillators,
this criterion becomes an entanglement witness [5].

These dynamics-based tests of nonclassicality utilize
coarse-grained measurements of continuous variables like
sgn(x). Such dichotomic measurements have also been used
for nonlocality tests for two continuous-variable systems
[6–8] and for single-system nonclassicality tests which are
based on some other assumptions rather than the dynamics
[9–12].

In the original criterion and its extension [3,4], the primary
assumption was that the time evolution of the system is a
uniform precession. The contribution of this paper is to extend
dynamics-based nonclassicality criteria to a conserved (i.e.,
time-independent) Hamiltonian of one continuous degree of
freedom. A quantum-classical gap is not always present: For
our criterion to certify nonclassicality, the dynamics should
lead to some form of trapping (precise conditions in Sec. III).
While in most examples, and probably in all tabletop imple-
mentations, trapping potentials are approximately harmonic at
low energy, this will not be a requirement for our protocol to
detect nonclassicality.

After presenting the general approach, we apply it to sev-
eral examples, which go beyond the original harmonic case
with nontrivial variations. The first is the Kerr anharmonic
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Hamiltonian (Sec. IV A), which contains quartic terms and
describes several real quantum devices with nonlinearities.
Second, we study the pendulum (Sec. IV B), which is a
Hamiltonian in angular, rather than linear, coordinates. Third,
we introduce the Morse potential, a potential that is asym-
metric and not fully trapping, i.e., has open orbits at high
energy (Sec. IV C). Finally, we study the infinite potential
well (Sec. IV D), which is not harmonic even in the limit of
small energy; this shows that our protocol is not based on
approximate harmonicity.

For each of these examples, we find the range of pa-
rameters for which nonclassicality can be detected with this
protocol. For the approximately harmonic potentials, we
also compare the complete dynamics against the harmonic
approximation in the low-energy regime. Rather than order-
of-magnitude approximations, we are able to give exact values
of anharmonicities where the nonclassicality criterion stops
working. Furthermore, we also show that a simple adjust-
ment in the probing time permits a violation even at larger
anharmonicities.

Before discussing the new potentials, we revisit the study
of the harmonic oscillator in Sec. II, introducing the original
protocol and some variations on it.

II. REVISITING THE PROTOCOL FOR THE HARMONIC
OSCILLATOR

To better understand the formulation of the general cri-
terion, it is useful to revisit the known and simple case
of the harmonic oscillator H (x, p) = p2/2m + mω2

0x2/2.
It is well known that the dynamics is such that (x(t ), p(t ))
undergoes a uniform precession in phase space with
the period T0 = 2π/ω0. In particular, x(t ) = x(0) cos ω0t +
[p(0)/mω0] sin ω0t .

A. Overview of the original protocol

The original protocol [3,4] consists of many independent
rounds. The following steps take place in each round.

(1) One system is prepared in some state. For the validity
of the certification, one does not need to assume that the state
is the same in every round (of course, poor preparation will
lead to a negative outcome of the certification).

(2) After the preparation is completed, the system is decou-
pled from everything else and undergoes the closed dynamics
of a harmonic oscillator, resulting in a uniform precession
with period T0 = 2π/ω0.

(3) A duration t ∈ {0, T0/3, 2T0/3} is randomly chosen.
The system is then left to precess for a time t .

(4) The position x(t ) is measured at the chosen time. Since
the round ends here, the measurements can be destructive.

After many rounds, the average probability of finding the
position of the particle to be positive is calculated as the score
P3(T0), that is,

P3(T0) = 1

3

2∑
k=0

{
Pr

[
x

(
kT0

3

)
> 0

]
+ 1

2
Pr

[
x

(
kT0

3

)
= 0

]}

= 1

3

2∑
k=0

〈
pos

[
x

(
kT0

3

)]〉
, (1)

where pos(x) = [1 + sgn(x)]/2, with the usual convention
sgn(x = 0) = 0. The crucial observation is this: Under the
assumption that the dynamics is a uniform precession, if the
observed score satisfies P3(T0) > Pc

3 := 2
3 , then the system

is certified to be quantum. To see why this is the case, let
us consider every classical phase-space trajectory, some of
which are illustrated in Fig. 1(a). For any classical state of
maximal information that is prepared in any of the orange
regions at t = 0, x(t ) > 0 at two out of three possible times
t ∈ {0, T0/3, 2T0/3} and hence will have a score of Pc

3 = 2
3 .

For those initially prepared in the blue regions, x(t ) > 0 at one
out of the three times with a score of Pc

3 = 1
3 . Meanwhile, the

fixed point (x, p) = (0, 0) has the score Pc
3 = 1

2 . As a general
classical state would be some convex mixture of these states
of maximal information, the maximum achievable score with
a classical harmonic oscillator is Pc

3 = 2
3 .

In quantum theory, the score P3(T0) is given by the expec-
tation value 〈Q3(T0)〉 of the observable

Q3(T0) = 1

3

2∑
k=0

pos

[
X

(
kT0

3

)]
, (2)

where X (t ) = eiHt/h̄Xe−iHt/h̄ is the position observable in the
Heisenberg picture and pos(X )|x〉 = pos(x)|x〉. Generally, the
state of a quantum system is specified by a density operator ρ,
with which 〈Q3(T0)〉 = tr[ρQ3(T0)].

There are quantum states such that tr[ρQ3(T0)] > Pc
3. The

states that give the largest quantum value are eigenvectors
of Q3(T0) for the largest eigenvalue and were discussed in
[3,4]. Here, in anticipation of the energy constraints to be
expounded in later sections, we consider the state that gives
the maximal violation under the truncation En � En for some
maximal number of excitations n. In the original protocol, no
violation is obtained for n < 6, while for n = 6 the state

|�6〉 = 1√
2

(
4√
21

|0〉 − |3〉 +
√

5

21
|6〉
)

, (3)

where the |n〉 are the usual number states of the quan-
tum harmonic oscillator, achieves the score P3(T0) =
〈�6|Q3(T0)|�6〉 = 0.687.

When only position measurements (or, more generally,
quadrature measurements) are involved, a quantum state with
a non-negative Wigner function is indistinguishable from a
classical state with the same joint probability distribution.
Thus, some Wigner negativity has to be present for a gap
between the quantum and classical scores. In addition, this
negativity must be present at the right location. The intuition is
clearly conveyed by the Wigner function of |�6〉 (Fig. 2): The
negativities are concentrated in the regions with the lowest
classical score (Pc

3 = 1
3 ), which augments the positivity in the

regions with the highest classical score (Pc
3 = 2

3 ). Every other
state that violates the classical bound also shares this general
behavior.

In summary, under the assumption that its dynamics is a
uniform precession, the observation P3(T0) > Pc

3 = 2
3 certifies

the quantumness of the system. The classical bound can be
violated by preparing states that have Wigner negativities in
the regions that achieve the minimum scores in the classical
system.
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FIG. 1. For the harmonic oscillator, in classical theory, any pure state (x(t = 0), p(t = 0)) initially in the orange region achieves the score
of Pc

3 = 2
3 , while any pure state initially in the blue region achieves the score of Pc

3 = 1
3 . Some example trajectories are shown for different

probing duration T, with the closed points marking its state at t = 0 and the open points marking its states at t = T/3 and 2T/3. Consider first
(a), with T = T0. A state initially in the top-right orange region will evolve to the bottom-right orange region at t = T/3 and then the leftmost
orange region at t = 2T/3. Therefore, that state will achieve the score Pc

3 = 2
3 . Repeating the same argument for every other state initially in

any of the orange regions would lead us to conclude that any state initially in any of the orange regions will have Pc
3 = 2

3 . Similarly, a state
initially in the bottom-left blue region will evolve to the top-left blue region at t = T/3 and rightmost blue region at t = 2T/3. The same
argument for every other state initially in any of the blue regions will have Pc

3 = 1
3 . Analogous arguments hold for different probing duration T,

with decreasing T from left to right with (b) 3T0/4 < T < T0 and (c) T = 3T0/4, and increasing T from left to right with (d) T0 < T < 3T0/2
and (e) T = 3T0/2. Other intermediate cases for 3T0/4 < T < T0 and T0 < T < 3T0/2 are similar to (b) and (d), respectively.

B. Changing the probing times

Now we proceed to modify step 3 of the protocol. This
could be done in different ways: choosing three arbitrary times
[3] or probing at K > 3 equally spaced times [4]. For the sake
of this work, we focus on a single-parameter family.

(3′) A duration t ∈ {0, T/3, 2T/3} is randomly chosen for
a value T which may differ from the period of the precession.
The system is then left to evolve for a time t .

