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Gauge quantum thermodynamics of time-local non-Markovian evolutions
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Dealing with a generic time-local non-Markovian master equation, we define current and power to be
process-dependent as in classical thermodynamics. Each process is characterized by a symmetry transformation,
a gauge of the master equation, and is associated with different amounts of heat and/or work. Once the
symmetry requirement fixes the thermodynamical quantities, a consistent gauge interpretation of the laws of
thermodynamics emerges. We also provide the necessary and sufficient conditions for a system to have a gauge-
independent thermodynamical behavior and show that systems satisfying quantum detailed balance conditions
are gauge-independent. Applying the theory to quantum thermal engines, we show that gauge transformations
can change the machine efficiency, however, yet constrained by the classical Carnot bound.
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I. INTRODUCTION

One of the challenges of nonequilibrium quantum ther-
modynamics is to provide a consistent description of the
dynamics underlying processes of interaction between small-
or big-scale quantum systems by means of thermodynamical
quantities [1–22]. In classical thermodynamics, work and heat
are process-dependent quantities that change the state of the
physical system [23]. Two states, characterized by their own
set of variables (pressure, temperature, volume, . . .), can be
linked in infinitely many ways, each one differing from the
other by a chosen process, which can also vary by amounts of
work and heat exchanged by the system.

In a well-established scenario for interacting quantum sys-
tems [24–35], the dynamics is modeled through a master
equation. The association of the nonunitary part of this master
equation with “heat” currents dates back to Alicki’s paper
[3], leaving work as a manifestation of the unitary piece [2].
However, this dichotomy is not clear as just stated [10,11].
As we will show, these master equations have a well-known
gauge symmetry [24], which merges the generators of the
unitary part (a Hamiltonian) with those of the dissipation part
(the Lindblad operators), while the evolution of the system is
kept invariant. Since their standard definitions depend on the
generators, energy, heat currents, and power are not invariant,
contrary to the system state, which misleads and intertwines
their notions. From a logical viewpoint, there is no physical
reason to withdraw any of these ingredients, and the only
way to deal with the gauge issues is to interpret their impli-
cations on the physical laws while respecting the dynamical
invariance.

In this work, we interpret gauge transformations as con-
ceivable thermodynamical processes keeping the system’s
evolution unchanged. The intertwining of current and power
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is naturally incorporated in our findings when we recog-
nize that each process has its distinctive fraction of these
quantities. Incorporating the gauge-freedom into thermo-
dynamics, the thermodynamical functions turn themselves
process-dependent, enabling a gauge-consistent definition of
a quantum first law.

Although gauge-induced contributions will give rise to a
component of work performed on (by) the system by (on) the
reservoir [11,16], the first law will consider only two possible
ways of energy variation, as in classical thermodynamics,
throughout heat and work, both described by Alicki’s formu-
las [3] and their gauge transformations. We will also explore
the existence of systems thermodynamically unresponsive to
gauges when we write the necessary and sufficient condi-
tions for the invariance of the thermodynamical quantities.
Notwithstanding, they constitute a small set among all phys-
ical systems governed by a master equation, which enforces
the necessity of a gauge-dependent interpretation.

A general theory for the entropy production for generic
master equations is still missing [7] and would provide a
complete thermodynamical description for systems governed
by such equations. Notwithstanding, a recent result [11] is
used to describe quantum thermal machines constituted by a
system strongly coupled to thermal reservoirs and, interest-
ingly enough, we show that the Carnot bound [23] limits the
efficiency of these machines for the work and heat provided by
Alicki definitions and for any of their gauge-transformations.

In Sec. II, we review the main hypothesis of our approach,
i.e., the time-local master equation and the first law of quan-
tum thermodynamics. Then, we present formal expressions
for the gauge transformations and, in the sequence, we explore
the behavior of work and heat rates under gauges. Condi-
tions for the invariance of all thermodynamical quantities
are derived in Sec. III, where we also show that quantum
detailed balance is sufficient for thermodynamical invariance.
Section IV provides our interpretation of a gauge-dependent
thermodynamics, where each gauge is associated with a ther-
modynamical path followed by the system and explores the
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gauge freedom for particular processes. Remarks about the en-
tropy production are in Sec. V, while in Sec. VI, all presented
theory is exemplified within the pure decoherence model. In
Sec. VII, quantum thermal machines and the Carnot bound
are studied under the developed approach. As an example,
we apply all results for a three-level maser. We discuss and
contextualize our achievements in Sec. VIII with final remarks
and outlooks.

II. SYSTEM DYNAMICS AND THERMODYNAMICS

The open-system scenario, see Ref. [24] for instance,
considers the evolution of the state of a system S, initially
described by the density operator ρ̂0, as the partial trace

ρ̂(t ) = TrE(Ût ρ̂0 ⊗ ρ̂EÛ †
t ) =: �t [ρ̂0] (1)

over the Hilbert space of another system E, where the evolu-
tion of the joint system SE is ruled by the unitary operator Ût ,
which is the solution of ih̄∂tÛt = ĤSEÛt for the Hamiltonian
ĤSE of the global system. This Hamiltonian includes a term
relative to the system S, another relative to the system E
dynamics, as well as a coupling energy term.