The rest of the protocol is unchanged, with the score P3(T)
now obtained by replacing T0 with T in Eq. (1).

Of course, the value of T may affect the classical bound:
For example, T = 3T0 results in x(0) = x(T/3) = x(2T/3)
such that a state initially in the positive-x plane scores P3(T =
3T0) = 1. In that case, there cannot be any gap between the
classical and quantum expectations. It is straightforward to
prove that the bound Pc

3 = 2
3 holds in the range 3T0/4 � T �

3T0/2 (Fig. 1).
For the quantum observable, we analogously define Q3(T)

by replacing T0 with T in Eq. (2). As shown in Fig. 3, the
classical bound can be violated within the range of T up to
P∞

3 (T) := maxρ tr[ρQ3(T)], with maximal violation for T =
T0. At the boundary points, no violation can be found since

Q3(3T0/4) = 1
3 + 1

3 pos[X (T0/2)],

Q3(3T0/2) = 1
3 + 1

3 pos[X (0)],
(4)

in which case P∞
3 (3T0/4) = P∞

3 (3T0/2) = 2
3 = Pc

3.

The flexibility in probing durations introduces a qualita-
tive difference when we look at truncations. As mentioned
before, no state with n < 6 violates the original protocol. If
we maintain the truncation at n = 6, the maximum is still
achieved by |�6〉 [Eq. (3)] for T = T0. However, by changing
the probing time, we can find states with n < 6 that give a
violation. Specifically, for n = 4 the state

|�4〉 =
√

0.279|0〉 +
√

0.191|1〉e−iθ4 +
√

0.121|2〉e−i2θ4

(5)
+

√
0.309|3〉e−i3θ4 +

√
0.100|4〉e−i4θ4 ,

where θ4 = 0.215π , achieves P3(T) = 〈�4|Q3(T)|�4〉 =
0.669 with probing duration T = 1.177T0.

The Wigner function and marginal probability distribution
of |�4〉 are plotted in Fig. 4. As usual, the Wigner function
is distributed in such a manner that the positive (negative)
weights are concentrated in the regions where the classical
score is Pc

3 = 2
3 (Pc

3 = 1
3 ). However, while the Wigner function

of |�6〉 has the same symmetry as the protocol (the system
is found in the same state at all three probing times), the
positivity of |�4〉 is mostly concentrated on only one Pc

3 = 2
3

region. At the times t ∈ {0, 2T/3}, almost all of the probabil-
ity distribution lies on the positive-x axis. At time t = T/3,
most of the probability is on the negative-x axis, but a small
contribution from the positive-x axis augments the quantum
score.

The takeaway message is that we can extend the notion
of the probing duration T to something other than the nat-
ural period T0 of the system, as long as we make a choice
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(a)

(b)

FIG. 2. For the harmonic oscillator, (a) the Wigner function and
(b) the probability density at the probing times t = 0, T0/3, 2T0/3 of
the state |�6〉 given in Eq. (3), which violates the classical bound with
the score P3(T0) = 0.687 > Pc

3. The classical scores Pc
3 are superim-

posed on the corresponding regions as illustrated in Fig. 1(a). The
negativities of the Wigner function are concentrated in the regions
with the lowest classical score, which augments the positivity of the
Wigner function in the region with the largest classical score. This is
the state that maximally violates the classical bound for the original
protocol under the restriction En � En for n = 6.

that maintains the classical bound to be Pc
3 < 1, so that a

quantum-classical gap can be possible (though it might not
be guaranteed). In some cases, like with the low-energy state
|�4〉 with n = 4, the quantum score can be improved by using
a different probing duration.

III. PROTOCOL FOR GENERAL HAMILTONIANS

Most forms of experimental trapping are approximately
harmonic. In these cases, our original protocol could be
straightforwardly applied to detect nonclassicality in the pa-
rameter regime where the harmonic approximation holds.
This notably includes a tight upper bound on the energy [13].

FIG. 3. For the harmonic oscillator, the maximum quantum score
P∞

3 (T) against probing duration T. Here P∞
3 (T) was found by

solving for the maximum eigenvalue of Q3(T) with the truncation
n � 6000.

(a)

(b)

FIG. 4. For the harmonic oscillator, (a) the Wigner function and
(b) the probability density at the probing times t = 0, T/3, 2T/3 of
the state |�4〉 given in Eq. (5), which violates the classical bound with
the score P3(T) = 0.669 > Pc

3. The probing duration is T = 1.774T0,
where T0 is the natural period of the harmonic oscillator. The clas-
sical scores Pc

3 are superimposed on the corresponding regions as
illustrated in Fig. 1(d). Here the negativities of the Wigner function
are concentrated in the regions with the lowest classical score, which
augments the positivity of the Wigner function in the region with the
largest classical score. This is the state that maximally violates the
classical bound for the protocol with varying probing times under
the restriction En � En for n = 4.

By adopting a general approach instead of a reduction to the
harmonic case, we will be able to detect nonclassicality in a
much larger parameter range. In addition, we will also be able
to deal with potentials that are not approximately harmonic.

A. Overview of the general protocol

We consider systems with one degree of freedom with
canonical coordinates (q, p) whose dynamics is generated
by a time-independent Hamiltonian H (q, p). The dynam-
ics of the corresponding quantum system is given by the
Weyl-quantized Hamiltonian H (Q, P), where (Q, P) are the
canonically conjugate operators which satisfy eipQ/h̄eiqP/h̄ =
e−ipq/h̄eiqP/h̄eipQ/h̄, the Weyl form of the canonical commu-
tation relation. The Weyl relation implies [Q, P] = [X, P] =
ih̄1 for Cartesian coordinates (q, p) = (x, p) [14], but is also
valid with angular coordinates (q, p) = (φ, l ) [15]. For the
Cartesian coordinates, this relation results in the same equa-
tions of motions of x(t ) and p(t ) for both the quantum and
classical systems, regardless of the form of the Hamiltonian
[16].

Once again, the general protocol consists of many indepen-
dent rounds. In each round, the following steps take place.

(1) The system is prepared in some state.
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FIG. 5. For the generic condition, the score P3 = 1 occurs for
certain classical trajectories (a) if all three measurements are per-
formed before the state crosses the p axis and (b) if the state crosses
the p axis at least twice between two measurements. Note that
(a) also includes the situation where the state remains in the positive-
q plane for all time and (b) also includes the situation where the state
crosses the p axis more than twice. Also labeled are �t+ and �t−,
the longest and shortest times spent in the positive- and negative-q
planes, respectively.

(2′) After the preparation is completed, the system is
decoupled from everything else and undergoes the closed
dynamics specified by H (q, p).

(3′) A duration t ∈ {0, T/3, 2T/3} is randomly chosen for
a specified value T. The system is then left to evolve for a
time t .

(4′) The coordinate q(t ) is measured at the chosen time.
Since the round ends here, the measurements can be destruc-
tive.

After many rounds, we calculate P3(T), the average proba-
bility that the coordinate is found to be positive:

P3(T) :=
2∑

k=0

{
Pr

[
q

(
kT
3

)
> 0

]
+ 1

2
Pr

[
q

(
kT
3

)
= 0

]}

= 1

3

2∑
k=0

pos

[
q

(
kT
3

)]
.

(6)

If the measured score P3(T) is found to be strictly larger than
the classical bound Pc

3, then the system must be quantum. For
the calculations in quantum theory, given a state ρ, the score
is calculated by P3(T) = tr[ρQ3(T)], where

Q3(T) := 1

3

2∑
k=0

pos

[
Q

(
kT
3

)]
, (7)

pos(Q) = [1 + sgn(Q)]/2, and Q(t ) = eiHt/h̄Qe−iHt/h̄.
Of course, one can more generally calculate the score with

Pr[q(t ) > q0] against some reference position q0 or instead
consider the likelihood Pr[q(t ) < 0] that the coordinate is
found to be negative. In those cases, it is a simple matter
to redefine q′(t ) := q(t ) − q0 or q′(t ) := −q(t ), respectively,
which we can always do as we are free to choose our coordi-
nates. Doing so returns it to the form given in Eq. (6), so we
will stick to this standard form.

In order to find a classical-quantum gap, we will have to
impose additional constraints, which generically take the form
of energy bounds Emin � E � Emax (secondary assumptions
may also be required for specific systems). We proceed to
derive these constraints rigorously.

B. Constraints in classical theory

A nontrivial classical bound is required for the protocol,
which for three probing times can only be Pc

3 = 2
3 . So we need

to exclude the possibility that Pc
3 = 1, i.e., evolutions such

that q(t ) > 0 at all measured times t ∈ {0, T/3, 2T/3}. Like
in the case of the harmonic oscillator, Pc

3 = 1 may happen if
T is either too short or too long; for generic dynamics, these
bounds may vary with the trajectory. The situations to avoid
are illustrated in Fig. 5.