When the completely positive trace-preserving (CPTP)
map �t is differentiable with respect to t and invertible, i.e.,
�−1

t exists [30], a time-local master equation (ME) [25,26]
rules the evolution of the system S (see note [36]):

∂t ρ̂ = i

h̄
[ρ̂, Ĥ ] − gμν

2h̄
({L̂†

μL̂ν, ρ̂} − 2L̂μρ̂L̂†
ν ), (2)

where all the remaining influence from E are represented
by Lindblad operators L̂μ (μ = 1, . . . , M) and a Hermitian
operator Ĥ , an effective Hamiltonian. None of these operators
necessarily are pieces of ĤSE, since they crucially depend also
on ρ̂E. The matrix g, whose elements are gμν , is a M × M
diagonal matrix defined as

g = Diag(1, . . . , 1︸ ︷︷ ︸
m+ times

,−1, . . . ,−1︸ ︷︷ ︸
m− times

), M = m+ + m−,

and the Einstein convention is employed throughout this text.
It should be mentioned that g may also depend on time,1 that
is, m± can change, however, this is irrelevant to our results.
Sometimes it will be useful to write Eq. (2) generically as
∂t ρ̂ = L(ρ̂) and also to split the generator into a unitary and
nonunitary part, respectively, defined as the superoperators

U := i

h̄
[•, Ĥ ], D := −gμν

2h̄
({L̂†

μL̂ν, •} − 2L̂μ • L̂†
ν ), (3)

such that L = U + D.
In principle, we consider all the operators in (2) time-

dependent, where memory effects may not be negligible, and
the non-Markovianity can take place despite the absence of
a memory kernel [24–26]. The strict Markovian Lindblad
ME, the one which generates a quantum dynamical semi-
group [28], will be treated as the particular instance of an

1When all Lindblad operators can be written as L̂μ = ωμ(t )Âμ for
time-independent Âμ, then gμν = sign(ωμ)δμν . Throughout the text,
we denote time-independent Lindblad operators by Âμ.

autonomous ME2 with m− = 0. Between this and that, the
evolution of a generic ME (2) may be Markovian with time-
dependent operators [24–26]. However, it is only possible to
ensure complete positivity for the dynamics for all times if
m− = 0 ∀ t . For any other m− values, complete positivity may
or may not be preserved depending on the case [25,26].

As described in Ref. [26], the time-local ME (2) is obtained
analytically from the CPTP map (1). Surprisingly enough,
there is no approximations at all, nor a priori assumptions
about the state (or the nature) of subsystem E, see Ref. [36]
for further comments. Examples of non-Markovian ME are
[30,31], some of them highlight the utility of Eq. (2) in dealing
with a strong coupling between S and E; see also the examples
and references contained in Refs. [25–27].

The operators ĤSE and ρ̂E determine the evolution of ρ̂,
however, they do not uniquely fix the operators in the ME,
which is manifested by the gauge transformations [24]:

L̂μ −→ L̂′
μ = Uμν L̂ν + γμ (μ = 1, . . . , M ),

Ĥ −→ Ĥ ′ = Ĥ + δĤ ,
(4)

with ν = 1, . . . , M, γμ : t ∈R �→ γμ(t ) ∈C, and Uμν : t ∈
R �→ Uμν (t ) ∈ C are the matrix elements of the pseudo-
unitary M × M matrix U satisfying U†gU = g. While each
Lindblad operator undergoes an affine transformation in (4),
the Hamiltonian is translated by the Hermitian operator

δĤ := gμν

2i
(γ ∗

μUνκ L̂κ − γμU ∗
νκ L̂†

κ ) + φ, (5)

keeping the ME in (2) unchanged; in above φ : t ∈ R �→
φ(t ) ∈ R. In fact, the action of gauge (4) upon (3), after simple
calculations, is

U −→ U′ = i

h̄
[•, Ĥ ′] = U(ρ̂) + i

h̄
[•, δĤ ],

D −→ D′ = −gμν

2h̄
({L̂′†

μ L̂′
ν, •} − 2L̂′

μ • L̂′†
ν )

= D − i

h̄
[•, δĤ ],

(6)

which express the invariance of the global generator: L′ :=
U′ + D′ = U + D = L.

The set of all transformations in (4) is the symmetry group
of the Lindblad equation, defined by the product rule [11]
(γ ′′

μ, U′′, φ′′)(γ ′
μ, U′, φ′) = (γμ, U, φ), where

γμ = γ ′′
μ + U ′′

μνγ
′
ν, U = U′′U′,

φ = φ′ + φ′′ + Im(γ ′′∗
μ gμνU ′′

νκγ
′
κ ).

These symmetries are inherently associated with the origin
of a ME, which is only justified when, whatever the reason,
there is a lack of knowledge or control about the system and
its surroundings, this lack manifests as the gauges. In other
words, if one has complete control over the global system
(ĤSE, ρ̂E, and ρ̂0), the dynamics will be promptly described
by the global unitary evolution, and the gauges are as useless
as an ME.

2Autonomous means ∂t Ĥ = ∂t L̂μ = ∂t gμν = 0. To gain generality,
an autonomous ME may be different from a strict Lindblad ME, since
it is possible to have gμν 	= δμν or, equivalently, m− 	= 0.
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When an experimentalist does not know the microscopic
details about the whole system-environment state, he or she is
left with standard tomographic procedures for measurements
of the system state or of the generator L, both gauge-invariant.
The obtained generator will fit with any operators connected
by a gauge transformation (4). See Chap. 8 of the book [37]
for a description of tomography for quantum state and pro-
cesses and its experimental references.

The dichotomy heat-work naturally emerges [3] for the ME
(2) if the internal energy of the system is taken as the mean
value 〈Ĥ〉 := Tr(Ĥ ρ̂ ), once a temporal derivative reads

∂t 〈Ĥ〉 = J + P, (7)

with the Lindblad total current and the Lindblad power de-
fined, respectively, as

J := Tr(Ĥ∂t ρ̂ ) = Tr[ĤD(ρ̂)], P := 〈∂t Ĥ〉. (8)

The expression for the total current above is a consequence of
Tr[ĤU(ρ̂)] = 0, which shows that there is no contribution of
the unitary part and that the current is proper to the interaction
with subsystem E. Writing D explicitly as in (3),

J =
M∑

μ=1

Jμ = −1

h̄
gμνRe〈L̂†

μ[L̂ν, Ĥ ]〉, (9)

i.e., the total current is the sum of the currents due to each
Lindblad operator

Jμ := −1

h̄
δμκgκνRe〈L̂†

κ [L̂ν, Ĥ ]〉. (10)

The above formulas, established by Alicki in Ref. [3],
constitute the standard definitions for the thermodynamical
quantities associated with the ME [38]. However, the invari-
ance of the ME under any gauge (4) does not apply to the
thermodynamical functions [10], which is the starting point
of our work.

A. Energy noninvariance

The first step towards understanding the relation between
gauges and thermodynamics is to consider the energy of
the system. Applying the gauge transformation (4) in the
mean energy, 〈Ĥ〉 −→ 〈Ĥ ′〉 = 〈Ĥ〉 + 〈δĤ〉, taking the tempo-
ral derivative and using (7), one obtains

∂t 〈Ĥ ′〉 = ∂t 〈Ĥ〉 + ∂t 〈δĤ〉 = J + P + ∂t 〈δĤ〉. (11)

We can thus already conclude that the mean energy of the
system, as well as its variation, changes for an applied gauge.
In the sequence, we perform the remaining derivative in (11):

∂t 〈δĤ〉 = Tr(δĤ∂t ρ̂ ) + 〈∂tδĤ〉
= JδĤ + CδĤ + 〈∂tδĤ〉, (12)

where the last equality is obtained by inserting the ME (2),
using (3), and defining

JδĤ := Tr[δĤD(ρ̂)] = −gμν

h̄
Re〈L̂†

μ[L̂ν, δĤ ]〉,

CδĤ := Tr[δĤU(ρ̂)] = i

h̄
〈[Ĥ , δĤ ]〉. (13)

Finally, collecting all these calculations,

∂t 〈Ĥ ′〉 = J + P + JδĤ + CδĤ + 〈∂tδĤ〉, (14)

which is the action of the gauge transformations into Eq. (7).
While the dynamics governed by the ME is invariant, the

quantum counterpart of the first law—provided by Alicki’s
definitions in Eq. (7)—is not invariant and acquires other
components. Fortunately, all gauge-induced contributions in
(14) have a precise physical meaning. Compared with P in
(8), 〈∂tδĤ〉 is a power component due to the Hamiltonian δĤ ,
as well as, JδĤ in (13) is a current with the same structure
as J in (9). In Eq. (13), CδĤ is the mean value of the unitary
evolution (the commutator with the system Hamiltonian Ĥ ) of
the operator δĤ , thus another power component. Noteworthy,
all these gauge contributions are mean values of Hermitian
operators (observables), as well as J and P .

B. Covariance of the first law

To go deeper into our analysis, the individual behavior of
each thermodynamical quantity in Eq. (7) will be explored in
order to give a precise meaning to formula (14).