Formally, consider any phase-space trajectory γ , with its
generalized coordinate denoted by qγ (t ). We exclude the triv-
ial trajectory qγ0 (t ) = 0 ∀ t , which would lead to cumbersome
notation but whose score is P3(T) = 1

2 for any T by the def-
inition of P3(T). Let us define �t+(γ ) as the longest amount
of time that the trajectory γ spends in the region where q is
non-negative:

�t+(γ ) :=
{∞ if qγ (t ) � 0 ∀ t

max{�t : ∃t0 : t0 � t � t0 + �t : qγ (t ) � 0} otherwise.
(8)

Similarly, we define �t−(γ ) as the shortest amount of time that the trajectory γ spends in the region where q is strictly negative:

�t−(γ ) :=
{∞ if qγ (t ) < 0 ∀ t

min{�t : ∃t0 : qγ (t0) � 0; qγ (t0 + �t ) � 0; t0 < t < t0 + �t : qγ (t ) < 0} otherwise.
(9)

For the classical bound to be Pc
3 = 2

3 , we should restrict our-
selves to a set 
 of classical trajectories and a probing time
such that

max
γ∈
\{γ0}

3
2�t+(γ ) � T � min

γ∈
\{γ0}
3�t−(γ ). (10)

As a consistency check for the harmonic oscillator, �t+(γ ) =
�t−(γ ) = T0/2 for all γ , recovering the previous condition
on T.

Quantitatively, Eq. (10) provides the exact inequality for
which a nontrivial classical bound is achieved. Qualitatively, it
expounds two conditions. First, the lower bound states that the
particle cannot spend an arbitrarily long time in the positive
region, which means that there must be some barrier on the
positive side of the origin. Second, the upper bound states
that the particle cannot spend an arbitrarily short time in the
negative region. Specifically, the barrier on the negative side
of the origin cannot be too strong, lest the particle be pushed
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back to the positive side too rapidly even in the classical
system, which reduces the quantum-classical gap. Ultimately,
to obtain nontrivial classical bounds, some form of trapping
is required on the positive axis, without the trapping being
too strong on the negative axis. We stress once again that
this trapping need not be approximately harmonic; the only
requirement is Eq. (10).

C. Energy constraints

For use in our protocol, the constraint (10) on trajectories
needs to be translated into one or several constraints on quanti-
ties that are observables in both quantum and classical theory.
The obvious choice is energy. Indeed, when the Hamiltonian
is time independent, the energy is an integral of motion; hence
H (qγ (t ), pγ (t )) = E along any trajectory γ . For systems with
one degree of freedom, the equation H (q, p) = E defines a
one-dimensional curve. If E is not degenerate, it uniquely
specifies a phase-space trajectory. If E is degenerate, as phase-
space trajectories cannot cross, H (q, p) = E specifies a set
{γk} of distinct trajectories.

Now let us define

�t+(E ) := max
γ∈
\{γ0}:H (qγ ,pγ )=E

�t+(γ ),

�t−(E ) := min
γ∈
\{γ0}:H (qγ ,pγ )=E

�t−(γ ). (11)

Like previously, 
 is the set of all classical trajectories under
consideration. Without any additional assumptions, this is the
set of all possible trajectories, while secondary assumptions
would place restrictions on 
.

Using Eq. (11), Eq. (10) can be rewritten in terms of the
energy bounds Emin � E � Emax,

max
Emin�E�Emax

3
2�t+(E ) � T � min

Emin�E�Emax

3�t−(E ). (12)

Therefore, Emin and Emax should be chosen such that Eq. (12)
is satisfied. In the quantum system, this condition manifests as
a projection of the full Hilbert space onto a smaller, oftentimes
finite, subspace spanned by the energy eigenstates whose en-
ergies lie within that range.

D. Summary of the procedure

Let us summarize the procedure for finding the probing
duration T with respect to some energy bounds Emin and Emax.

(1) Identify 
, the set of classical trajectories under consid-
eration. Secondary assumptions might restrict 
 to a subset of
all possible trajectories.

(2) Find �t±(E ) as a function of energy.
(3) Invert Eq. (12) to obtain inequalities for Emin and Emax

as functions of T. Choose a valid T such that Emin � Emax.
(4) Construct Q3(T) in the energy-eigenstate basis, re-

stricted to the subspace {|En〉}, where Emin � En � Emax.
(5) Solve for the maximum eigenvalue of Q3(T).
If the maximum eigenvalue P∞

3 is larger than Pc
3 = 2

3 , then
there are states that would allow us to certify the quantum-
ness of the system by performing the protocol with probing
duration T.

FIG. 6. For the general approach, possible trajectories for non-
relativistic Hamiltonians when the only solutions to E − V (q) = 0,
excluding the fixed point (q = 0, p = 0), are q−1 or q+1, or both.
(a) If q−1 is not a solution, there are two possibilities: If d p

dt |q+1,p=0 =
− ∂V (q)

∂q |q+1 � 0, the trajectory will never enter the negative-q plane

and hence �t−(E ) = 0; if − ∂V (q)
∂q |q+1 < 0, the trajectory enters the

negative-q plane, but as it does not intersect the q axis again, it
remains in the negative-q plane and hence �t−(E ) = 0. (b) If q−1

is a solution, there are also two possibilities: If − ∂V (q)
q |q−1 > 0,

the trajectory will intersect the p axis at the points p− and p+
with p− < p+, and hence �t−(E ) can be found as an integral over
the path from (q = 0, p−) to (q = 0, p+), as given in Eq. (13). If
− ∂V (q)

q |q−1 � 0, the trajectory will never enter the positive-q plane,
and hence �t−(E ) = ∞. Analogous expressions for �t+(E ) can be
found by a reflection q → −q.

Let us now explain how one may go about steps 2 and 4 in
some generality.

1. Simplifications for step 2

Depending on symmetries present in the Hamiltonian,
some simplifications can be made when calculating �t±.

(1) H (q, p) even in q.. When H (−q, p) = H (q, p), every
collection of trajectories {γk} with energy E is symmetric
about the p axis. Therefore, the amounts of time spent in the
positive- and negative-q planes are the same, so �t+(E ) =
�t−(E ). If γ is a closed path that intersects the p axis and has
period T0(γ ), then �t±(γ ) = T0(γ )/2.

(2) H (q, p) even in p.. When H (q,−p) = H (q, p), ev-
ery trajectory γ is symmetric about the q axis. Hence, it is
adequate to consider the trajectory (qγ (t ), pγ (t )) that starts
from p(0) = 0 for the times 0 � t < ∞, with the solution
for t < 0 obtained with a reflection. Hence, given the initial
conditions p(0) = 0 and x(0) < 0 [p(0) = 0 and x(0) > 0],
�t−(γ ) [�t+(γ )] is twice the time taken for the trajectory to
reach x = 0.

(3) The Hamiltonian is nonrelativistic.. If H (q, p) =
p2/2μ + V (q), the solutions to E − V (q) = 0 are the points
where a trajectory with energy E intersects the q axis, which
we will denote by · · · < q−2 < q−1 < 0 < q+1 < q+2 < · · · .
Note that all possible trajectories with energy E can only
intersect the p axis at the two points p± = ±√

2μ[E − V (0)].
Furthermore, since H (q, p) is even in p, the fact that every
trajectory is symmetric about the q axis implies that the tra-
jectory that contains the points (q, 0) and (0, p+) must also
contain the point (0, p−). Therefore, if q+2 is a solution, then
the two trajectories that intersect the q axis at q+1 and q+2

cannot both cross the p axis. In other words, at least one of
the two trajectories must remain indefinitely in the positive-q
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plane such that �t+(E ) = ∞. If q−2 is a solution, an analo-
gous reasoning gives �t−(E ) = ∞.

Meanwhile, if q = 0 is a solution to E − V (q) = 0,
there are three possibilities: (q = 0, p = 0) is a fixed point,
− ∂V (q)

∂q |q=0 > 0, or − ∂V (q)
∂q |q=0 < 0. If (q = 0, p = 0) is a

fixed point, it is excluded from the definition of �t±(E ) and
can be ignored. If − ∂V (q)

∂q |q=0 = d p
dt |(q=0,p=0) > 0, the trajec-

tory remains in the positive-q plane, and hence �t+(E ) = ∞.
Conversely, − ∂V (q)

∂q |q=0 = d p
dt |(q=0,p=0) < 0 ⇒ �t−(E ) = ∞.

These arguments imply that the only situation where
�t±(E ) is finite is when, excluding the fixed point (q =
0, p = 0), either q−1 or q+1 or both q−1 and q+1 are the only
solutions of E − V (q) = 0. If that is the case, the possible
trajectories are illustrated in Fig. 6, which gives rise to the
following formulas for δt±(E ), which allows us to calculate
�t±(E ) with numerical integration even when the exact tra-
jectories cannot be solved:

�t−(E ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if q−1 is not a solution and − ∂V (q)
∂q

∣∣∣
q+1

� 0√
μ

2

∫ 0
q−1

dq√
E−V (q)

if q−1 is a solution and − ∂V (q)
∂q

∣∣∣
q−1

> 0

∞ otherwise,

(13)

�t+(E ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if q+1 is not a solution and − ∂V (q)
∂q

∣∣∣
q−1

� 0√
μ

2

∫ q+1

0 dq 1√
E−V (q)

if q+1 is a solution and − ∂V (q)
∂q

∣∣∣
q+1

< 0

∞ otherwise.

(14)

2. Simplifications for step 4

For the eigenstates |En〉 of H that belong to the discrete part of the energy spectrum, we need to compute the matrix elements

〈En|Q3|En′ 〉 = 1

2
δn,n′ + 1

6

2∑
k=0

eikTθn,n′ 〈En|sgn(Q)|En′ 〉, (15)

where θn,n′ := (En − En′ )/3h̄. In the examples studied in this paper, the spectrum of Q is continuous with support q ∈ [qmin, qmax],
where qmin < 0 < qmax. The matrix elements of sgn(Q) are found with the integration

〈En|sgn(Q)|En′ 〉 =
∫ qmax

0
dq〈En|q〉〈q|En′ 〉 −

∫ 0

qmin

dq〈En|q〉〈q|En′ 〉. (16)

Depending on symmetries present in the Hamiltonian, some simplifications can be made when calculating the matrix elements
of sgn(Q). Notably, if H (Q, P) commutes with the parity operator , where Q = −Q, then there exists a set of eigenvectors
|En〉 of H that are also eigenvectors of . For those states, 〈En|sgn(−Q)|En〉 = 〈En|sgn(Q)|En〉 = (±1)2〈En|sgn(Q)|En〉,
that is, 〈En|sgn(Q)|En〉 = 0.

Matrix elements for nondegenerate energies of a nonrelativistic Hamiltonian.. This simplification for systems with a
nonrelativistic Hamiltonian H (Q, P) = P2/2μ + V (Q) is due to Mawby and Halliwell [10]: Given that Q has the continuous
spectrum stated at the start of this section and its eigenstates |q〉 are acted upon by P as 〈q|P = −ih̄ ∂

∂q 〈q|, then, for En �= En′ ,

〈En|sgn(Q)|En′ 〉 = h̄2

2μ(En − En′ )

(
〈En|qmax〉 ∂〈q|En′ 〉

∂q

∣∣∣∣
q=qmax

+ 〈En|qmin〉 ∂〈q|En′ 〉
∂q

∣∣∣∣
q=qmin

− 〈qmax|En′ 〉 ∂〈En|q〉
∂q

∣∣∣∣
q=qmax

− 〈qmin|En′ 〉 ∂〈En|q〉
∂q

∣∣∣∣
q=qmin

(17)

− 2〈En|q = 0〉 ∂〈q|En′ 〉
∂q

∣∣∣∣
q=0

+ 2〈q = 0|En′ 〉 ∂〈En|q〉
∂q

∣∣∣∣
q=0

)
.

With Eq. (17), the matrix elements of Q3(T) for En �= En′ can
be found with just the values of the wave functions 〈q|En〉
and 〈q|En′ 〉, as well as their first derivatives, at the points q ∈
{qmin, 0, qmax}.

IV. FOUR CASE STUDIES

In the remainder of the paper, we study four specific ex-
amples. The first three examples, i.e., Kerr nonlinear systems

(Sec. IV A), the pendulum (Sec. IV B), and the Morse po-
tential (Sec. IV C), are all approximately harmonic at low
anharmonicities. The Morse potential admits unbound trajec-
tories; yet we show that the protocol can still be performed
with that system. For the last example, we study the par-
ticle in an infinite well (Sec. IV D). This toy model serves
to demonstrate the applicability of the protocol to general
bound systems, even when the system is not approximately
harmonic.
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A. Kerr nonlinear systems

As a first example, we consider a perturbation of the
harmonic oscillator. We choose a form that describes both
nonlinear optical systems [17] and superconducting transmon
systems [18] up to the first nonlinear order:

H (Q = X, P = P)

= h̄ω0

{[
1 + α

2

(
a†a + 1

2

)](
a†a + 1

2

)
+ 3

8
1

}
(18)

= h̄ω0(1 + α)

(
a†a + 1

2
1

)
+ h̄ω0

α

2
a†2a2,

where a = √
mω0/2h̄X + iP/

√
2mh̄ω0 is the annihilation op-

erator defined in the usual way. The corresponding classical
Hamiltonian is

H (q = x, p = p) = H0(x, p) + α

2h̄ω0
[H0(x, p)]2, (19)

where H0(x, p) = p2/2m + mω2
0x2/2 is the Hamiltonian of a

harmonic oscillator. We obtain a nonstandard classical Hamil-
tonian, with more-than-quadratic powers of p, as we have used
Eq. (18) as the reference dynamics.

Concerning the anharmonicity parameter α, negative an-
harmonicities are physically unfeasible, as the energy of the
system would be unbounded from below. However, noting
that α < 0 sometimes appear as low-order approximations of
other Hamiltonians when H0(x, p)/h̄ω0  1, we will allow
negative values of α with the secondary assumption that only
trajectories with H0(x, p)/h̄ω0 � 1/|α| are permitted.

1. Classical bounds

For the trajectories under consideration, the Hamiltonian in
Eq. (19) permits energies within the range

0 � E/h̄ω0 �
{∞ for α � 0

1/2|α| otherwise. (20)

It can be easily verified that the solution to the classical equa-
tions of motion for a state with energy E is

x(t ) = x(0) cos[ω(E )t] + p(0)

mω
sin[ω(E )t], (21)

where ω(E ) =
√

1 + 2αE
h̄ω0

ω0. Each phase-space trajectory is

harmonic, uniquely identified by the energy E , and has an
energy-dependent period 2π/ω(E ). In addition, since the
Hamiltonian is even in x, using Sec. III D 1,

�t+(E ) = �t−(E ) = 2π/ω0

2
√

1 + 2αE/h̄ω0
. (22)

Define T =: τ 2π
ω0

, with τ the ratio between T and the natu-
ral period of the unperturbed harmonic oscillator. Then the
possible values of Emin and Emax that satisfy the condition in
Eq. (12) for the given τ are

Emin

h̄ω0
�
{

1
2α

(
9

16τ 2 − 1
)

if α � 0
1

2α

(
9

4τ 2 − 1
)

if α < 0,

Emax

h̄ω0
�
{

1
2α

(
9

4τ 2 − 1
)

if α � 0
1

2α

(
9

16τ 2 − 1
)

if α < 0.

(23)

In both cases, choosing the equality maximizes the number
of classical trajectories that satisfy Pc

3 � Pc
3. As E � 0 for

all classical trajectories under consideration, we cannot allow
Emax to be negative, as that would exclude all possible states.
In order to also include all classical states with 0 � E � Emax,
we finally arrive at the restriction 3

4 � τ � 3
2 .

2. Quantized system

From Eq. (18) it is clear that the Kerr nonlinear Hamilto-
nian shares the same energy eigenstates |n〉 as the harmonic
oscillator, with the eigenvalue

H (X, P)|n〉 = h̄ω0

{[
1 + α

2

(
n + 1

2

)](
n + 1

2

)
+ 3

8

}
︸ ︷︷ ︸

=:En

|n〉.

(24)
So the matrix elements of Q3 as defined in Eq. (7) for the
Kerr-nonlinear Hamiltonian are

〈n|Q3|n′〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)(n′−n−1)/22−[(n′+n)/2−1] (1+e
iτθn,n′ +e

i2τθn,n′ )
6(n′−n)

√
n′
π

(
n
n
2

)(
n′ − 1

n′−1
2

)
for n even, n′ odd

same as above with n ↔ n′ for n′ even, n odd
1

2
δn,n′ otherwise,

(25)

where θn,n′ = 2π (n − n′)[1 + α
2 (n + n′ + 1)]/3 and we have used the matrix elements of 〈n|sgn(X )|n′〉 from [4].