Each of the system currents (10) under a gauge (4) becomes

Jμ −→ J ′
μ = − 1

h̄
δμκgκνRe〈L̂′†

κ [L̂′
ν, Ĥ + δĤ ]〉, (15)

where L̂′
μ is defined in (4) and δĤ in (5). Summing up for

all μ, after tedious but straightforward manipulations, the
transformed current reads

J −→ J ′ :=
M∑

μ=1

J ′
μ = J + JδĤ + CδĤ , (16)

i.e., the total current, which itself is noninvariant, accounts for
both quantities (13), see Eq. (12). For the Lindblad power P
in (8), applying the symmetry transformation (4), one gets

P −→ P ′ = 〈∂t Ĥ
′〉 = 〈∂t (Ĥ + δĤ )〉 = P + 〈∂tδĤ〉, (17)

and the remaining gauge contribution 〈∂tδĤ〉 in (12) comes
from the noninvariance of the power.

Consistently, it should be noted that J ′ in (16) is equal to

J ′ = Tr(Ĥ ′∂t ρ̂ ) = Tr[ĤD(ρ̂)] + Tr(δĤ∂t ρ̂ ), (18)

in accordance with J in Eq. (8) and Tr(δĤ∂t ρ̂) = JδĤ + CδĤ
from (12).

Summing the above expression for J ′ with P ′ in (17), one
attains a gauge covariant expression for the first law:

∂t 〈Ĥ ′〉 = Tr(Ĥ ′∂t ρ̂ + ρ̂∂t Ĥ
′) = J ′ + P ′, (19)

which is simply a consequence of the linearity of both tempo-
ral derivative and trace operations in Eqs. (7) and (8).

The noninvariance of the mean energy 〈Ĥ ′〉 	= 〈Ĥ〉 is the
root of all gauge-induced contributions, see Eqs. (11) and
(12), and deserves some comments regarding the energy-
conservation. Gauges are ascribed to information lack owing
to the trace in (1) [24], which means that many operators
ĤSE and ρ̂E raise the same ME (2), which only contains
information about the system state ρ̂. The noninvariance of
the energy, 〈Ĥ ′〉 = 〈Ĥ〉 + 〈δĤ〉, is thus a comparison between
two different global systems SE. For each of these, the mean
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value of the global Hamiltonian, say ĤSE or Ĥ ′
SE, determines

the total energy, and the partial trace in (1) selects the corre-
sponding part of the system, determined by Ĥ or Ĥ ′, which
does not contradict the global energy conservation for each
global system.

C. The interplay among generators

Ultimately, a gauge transformation is an interplay of the
operator δĤ between the generators U and D, see Eq. (6).
To explore this observation thermodynamically, we make a
digression and consider a slightly different situation without
gauge transformations.

Consider a ME given by

∂t ρ̂ = L1(ρ̂) := U′(ρ̂) + D(ρ̂), U′ = U + i

h̄
[•, V̂ ], (20)

with U and D as in (3), i.e., the dynamics is described by a ME
(2) with the Hamiltonian Ĥ ′ = Ĥ + V̂ and Lindblad operators
L̂μ. Equivalently, it is possible to write for the same ME that

∂t ρ̂ = L2(ρ̂) := U(ρ̂) + D′′(ρ̂), D′′ := D + i

h̄
[•, V̂ ].

(21)
If and only if the potential term V̂ is a Hermitian linear

combination of L̂μ, the same Lindblad operators appearing in
the generator D, it is possible to write V̂ = δĤ for some set of
functions {Uμν, γμ, φ} in (5). As learned in (6), for V̂ written
as (5), it is possible to regroup the generator D′′ in (21) as

D′′(ρ̂) = −gμν

2h̄
({L̂′′†

μ L̂′′
ν , ρ̂} − 2L̂′′

μρ̂L̂′′†
ν ),

with L̂′′
μ = Uμν L̂μ − γμ; note the different signs in (21) and in

(6). Therefore, the same evolution is ruled by an equivalent
ME, ∂t ρ̂ = L2(ρ̂), with L̂′′

μ and Ĥ = Ĥ ′ − V̂ .
From the thermodynamical point of view, energy, currents,

and power definitions are corrupted by the interplay of V̂ =
δĤ , and the reason is the same as before: the mean energy of
the system changes, as well as, its distribution among heat and
work. For the generator L1 in (20), we have Tr[Ĥ ′U′(ρ̂)] = 0,
thus

∂t 〈Ĥ ′〉 = Tr[Ĥ ′L1(ρ̂)] + 〈∂t Ĥ
′〉 = J + JδĤ + P ′

for J in (8), JδĤ in (13), and P ′ in (17). However, the gener-
ator L2 in (21) reads

∂t 〈Ĥ〉 = Tr[ĤL2(ρ̂)] + 〈∂t Ĥ〉 = J − CδĤ + P,

for J and P both in (8), and CδĤ in (13). Therefore, like
for a gauge transformation, a simple redistribution of the
potential V̂ among the ME generators breaks the dichotomy
heat-work given by Alicki’s definitions in (8). Besides, the
gauge-induced terms in (12) appear on both versions of the
first law above as a consequence of the redistribution, which
indicates that those terms need to be correctly accounted when
considering the thermodynamics of a quantum system gov-
erned by a ME.