Meanwhile, the conditions in Eq. (23) translate to the trunca-
tion of the Hilbert space spanned by {|n〉}∞n=0 to

n �

⎧⎪⎨
⎪⎩
√(

3
4ατ

)2 − 3
4 − 1

α
− 1

2 if α � 0

−
√(

3
2ατ

)2 − 3
4 − 1

α
− 1

2 otherwise,
(26a)

n �

⎧⎪⎨
⎪⎩
√(

3
2ατ

)2 − 3
4 − 1

α
− 1

2 if α � 0

−
√(

3
4ατ

)2 − 3
4 − 1

α
− 1

2 otherwise.
(26b)

As such, we can construct Q3 explicitly with the truncation
(26) and find the maximum quantum score P∞

3 by solving for
the largest eigenvalue of Q3.
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FIG. 7. For the Kerr nonlinear system, the maximum quantum
score against anharmonicity, for τ = 1 and the score maximized over
3
4 � τ � 3

2 . A larger violation is possible when the system is weakly
anharmonic, but this advantage is eventually offset due to the energy
constraints set by Eq. (26). The truncation in that equation also
explains the discontinuous jumps.

3. Quantum violation

The maximum quantum score is plotted against anhar-
monicity in Fig. 7. For each value of α, we plot P∞

3 both
for τ = 1 and for the optimal choice of probing duration 3

4 �
τ � 3

2 (the two values coincide at α = 0, as they should). The
discontinuous jumps are due to the truncation of the Hilbert
space, which changes discretely according to Eq. (26).

As a general trend of the relationship between the quan-
tum score and anharmonicity, we find that P∞

3 is maximal
around α ∼ 0 and decreases as |α| increases. The reason for
the extremal behavior is clear: As |α| becomes too large, the
truncation due to Eq. (26) reduces the Hilbert space dimension
to an extent where there can no longer be any violation.

In short, when the magnitude of the anharmonicity be-
comes too large, the trapping becomes either too strong or
too weak: For the reasons discussed qualitatively in Sec. III B,
there is no longer be a gap between the quantum and classical
scores.

4. Comparison with the harmonic approximation

In this section we compare the quantum scores of a weakly
anharmonic system with and without the harmonic approxi-
mation. First we need to quantify “weak.” To do this, we note
the following. On the one hand, in order to have a violation we
need to consider states with at least a few excitations [recall
states |�6〉 of Eq. (3) or states |�4〉 of Eq. (5)]; so we are
looking at states with E ∼ h̄ω0. On the other hand, these states
should be of low energy in the potential, i.e., E  Emax. By
setting Emax/h̄ω0 � 10 we find that weak anharmonicity in
our context means |α| � 0.02 (Fig. 8).

Now, for fixed truncation of excitation n = 6, we study the
role of α in three scenarios.

(i) Find the state |�〉 and time τ that violates the classical
bound maximally. Here we take the anharmonicity of the
system fully into account.

(ii) Fix the state as |�6〉 from the harmonic approximation
[Eq. (3)], but look for the probing time τ that maximizes the
violation under the anharmonic dynamics.

(iii) Fix the state as |�6〉 and set τ = 1, that is, import
naively the state and parameter from the harmonic approxi-
mation.

FIG. 8. For the Kerr nonlinear system, the maximum energy
bound against anharmonicity, for τ = 1. To prepare states with
E/h̄ω0 ∼ 1, the requirement Emax � 10 is met by anharmonicities
|α| � 0.02. There is an asymptotic behavior Emax/h̄ω0 → ∞ as
α → 0.

The scores and probing durations for the three scenarios
are plotted in Fig. 9. We find that the quantum score decreases
with the magnitude of the anharmonicity, albeit the decrease
is negligible if everything is optimized for the dynamics [sce-
nario (i)]. The optimal probing duration decreases with α

increasing: Since the period of a fixed-energy state increases
with α, decreasing the probing duration offsets this increase.
For the Wigner function of the optimal state for scenario (i) at
different anharmonicities in Fig. 10, we observe that the states
at α �= 0 are distorted forms of the state |�6〉 at α = 0, with
barely perceptible differences. In addition, comparing scenar-
ios (ii) and (iii), we see that the quantum violation is greatly
increased by optimizing τ , even if the state is fixed as |�6〉.
This might be of interest for experimental implementations,
as preparing a new state is arguably harder than adjusting the
probing times.

Meanwhile, for the harmonic oscillator with varying τ , the
lowest-truncation state in the harmonic case is |�4〉 [Eq. (5)]

FIG. 9. For the Kerr nonlinear system. (a) Score P3 as a function
of the anharmonicity α for low-energy states with n � 6. Scenario
(i) corresponds to the optimal state |�〉 and time τ with the largest
violation, (ii) corresponds to using |�6〉 from Eq. (3) with the optimal
τ , and (iii) uses |�6〉 and τ = 1, treating the anharmonic system as
if it were a harmonic one. (b) Optimal τ used for each scenario for
every value of α.
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FIG. 10. For the Kerr nonlinear system, the Wigner function
and marginal probability distribution at times t ∈ {0, T/3, 2T/3} of
the n = 6 optimal state with (a) α = 0.02 and (b) α = −0.02. The
optimal states in the weakly anharmonic cases are slightly distorted
versions of the optimal state with n = 6 in the harmonic case (plotted
in Fig. 2). The classical score regions superimposed on the Wigner
function are those that correspond to the probing duration τ (see
Fig. 1).

at probing duration τ = 1.774 with n = 4. The same three
scenarios as before are performed with the restriction En � En
for n = 4 and the results are plotted in Fig. 11. The optimal
state at α = 0.02 is similar to the state |�4〉 at α = 0, while
the state at α = −0.02 is a “flipped” version of |�4〉: This is
in the sense that the bulk of the negativity is concentrated into
the region with Pc

3 = 1
3 , while two peaks of positivity appear

on either side in the regions with Pc
3 = 2

3 .

FIG. 11. Kerr nonlinear system. (a) Score P3 as a function of
the anharmonicity α for the state with truncation n � 4. Scenario
(i) corresponds to the optimal state |�〉 and time τ with the largest
violation, (ii) corresponds to using |�4〉 from Eq. (5) with the optimal
τ , and (iii) uses |�4〉 and τ = 1.774, treating the anharmonic system
as if it were a harmonic one. (b) Optimal τ for each value of α.

The optimal probing duration similarly decreases with an
increase in α. However, unlike before, the quantum score
increases with α. We can understand this behavior as follows.
The radial coordinate of the Wigner function corresponds to
energy, which increases as we move further away from the ori-
gin. From Fig. 12(a) we find that the largest contribution to the
optimal state comes from higher-energy states. The decrease
in probing duration with the increase in anharmonicity ensures
that the higher-energy contributions are in the positive-x plane
at t = 0 and 2T/3. On the other hand, the period of the
lower-energy states barely changes with anharmonicity, so
the shorter probing duration means that these lower-energy
contributions are able to remain in the positive-x plane as the
higher-energy contributions precess to the negative-x plane at
t = T/3, which is present as the positive-x tail in the marginal
probability distribution shown in Fig. 12(a).

B. Pendulum potential

The Hamiltonian of a physical pendulum is

H (q = φ, p = l ) = l2

2mb2
− mb2ω2

0 cos(φ)

= −4αω0l2

h̄
+ h̄ω0

8α
cos(φ),

(27)

where b is a length parameter, φ and l are the angular coordi-
nate and angular momentum of the system, respectively, and
α := −h̄/8mb2ω0 � 0 is the anharmonicity. A small value of
|α|  1 allows for the usual approximation of the pendulum
as a harmonic oscillator. Apart from describing physical pen-
dulums and molecular interactions [19], this Hamiltonian also
describes a superconducting circuit without the small-angle
approximation [18].
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FIG. 12. For the Kerr nonlinear system, the Wigner function
and marginal probability distribution at times t ∈ {0, T/3, 2T/3} of
the n = 4 optimal state with (a) α = 0.02 and (b) α = −0.02. The
Wigner function is distributed such that there is a significant tail of
the probability density that is present in the positive-x plane even
when the bulk of the state is concentrated on the negative-x plane.

1. Classical bounds

A pendulum with energy E has the period [20]

T (E ) = 4

ω0
K

(
8|α|E/h̄ω0 + 1

2

)
, (28)

where K (m) = ∫ π/2
0 du(1 − m sin2 u)−1/2 is the complete el-

liptic integral of the first kind. The pendulum undergoes

librations at large energies. However, the positions observable
along the x and y directions commute, and it is known that
commuting observables cannot exceed the classical score [4],
so no quantum violation of the protocol can be observed for
librating states. Hence, we limit ourselves to closed nonlibrat-
ing trajectories, which limits us to the energy range −1 �
8|α|E/h̄ω0 < 1.

Since the potential is even, we have �t+(E ) = �t−(E ) =
T0(E )/2 from Sec. III D 1. The monotonicity of K (m) within
the energy range under consideration simplifies Eq. (12) to

3
4 T0(Emax) � T � 3

2 T0(Emin). (29)

Although there is no closed-form expression for the inverse of
K (m), it can nonetheless be computed to an arbitrary preci-
sion. In terms of K−1(m), the energy bounds are

2K−1
(

πτ
3

)− 1

8|α| � Emin

h̄ω0
� E

h̄ω0
� Emax

h̄ω0
� 2K−1

(
2πτ

3

)− 1

8|α| ,

(30)

where again T =: τ 2π
ω0

. The inclusion of the classical
ground state requires [2K−1( πτ

3 ) − 1]/8|α| � h̄ω0/8α ⇒
τ � 3K (0)/π = 3

2 . At the same time, the requirement Emin �
Emax implies τ � 3K (0)/2π = 3

4 . Once again, we arrive at the
restriction of the probing duration to the range 3

4 � τ � 3
2 .

2. Quantized system

For the quantized system, the classical coordinates in the
Hamiltonian are replaced by the observables � and L, which
are defined as

� =
∫ π

−π

dφ φ|φ〉〈φ|, L =
∞∑

m=−∞
mh̄|m〉〈m|, (31)

with the resolution of the identity∫ π

−π

dφ|φ〉〈φ| =
∞∑

m=−∞
|m〉〈m| = 1. (32)

We take the range φ ∈ (−π, π ] for the angular coordi-
nate. The angular wave function of the angular momentum
eigenstate is 〈φ|m〉 = eimφ/

√
2π , with which it can be ver-

ified that � and L satisfy the Weyl relation eim�eiφL/h̄ =
e−imφeiφL/h̄eim�.

In the angular coordinate basis, the Schrödinger equa-
tion of the energy eigenstates reads(

4α
d2

dφ2
+ 1

8α
cos(φ)

)
〈φ|En〉 = En

h̄ω0
〈φ|En〉, (33)

which admits Mathieu functions that are 2π periodic in φ

as solutions, with the parameter −1/(4α)2 and characteristic
values En/h̄ω0|α| [19]. The eigenenergies are ordered E0 <

E1 < · · · < En < · · · , with the associated wave function

〈φ|En〉 =
{

1√
π

cen[φ/2,−1/(4α)2] for n even
1√
π

sen+1[φ/2,−1/(4α)2] for n odd,
(34)

where ce and se are the Mathieu functions. For brevity, we
exclude the Mathieu function parameter −1/(4α)2 for the rest
of this section.
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The matrix elements of Q3 are found using Eq. (17) to be

〈En|Q3|En′ 〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cen ( π
2 ) se′

n′+1 ( π
2 )−cen(0) se′

n′+1
(0)

3π (En/h̄ω0−En′ /h̄ω0 ) 2α(1 + eiτθn,n′ + ei2τθn,n′ ) for n even, n′ odd

same as above with n ↔ n′ for n odd, n′ even
1

2
δn,n′ otherwise,

(35)

where θn,n′ = 2π (En − En′ )/3h̄ω0 and se′(x) = d
dx se(x).

3. Quantum violation

The maximum quantum score against anharmonicity is
plotted in Fig. 13 for both τ = 1 and the score maximized
over 3

4 � τ � 3
2 . The behavior is qualitatively similar to Fig. 7

for small anharmonicities, in that there is a general trend
for the quantum score to decrease as the magnitude of the
anharmonicity increases. However, for α < −0.02, we find
that larger scores, compared to the Kerr nonlinear system, can
occur for the pendulum. This is expected, as the contribution
of the higher-order terms of α can no longer be neglected
as |α| gets larger, resulting in more significant deviations
between the two types of dynamics.

Another difference to note is that there is no longer a
violation at α < −0.08 for the pendulum, while the Kerr non-
linear system can still beat the classical bound at α ∼ −0.1.
This is largely due to the energy bounds: For the same value
of anharmonicity, the energy bounds in Eq. (29) result in a
much smaller subspace for the pendulum potential than the
truncation for the Kerr nonlinear system.

4. Comparison with the harmonic approximation

Upon expanding the quantized version of Eq. (27) up to
the fourth order in �, defining the annihilation operator a :=
�/

√
8|α| + i

√
8|α|L/h̄, and performing the rotating-wave ap-

proximation [18], we recover Eq. (18). The anharmonicity
defined for the pendulum corresponds exactly to the α in
Eq. (18). Here the anharmonicity is always nonpositive, with
a weaker anharmonicity corresponding to a larger amplitude
of the potential.

The comparison with the harmonic approximation per-
formed in Sec. IV A 4 for the Kerr nonlinearity is repeated
for the pendulum potential in Appendix A 1. For the values
of anharmonicity considered, the results agree with what was
obtained for the Kerr nonlinear systems, and the optimal states

FIG. 13. For the pendulum, the maximum quantum score against
anharmonicity, for τ = 1 and the score maximized over 3

4 � τ � 3
2 .

The behavior is similar to that in Fig. 7, although it deviates as the
magnitude of the anharmonicity becomes large.

are similar in both cases. However, we notice that the quantum
scores are slightly smaller for the pendulum than the Kerr
nonlinear system at α ∼ −0.02. This is as we observed with
the full range of anharmonicities in Fig. 7, where the quantum
scores begin to diverge between the two cases as α � −0.02.

C. Morse potential

So far, the systems we have studied are even and their
trajectories are closed orbits. Our protocol is general enough
that these are not conditions necessary for the procedure to
work, as we will encounter in this section.

The Morse potential is used to model molecular interac-
tions, which also takes into consideration the effects of bond
breaking [21]. The Hamiltonian with the Morse potential is
given by

H (x, p) = p2

2m
+ De(1 − ecx )2

, (36)

where De is the dissociation energy and c is a length scale.
Note that the potential as defined here differs from the usual
convention in two ways: The origin is placed at the equilib-
rium position x0 so that x0 = 0 and the coordinates have been
flipped from x → −x so that the particle escapes to x → −∞
upon dissociation. This was done to put Eq. (6) in its standard
form. The same physics would be obtained by keeping the
usual convention for the potential and using Pr[x(t ) < x0] in
place of Pr[x(t ) > 0] in Eq. (6).

1. Classical bounds

Classically, the solution for E < De with the initial condi-
tion p(t = 0) = 0 is [22]

x(t ) = 1

c
log

1 − E/De

1 − √
E/De cos[2πt/T0(E )]

, (37)

where the period T0(E ) is given by

T0(E ) = 2π/ω0√
1 − E/De

, (38)

where we have defined the natural frequency ω0 :=√
2Dec2/m. An expression similar to Eq. (37) exists for E >

De. However, in that case, the particle escapes to x → −∞,
so the period is taken to be T0(E ) = ∞. Hence, the times that
the particle remains in the positive and negative regions are,
respectively,

�t−(E ) =
{

2π−2arccos
√

E/De

ω0
√

1−E/De
for E < De

∞ for E � De,
(39)
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�t+(E ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2arccos
√

E/De

ω0
√

1−E/De
for E < De

2
ω0

for E = De

2 arccosh
√

E/De

ω0
√

E/De−1
for E > De.

(40)

Therefore, minE �t−(E ) = π/ω0 and maxE �t+(E ) = π/ω0

for all possible values of E . Notice how �t±(E ) is exactly the
same as for the harmonic oscillator. Therefore, for a system
with the Morse potential, we can perform the original protocol
without modification.

2. Quantized system

In the quantum case, the bound eigenstates are exactly
solvable [21], with the energy eigenvalues

En = h̄ω0

(
n + 1

2

)[
1 − 1

2λ

(
n + 1

2

)]
(41)

for n = 0, 1, . . . , �λ − 1
2�, where we have defined λ :=

2De/h̄ω0 for notational convenience. The corresponding wave

functions and their derivatives are [23]

〈x|En〉 =
√

cn!(2λ − 2n − 1)

(2λ − n − 1)!
(2λecx )λ−n−1/2e−λecx

(42)
× L(2λ−2n−1)

n (2λecx ),

d

dx
〈x|En〉 = c

[(
λ − n − 1

2

)
− λ2ecx

λ − n

]
〈x|En〉

− cλecx

λ − n

√
n(2λ − n)

(
λ − n − 1

2

)
λ − n + 1

2

〈x|En−1〉.
(43)

Here L(α)
n (z) = ∑n

k=0(−1)k (n + α

n − k )zk/k! are the generalized La-
guerre polynomials.