Far from pure theoretical curiosity, this interplay may
happen in truly physical systems, which is the case of the
infamous phenomenon of resonance fluorescence, see for in-
stance Refs. [8,24]. In such cases, the dynamics is modeled

by a Markovian Lindblad ME (2) with M = 2, μ ∈ {+,−},
gμν = δμν and

Ĥ ′ = 1

2
h̄ω0σ̂z + V̂ , V̂ := h̄�(e−iωt σ̂+ + e+iωt σ̂−),

L̂± = λ±σ̂±, λ± :=
√

h̄�(n̄ ∓ 1/2 + 1/2),

where σ̂z and σ̂± are the standard SU(2) matrices, ω0 is an
atomic frequency transition, ω is a coherent laser frequency,
the Rabi frequency is �, the decaying rate is �, and n̄ is the
mean-occupation number of a reservoir. The interaction term
can be written as V̂ = δĤ in Eq. (5) using the functions

γ± = −ih̄�λ−1
± e±iωt , φ = 0, Uμν = δμν.

The ME can thus be written as in (20) with Ĥ ′ and L̂μ above
or equivalently by (21) for the operators

Ĥ = 1
2 h̄ω0σ̂z, L̂′′

± = λ±σ̂± − γ±.

Remarkably the atom-field interaction V̂ = Ĥ ′ − Ĥ = δĤ
manifests itself as an affine transformation of the Lindblad
operators, as in Eq. (4).

After all, although we start saying that we were not dealing
with gauges to treat the interplay, it can be understood as such.
Consider the evolution given by (20) with Ĥ = Ĥ0 + V̂ and
V̂ written as (5). The gauge transformation L̂′

μ = Uμν L̂ν − γμ

translates the Hamiltonian Ĥ by δĤ = −V̂ , see Eq. (4), and
the transformed Hamiltonian is Ĥ ′ = Ĥ0. After the gauge, the
same dynamics will be governed by an ME with generators
written as (6).

D. Statistical interpretation of heat and work

As established by statistical physics [39], work is associ-
ated with changes in the system energy levels Ĥ → Ĥ + �Ĥ ,
and heat to variation of populations ρ̂ → ρ̂ + �ρ̂. This di-
chotomy is naturally accomplished by the ME (2) in terms
of the power P and of the current J , both in (8), since
d (ρ̂Ĥ ) = ρ̂dĤ + dρ̂Ĥ . However, despite the covariance of
the first law in (19), the dichotomy is not so clear when we
consider gauge transformations, and the reason is the acquired
contributions for the power P ′ in (17) and for the current J ′
in (16). In what follows, we explore their physical meaning
and their relations with this statistical interpretation.

The component CδĤ in (16) is a remarkable consequence
of gauge transformations. The origin of this piece, defined
in (13), is fundamentally related to the change in the energy-
eigenstates3 by the gauge transformation, it is thus a genuine
quantum effect without a classical counterpart. Not for noth-
ing, it is a power contribution that appears in the current
(16) or a power piece provided by the interaction with the
environment. In detail, if we consider a transformation in (4),
which preserves the energy eigenstates, i.e., one gauge such
that [Ĥ ′, Ĥ ] = 0, then CδĤ = 0. Otherwise, if [Ĥ ′, Ĥ ] 	= 0, the
gauges change the eigenstates, which is the origin of CδĤ . The

3From the spectral decomposition Ĥ = ∑
n En|n〉〈n|, the variation

of the energy has a contribution from the eigenvalues and another
from the eigenvectors: dĤ = ∑

n dEn|n〉〈n| + End[|n〉〈n|].
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discrimination of a term directly in the first law (7) related to
eigenvectors variation is performed in works [15,17].

If the ME has operators satisfying [L̂μ, Ĥ ] = 0 ∀ μ, all
the individual currents (10) are null, consequently J = 0 in
(9). The Lindblad operators, which are diagonal in the energy
eigenbasis, do not promote energy transitions, i.e. L̂μ|n〉 be-
longs to the same ray as the energy eigenket |n〉, which is the
reason behind Tr[D(ρ̂)Ĥ ] = 0, see (8). This can also be seen
in writing Tr[D(ρ̂)Ĥ] = 〈D+(Ĥ )〉, for the adjoint operator
D+ [24]. The above commutation relations are equivalent to
D+(Ĥ ) = 0, which annihilates the heat contribution d ρ̂Ĥ to
the mean energy variation. Besides, the only gauge contri-
bution to J ′ in (16) is the current JδĤ , since CδĤ = 0 due to
[Ĥ ′, Ĥ ] = [δĤ, Ĥ ] = 0 for δĤ in (5).

In a system described by an ME with Lindblad opera-
tors such that [L̂μ, L̂ν] = [L̂μ, L̂†

ν ] = 0 ∀ μ, ν, from Eq. (5),
[L̂μ, δĤ ] = [L̂†

μ, δĤ ] = 0 ∀ μ, then JδĤ = 0 in (13) by the
same physical reason of the nullity of J . In this case, the
gauge contributions are the power in (17) and CδĤ in (16). Even
when the system in question further satisfies [L̂μ, Ĥ ] = 0 ∀ μ,
the power P ′ is still given by (17) and the system is still
gauge-dependent, despite JδĤ = CδĤ = 0. In Sec. VI, as an
example, we present a system satisfying all these commu-
tation relations. Consider an autonomous system, the one in
which the evolution is governed by (2) with time-independent
operators: ∂t Ĥ = ∂t L̂μ = 0 ∀ μ. For this class of systems,
which contains the Lindblad ME, the power is always null,
P = 0, see Eq. (8). However, P ′ in (17) may not be, due to
the temporal dependence of the parameters in (5). Even for a
gauge described by time-independent functions {Uμν, γμ, φ},
where now it is also true that P ′ = 0 due to ∂tδĤ = 0, the
current (16) is not invariant, as well as the first law, since JδĤ
and CδĤ in (13) does not vanish for an autonomous system.

Even the thermodynamics of a noninteracting system is
gauge-dependent. If L̂μ = 0 ∀ μ, the ME (2) becomes the
Liouville-von Neumann unitary evolution

∂t ρ̂ = U(ρ̂) = i

h̄
[ρ̂, Ĥ ], (22)

which warrants J = 0, as expected for an isolated system,
see Eq. (8). The addition of a dynamical phase, Ĥ → Ĥ ′ =
Ĥ + φ(t ), is a gauge symmetry of the unitary evolution, which
generates a power contribution for the system energy:

∂t 〈Ĥ ′〉 = P ′ = P + ∂tφ,

according to Eq. (14) with δĤ = φ(t ), see Eq. (5), and JδĤ =
CδĤ = 0, due to L̂μ = 0, see Eq. (13). Note that this very
same gauge symmetry is also present in the dynamical map
(1) through the unitary evolution associated with the global
Hamiltonian ĤSE.

III. THERMODYNAMICAL INVARIANCE

In the scenario described so far, gauges influence the
thermodynamics of a system, raising the question about the
existence of a possible invariant thermodynamical behavior
and under what conditions this invariance is manifested.

Following the description in Eq. (16), the invariance of the
Lindblad total current is attained when

J ′ = J ⇐⇒ Tr(∂t ρ̂δĤ ) = JδĤ + CδĤ = 0, (23)

and from (17) the invariance of the Lindblad power is such
that

P ′ = P ⇐⇒ 〈∂tδĤ〉 = 0. (24)

In this way, the first law in (7) is invariant provided the
conditions of invariance of the current in (23) and of power
in (24) are met, as it should be. However, the condition for the
invariance of the mean energy (or its rate) is

〈Ĥ ′〉 = 〈Ĥ〉 ⇐⇒ 〈δĤ〉 = 0 �⇒ ∂t 〈δĤ〉 = 0, (25)

which is only a necessary condition for both current and power
invariances, since 〈δĤ〉 = 0 means neither (23) nor (24).

Let us give a closer look to condition (24). Using the
definition in (5), one writes

〈∂tδĤ〉 = Im〈gμνγ̇
∗
μUνκ L̂κ〉 + Im〈gμνγ

∗
μU̇νκ L̂κ〉

+ Im〈gμνγ
∗
μUνκ∂t L̂κ〉 + ∂tφ.

Consequently, the invariance in (24) for any gauge (4), i.e., for
arbitrary functions γμ, Uμν , and φ, becomes

〈∂tδĤ〉 = 0 ⇐⇒ ∂tφ = 〈L̂μ〉 = 〈∂t L̂μ〉 = 0 ∀ μ. (26)

The invariance condition in (23), using δĤ from (5),
becomes Im[gμνγ

∗
μUνκTr(L̂κ∂t ρ̂ )] = 0. For arbitrary gauge

functions, this is the same as

Tr(L̂μ∂t ρ̂ ) = ∂t 〈L̂μ〉 − 〈∂t L̂μ〉 = 0 ∀ μ. (27)

Finally, one can write

JδĤ + CδĤ = 0 ⇐⇒ ∂t 〈L̂μ〉 = 〈∂t L̂μ〉 ∀ μ. (28)

The statements in (26) and in (28) are, in principle, in-
dependent of each other. However, to obtain a consistent
description for the first law, expressed as (7), where each term
(energy, power, and current) is invariant under all possible
gauges of the ME, it is necessary and sufficient to have

∂tφ = 〈L̂μ〉 = 〈∂t L̂μ〉 = 0 ∀ μ. (29)

For an autonomous system, these reduce to ∂tφ = 〈L̂μ〉 = 0.
The standard first law (7) works well for invariant systems

since J and P are not affected by any possible gauge of the
system. Notwithstanding, the invariance conditions (29) are
very restrictive: they must be satisfied at any time, including
system initial state. We are thus led to conclude that the
thermodynamics of the vast majority of systems is influenced
by the gauge symmetries of the ME and requires a consistent
interpretation based on Eqs. (16), (17), and (19). We provide
this interpretation in Sec. IV, but, before, we spend some
words discussing the conditions and presenting an important
class of invariant systems.