Placing Eq. (43) into Eq. (17), the matrix elements of
sgn(X ) for n �= n′ can be found to be

〈En|sgn(X )|En′ 〉 = 2

c(n − n′)[2λ − (1 + n + n′)]

[
−(n − n′)

(
1 + λ2

(λ − n)(λ − n′)

)
〈En|0x〉〈0x|En′ 〉

− λ

λ − n

√
n(2λ − n)

(
λ − n − 1

2

)
λ − n + 1

2

〈En−1|0x〉〈0x|En′ 〉 (44)

+ λ

λ − n′

√
n′(2λ − n′)

(
λ − n′ − 1

2

)
λ − n′ + 1

2

〈En|0x〉〈0x|En′−1〉
]
,

where |0x〉 = |x = 0〉. Meanwhile, the diagonal elements are

〈En|sgn(X )|En〉 = 4(2λ)2λ−2n−1e−2λPn(λ)

(2λ − n − 1)!
(2λ − 2n − 1) + 2Q(2λ − 2n − 1, 2λ) − 1, (45)

where Q(a, x) = ∫∞
x dt ta−1e−t/(a − 1)! is the regularized 
 function and Pn(λ) is a polynomial of degree n − 1 given in

Eq. (B4).

The coefficients of Pn(λ) grow large with n very quickly,
which results in some difficulty in computing higher-order
matrix elements of sgn(X ) due to the numerical instability.
Hence, we consider only the comparison with the harmonic
approximation performed in the weak-anharmonicity and
low-energy regime for the Morse potential. For this reason,
we will also ignore the free-particle solutions within the con-
tinuous spectrum of the Hamiltonian that only occur for large
energies with E > De.

3. Comparison with the harmonic approximation

We repeat the study performed in Sec. IV A 4 for the Morse
potential in Appendix A 2. While we again find that the quan-
tum score approaches the harmonic case as α → 0, the same
score requires anharmonicities that are an order of magnitude
smaller here compared to the previous cases. This is due to
the shape of the Morse potential, where limx→−∞ V (x) = De

is finite in comparison to limx→∞ V (x) = ∞, so the particle
is much less effectively trapped from the negative-x direc-
tion. Therefore, the Morse potential needs to be much deeper,

hence less anharmonic, to confine the particle as effectively as
the other potentials.

D. Particle in an infinite well

Although the particle in an infinite well exhibits patholog-
ical behaviors in both the classical (phase-space trajectories
are not continuous) and quantum (momentum operator is not
self-adjoint) cases, this toy model serves to illustrate the gen-
erality of the protocol. We show how the procedure laid out
in Sec. III D can be applied to this system, even when the
particle in an infinite well is not approximately harmonic at
small energies.

Its Hamiltonian is usually written as

H (x, p) = p2

2m
+ V (x), V (x) =

{
0 if |x| � L/2
∞ otherwise.

(46)

The quantized Hamiltonian is obtained with a direct replace-
ment x → X and p → P. In the classical and quantum cases,
the trajectories and wave functions, respectively, have support
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only within the range x ∈ [−L/2, L/2], where x is the position
and L is the length of the well.

1. Classical bounds

Apart from the fixed points (x(t ), p(t )) = (x(0), 0), every
classical trajectory is closed and passes the position x =
−L/2. Since every other classical state can be obtained by
an offset t → t − t0, without any loss of generality, we only
need to consider the trajectories with x(0) = −L/2. These
trajectories are uniquely specified by the energy E = p2/2m
and their position in time is

x(t ) = −L

2
+ sgn

[
sin

(
2πt

T0(E )

)]√
m

2E

(
t mod

T0(E )

2

)
,

(47)

where the period of oscillation is

T0(E ) =
√

2m

E
L =:

2π/ω0√
E/h̄ω0

. (48)

For later convenience, we define the natural frequency of the
system as ω0 := 2π2h̄/mL2.

To find �±(E ), we notice that the potential V (x) is even,
so Sec. III D 1 implies

�t+(E ) = �t−(E ) = 2π/ω0

2
√

E/h̄ω0
. (49)

When performing the protocol with T =: τ 2π
ω0

, the energy
bounds that satisfy the condition in Eq. (12) for τ are

9

16τ 2
� Emin

h̄ω0
� E

h̄ω0
� Emax

h̄ω0
� 9

4τ 2
. (50)

2. Quantized system

The solutions for the quantum particle in an infinite well
are well known to be

En =
(

n

2

)2

h̄ω0, 〈x|En〉 =
⎧⎨
⎩
√

2
L cos

(
nπ
L x
)

for n odd√
2
L sin

(
nπ
L x
)

for n even,

(51)
where n � 1 and ω0 is as previously defined. Hence, we can
obtain the matrix elements for Q3 using Eq. (17),

〈En|Q3|En′ 〉 =

⎧⎪⎨
⎪⎩

1

2
δn,n′ if (n − n′)mod2 = 0

1+ei(n2−n′2 )(πτ/6)+ei(n2−n′2 )(2πτ/6)

3
1
π

(
1

n+n′ + (−1)n mod2

n−n′
)

otherwise.
(52)

Meanwhile, rewriting Eq. (50) in terms of n,

3

2τ
< n <

3

τ
. (53)

Therefore, we can construct the matrix for Q3 explicitly with
the truncation given in Eq. (53) to find P∞

3 .

3. Quantum violation

The maximum quantum score P∞
3 is plotted against the

inverse of the probing duration τ−1 in Fig. 14. Two particular
regions of τ are also highlighted: There is no violation for all
values of τ > 1

3 , while all values of 0 < τ < 3
16 violate the

classical bound.
The probability distributions of the optimal states are plot-

ted in Fig. 15 for τ = 1
3 and 1

30 . Their behavior is reminiscent

FIG. 14. For the infinite well, plot of P∞
3 against τ−1. There is no

violation for all values of τ > 1
3 , while all values of τ < 3

16 violate
the classical bound.

of Fig. 4: A violation of the classical bound is achieved
by having a small but consequential contribution from the
positive-x tail of the state when most of the state is concen-
trated on the negative-x axis.

Similar states known as ultraslow states have been studied
in the context of the quantum projectile [2]. Equation (50)
constrains the speed of the particle so that it should only
travel a distance of L/2 � �x � L between successive prob-
ing times. However, the positive-x tail shows that there is a
nonzero probability of the particle traveling much slower and
remaining in the positive-x axis (hence ultraslow), increasing
the quantum score.

V. CONCLUSION

Dynamics-based certification of quantumness is a witness
of nonclassicality for continuous-variable systems, based on
the assumption that the dynamics is known. It was previously
introduced for the harmonic oscillator [3,4]. In this paper we
have extended the protocol to time-independent Hamiltonians.
We have characterized the generic conditions under which a
classical-quantum gap is expected and have explicitly worked
out four examples: an anharmonic oscillator, a pendulum
(where one of the conjugate variables is compact and therefore
the other has a discrete spectrum), an asymmetric potential
with open orbits, and a system that cannot be approximated
as harmonic even at low energies. While we have placed our
focus on the certification of nonclassicality in the context of
quantum theory, we note that the protocol and its classical
bounds depend only on measuring position, bounding energy,
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FIG. 15. For the infinite well, Wigner functions and probability densities of the optimal state for (a) τ = 1
3 and (b) τ = 1

30 at the three
different probing times. The interference patterns of the Wigner function in the latter case are intricate (they can be seen more clearly in the
probability distributions), but the working principle is similar to the former case. The probability densities at times 0 and 2T/3 overlap in both
cases. Just like in Fig. 4, the quantum score is augmented by the positive-x tail when the state is mostly in the negative-x axis.

and the requirement that the Hamiltonian is the generator of
time evolution. So the study could carry over to more gen-
eral theories that uphold those features [24], possibly with a
different degree of violation of the classical bound.

With an eye on experimental implementations, we have
shown that the original harmonic protocol is robust to weak
anharmonicity in the low-energy regime; simple modifications
like adjusting the probing time can already provide significant
improvements. For example, transmon qubits are engineered
to be weakly anharmonic with |α|  1 [18] and the state
space {|n〉}∞n=0 is restricted to n  ncrit for some critical pho-
ton number in the dispersive regime [25], which are exactly

FIG. 16. Same as Fig. 9 but for the pendulum, for low-energy
states with truncation n = 6. (a) Score P3 as a function of the anhar-
monicity α for the three scenarios described above. (b) Optimal τ

used for scenarios (i) and (ii).

the conditions we have considered. Similar conditions and
approximations are also found in a wide variety of optical
systems, ranging from nonlinear fibers [26] to optomechanics
[27].