A. Invariance conditions

Here we will explore the physical meaning of the invari-
ance conditions in Eq. (29) and its relation with the system
thermodynamics.

A time-dependent phase φ(t ) would continuously change
the energy of the system. Since it appears as part of the Hamil-
tonian through δĤ , see Eq. (5), it will be properly quantified
by work. Therefore, ∂tφ = 0 in (29) is related to the invariance
of power, see (24). For a constant phase, all the system energy
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levels will be shifted as a mere redefinition of the ground-state
energy, as in the Schrödinger equation. We return to this point
in Sec. IV A.

Condition 〈L̂μ〉 = 0 implies that the energy contribution δĤ
promoted by any gauge, see Eqs. (4) and (5), does not impact
the internal energy of the system on average, 〈Ĥ ′〉 = 〈Ĥ〉.
Assuming that ρ̂ is expanded in the eigenbasis of the system
Hamiltonian Ĥ , and that L̂μ stands for a projector operator at
some definite level of this Hamiltonian, then the mean value
〈L̂μ〉 will be the time-dependent occupation probability of this
level. Condition 〈L̂μ〉 = 0 will be fulfilled for a vanishing oc-
cupation probability, which can occur solely for specific initial
states. Furthermore, if L̂μ stands for some energy transition,
i.e., it is a jump operator, then 〈L̂μ〉 becomes a probability
amplitude. The invariance condition requires the vanishing
of this amplitude for all time, which again depends on the
particular initial state.

For a generic time-dependent Lindblad operator, the invari-
ance conditions must include 〈∂t L̂μ〉 = 0. From Eq. (17) and
δĤ in (5), this condition ensures the power invariance due to
〈∂tδĤ〉 = 0. Note that, if the energy and power are invariant,
logically the current will either be, mathematically this is
expressed in Eqs. (27) and (28) when the former conditions
∂tφ = 〈L̂μ〉 = 0 are valid.

Among many possibilities for the temporal dependence of
the Lindblad operators, the particular case L̂μ = ωμ(t )Âμ for a
time-independent Âμ turns the third invariance condition into
〈∂t L̂μ〉 = ω̇μÂμ = 0, which is analogous to the previous dis-
cussion in terms of probabilities. Actually, even for a generic
time-dependence, when the condition 〈L̂μ〉 = 0 is met, the
condition 〈∂t L̂μ〉 = 0 is subsidiary since applying (27) implies
〈∂t ρ̂L̂μ〉 = 0, which, for an infinitesimal evolution, shows that
〈ρ̂(t + dt )L̂μ〉 = 〈ρ̂(t )L̂μ〉, i.e., 〈L̂μ〉 is constant. Although
subsidiary, this condition is necessary for the invariance of the
current through (27).

B. Quantum detailed balance

Although specific, a significant property of some MEs is
their ability to drive the system toward thermal equilibrium.
In analogy with classical stochastic processes, this property is
mathematically expressed by the so-called quantum detailed
balance conditions (QDBCs) [32].

For a time-independent Hamiltonian ĤS with non-null
Bohr frequencies ω1, . . . , ωn and an autonomous Lindblad
ME, governing the evolution of the system, composed by
Lindblad operators Âμ and by another Hamiltonian Ĥ , the
QDBCs are

(a) [ĤS, Ĥ ] = 0;

(b) Û †
S ÂμÛS = e−iωμt Âμ, ÛS := e− i

h̄ ĤSt ;

(c) Âμ+n = e− 1
2 β h̄ωμ Â†

μ, 1 � μ � n.

The physical consequence of these conditions will be de-
scribed in a while, just after we show the main result of
this part: a ME satisfying these QDBC is thermodynamically
invariant under gauges transformations.

Under condition (c), the generator D in (3) becomes

D̃(ρ̂) = − 1

2h̄

n∑
μ=1

({Â†
μÂμ, ρ̂} − 2Âμρ̂Â†

μ)(1 − e−h̄βωμ ).

Note that condition (c) imposes M = 2n in (2).
Using condition (b) in the above generator D̃, it is pos-

sible to show that ÛSD̃(ρ̂)Û †
S = D̃(ÛSρ̂Û †

S ); from condition
(a), immediately one has ÛSU(ρ̂)Û †

S = U(ÛSρ̂Û †
S ) for the

generator U in (3). Thus, the ME ∂t ρ̂ = U(ρ̂) + D̃(ρ̂) satis-
fies ÛS(∂t ρ̂ )Û †

S = ∂t (ÛSρ̂Û †
S ), which implies [ρ̂, ĤS] = 0 and

ÛSρ̂Û †
S = ρ̂.