A possible generalization to this protocol would be to
use probing times {0, t1, t2} that are not equally spaced, as
considered in the Tsirelson paper [3] for the harmonic case.
This requires updating the classical condition in Eq. (12) to
maxE �t+(E ) � t2 and t1 � minE �t−(E ). The rest of the
protocol proceeds analogously. One could also use more than
three probing times, although this may not be beneficial: For
uniform precessions, this was found to decrease the classical-
quantum gap [4].

FIG. 17. Same as Fig. 11 but for the pendulum, for low-energy
states with truncation n = 4. (a) Score P3, optimized over τ , plotted
against α. (b) Optimal τ that achieves the optimized quantum score.
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FIG. 18. For the pendulum, the angular Wigner function W (ϕ, m) [15] and marginal probability density of the optimal low-energy state
at α = −0.02 with truncation (a) n = 6 and (b) n = 4. Note that the angular momentum mh̄ only takes discrete values with integer m. These
states have the same features as Figs. 12 and 10.

Additionally, the protocol readily extends itself to multiple
degrees of freedom. Equations (9) and (8) make reference
only to the measured observable q and would more generally
quantify how long the state remains in the positive or negative
regions of q in a higher-dimensional phase space. Since that is
enough to specify the classical score, the condition in Eq. (10)
maintains Pc

3 = 2
3 . Therefore, barring the simplifications at the

end of the section that are specific to systems with a single
degree of freedom, the procedure laid out in Sec. III can still
be used for systems with multiple degrees of freedom.

In this paper we have taken the dynamics of the system
as given and studied the protocol for what we believe to
be a reasonable choice of the generalized coordinate q. This

FIG. 19. Same as Fig. 9 but for the Morse potential, for low-
energy states with truncation n = 6. (a) Score P3 as a function of
α for the three scenarios. (b) Optimal τ . Note that α is an order of
magnitude smaller than in Figs. 9 and 16.

determines the states, whose nonclassicality can be detected.
Conversely, one’s goal may be to detect the nonclassicality of
a given state: Then one would look for the coordinate q for a
given H , with which the classical bound can be violated for
that state, or even better optimize H for that task. In particu-
lar, it remains an open question whether initial states with a
positive Wigner function can violate the classical bound for
some dynamics. For Hamiltonians that are at most quadratic
in position and momentum, like a free particle or the harmonic
oscillator, the time evolutions of both the classical proba-
bility distribution in phase space and the Wigner function
are exactly the same, which means that a negative Wigner
function is necessary for a violation of the classical bound. In
those cases, this protocol acts as a negativity witness for the
state. For a general time-independent Hamiltonian, while the
canonical variables have the same time evolution for both the
classical and quantum cases, the states might not. As such, it is
not clear if Wigner negativity is still a necessary condition for
a violation of the classical bound or if some Hamiltonians en-
able dynamics-based certification of quantumness of Wigner
positive states or even Gaussian states.
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APPENDIX A: COMPARISONS TO THE HARMONIC
APPROXIMATION

We repeat the study of the protocol in the comparison to
the harmonic approximation, reported in Sec. IV A 4 for the
Kerr-nonlinear system, with both the pendulum (Sec. IV B)
and Morse potentials (Sec. IV C). We consider low-energy
states of the form

∑
n�n ψn|En〉 and weak anharmonicities

with |α|  1.
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FIG. 20. Same as Fig. 11 but for the Morse potential, for low-
energy states with truncation n = 4. (a) Score P3, optimized over τ ,
plotted against α. (b) Optimal τ . Note that α is about two orders of
magnitude smaller than in Figs. 11 and 17.

For both systems, the Hamiltonian approaches that of the
harmonic oscillator as α → 0. At this limit,

|�6〉 = 1√
2

(
4√
21

|E0〉 − |E3〉 +
√

5

21
|E6〉

)
(A1)

is the optimal state that achieves the largest quantum score
P3 = 0.687 for n � n = 6 and τ = 1, while

|�4〉 =
√

0.279|E0〉 +
√

0.191|E1〉e−iθ4 +
√

0.121|E2〉e−i2θ4

+
√

0.309|3〉e−i3θ4 +
√

0.100|E4〉e−i4θ4 ,

(A2)

with θ4 = 0.215π , achieves the largest quantum score P3 =
0.669 for n � n = 4 and τ = 1.774.

In this low-energy regime, we study the following three
scenarios.

(i) Under the truncation n = 6 (n = 4), we find the optimal
state |�〉 and time τ that violates the classical bound maxi-
mally. This fully takes into account the anharmonicity of the
system.

(ii) We use the state |�6〉 (|�4〉) and find the optimal τ . This
only corrects for the change in the period of the state caused
by the anharmonicity.

(iii) We use the state |�6〉 and τ = 1 (|�4〉 and τ =
1.774). This ignores the anharmonicity of the system
completely.

1. Pendulum potential

For the pendulum potential, we plot the three scenarios
with the low-energy states with truncations n = 6 (Fig. 16)
and n = 4 (Fig. 17). As mentioned in the main text, the results
here agree with what was previously obtained, although they
begin to deviate as α ∼ −0.02. The optimal states obtained
are also similar, as illustrated with the Wigner functions plot-
ted in Fig. 18.

2. Morse potential

The results for the Morse potential with truncation n = 6
is plotted in Fig. 19. Note that the horizontal axis is an order
of magnitude smaller than those in Figs. 9 and 16, so a much
weaker anharmonicity is required in the Morse potential for
a violation of the classical bound. For the truncation n = 4,
shown in Fig. 20, the anharmonicities are two orders of mag-
nitude smaller than those in Figs. 11 and 17. The Wigner
functions of the optimal state for both truncations n = 6 and
n = 4 are shown in Fig. 21.

FIG. 21. For the Morse potential, the Wigner function W (x, p) and marginal probability density of the optimal low-energy state at (a)
n = 6 and α = 1.6 × 10−3 and (b) n = 4 and α = 2 × 10−4. These states have the same features as in Figs. 12 and 10, but there is far less
negativity present.
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APPENDIX B: DIAGONAL MATRIX ELEMENTS
FOR THE MORSE POTENTIAL

The diagonal matrix elements of sgn(X ) for the Morse
potential is given by

〈En|sgn(X )|En〉 =
∫ ∞

0
dx|〈x|En〉|2 −

∫ 0

−∞
dx|〈x|En〉|2

= 1 − 2
n!(2λ − 2n − 1)

(2λ − n − 1)!
(B1)

×
∫ 2λ

0
dz z2λ−2n−2e−z[L(2λ−2n−1)

n (z)]2,

where the integration variable was changed to z = 2λecx and
L(α)

n (z) = ∑n
k=0(−1)k (n + α

n − k )zk/k! are the generalized Laguerre
polynomials. The integral can be worked out by using the
explicit form of Laguerre polynomials and the definition of

the regularized 
 function

1

(2λ − 2n − 2 + k)!

∫ 2λ

0
dz z2λ−2n−2+ke−z

= 1 − Q(2λ − 2n − 1 + k, 2λ),

(B2)

which satisfy the recursive relation

Q(α + k, 2λ) = Q(α + (k − 1), 2λ) + (2λ)α+(k−1)

[α + (k − 1)]!
e−2λ,

(B3)
with which the above integral can be simplified to the form
given in Eq. (45). The first few polynomials Pn(λ) are given
in Eq. (B4). However, because the size of the coefficients
grows large very quickly, we were only able to compute the
matrix elements of sgn(X ) for the weak anharmonicity and
low-energy regime:

P0(λ) = 0, (B4a)

P1(λ) = 1, (B4b)

P2(λ) = 6 + 2λ, (B4c)

P3(λ) = 180 − 42λ + 32

2
λ2, (B4d)

P4(λ) = 6440 − 5828

3
λ + 190λ2 + 58

3
λ3, (B4e)

P5(λ) = 347 760 − 140 604λ + 102 376

5
λ2 − 4912

5
λ3 + 212

3
λ4, (B4f)

P6(λ) = 32 802 − 450 763

30
λ + 372 931

150
λ2 − 215 779

1350
λ3 + 31 411

8100
λ4 + 19

108
λ5, (B4g)

P7(λ) = 1 979 385 408 − 4 965 563 888

5
λ + 6 608 820 632

35
λ2 − 5 199 530 008

315
λ3 + 73 504 376

105
λ4 − 553 792

45
λ5 + 1192

3
λ6.

(B4h)
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