Since [ρ̂, ĤS] = 0, ∂t Âμ = 0, and ∂tωμ = 0, condition (b)
is equivalently written as [32,33]

χ̂+
S Âμχ̂−

S = e−β h̄ωμ Âμ, χ̂±
S := exp[±βĤS],

which is nothing but a Wick-rotated version of (b). With this
in hands, the cyclicity of the trace readily gives

〈Âμ〉 = Tr(ρ̂Âμ) = Tr(χ̂−
S ρ̂χ̂+

S Âμ) = e−β h̄ωμ〈Âμ〉,

from where (e−β h̄ωμ − 1)〈Âμ〉 = 0. As required by the QDBC
ωμ 	= 0, thus 〈Âμ〉 = 0 ∀ β 	= 0.

Instead of using χ̂±
S , the same steps for the (unrotated)

unitary operator ÛS would give (e−iωμt − 1)〈Âμ〉 = 0, which
certifies that the instant t = 0 corresponds to the value β = 0.
Finally, we can conclude that 〈Âμ〉 = 0 ∀ t 	= 0, which is
the requisite in (29) for the thermodynamical invariance of
an autonomous system, except for two facts: the initial state
ρ̂(t = 0) and the condition over φ. The discussion about the
phase and its meaning in (29) will be postponed to Sec. IV A,
till then, it will be taken for granted.

The invariance of currents, power, and energy of a system
satisfying QDBC for the whole evolution will only be valid if
its initial state is such that 〈Âμ〉 = 0. If not, the thermodynam-
ical invariance can possibly occur only for fixed points of the
ME, these can be an asymptotic state, or even thermal equilib-
rium states, which move us back to the physical consequence
of the QDBC.

For some dynamical semigroups, the QDBCs are necessary
and sufficient conditions to

lim
t→∞ ρ̂(t ) = χ̂−

S /Tr(χ̂−
S ) = e−βĤS/Tr(e−βĤS ),

which means that the asymptotic state of the ME, also a fixed
point, is the Gibbs state of the Hamiltonian ĤS. As far as
we know, this is only proved for dynamical semigroups of
finite-dimensional quantum systems [32] and for Gaussian dy-
namical semigroups of continuous variables systems [33]—a
very small set in the universe of MEs. Nonetheless, a generic
ME that does not belong to this set can satisfy the QDBC
and will be thermodynamically invariant throughout the whole
evolution for a suitable choice of the initial state, as proved.

Examples of Markovian systems satisfying the QDBCs are
the infamous quantum optics master equations for bosonic
systems and discrete systems, including the decay of a two-
level atom; for instance, see Sec. 3.4 of Ref. [24].
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IV. GAUGE-DEPENDENT THERMODYNAMICS

From the dynamical point of view, it is impossible to dis-
criminate what would be the proper gauge of the evolution
since the dynamics is governed by a gauge-invariant ME.
The only plausible way to distinguish between gauges, or to
determine the amount of work and heat in a certain process, is
a choice of measurements to be performed on the system. The
internal energy 〈Ĥ ′〉 can be determined after the measurement
of the corresponding operator Ĥ ′ in Eq. (4), associated with
an infinite set of possible operators L̂′

μ, through the choice of
δĤ in (5), one piece of Ĥ ′. A choice for the Hamiltonian is
precisely the first step in modern tomographic methods [40].

Instead of considering the symmetries of the ME as an
impossibility to determine the thermodynamical quantities
correctly, we place our analysis on the classical interpreta-
tion ground: Each possible gauge defined by a choice of the
functions {γμ,Uμν, φ} in (4) represents a particular thermo-
dynamical process (or path) with its own amount of heat and
work.

Contrasting with classical thermodynamics, the energy is
not a “state function”, it varies according to the gauge (a
thermodynamical path), 〈Ĥ ′〉 = 〈Ĥ〉 + 〈δĤ〉. In our scenario,
state functions are gauge-invariant quantities, which depend
solely on the system state ρ̂; therefore, any function with
domain in the space of density matrices is invariant, e.g.,
the von Neumann entropy and measures of non-Markovianity
based on divisibility of quantum maps or on distinguishability
of quantum states [25].

The thermodynamics embodied in the system evolution is
only properly described by an ME written as ∂t ρ̂ = L′(ρ̂) =
U′(ρ̂) + D′(ρ̂), for the generators in (6), where Ĥ ′ and L̂′

μ are
the operators in (4), which are defined by the set

� = {Ĥ, L̂μ, γμ,Uμν, φ; μ, ν = 1, . . . , M}, (30)

the thermodynamical path or process. The projection of all
paths sharing the same operators Ĥ and L̂μ is the path

�0 = {Ĥ, L̂μ; μ = 1, . . . , M}, (31)

corresponding to the system evolution through the invariant
ME, as pictorially represented in Fig. 1. Formally, the set �0

in (31) is an equivalence class of invariant dynamics under the
group of transformations in (4). This class contains all sets �

defined by Eq. (30).
The heat Q� and the work W� along a path �, thus gauge-

dependent, are determined by J ′ in (16) and P ′ in (17):

Q� =
∫

�

J ′dt =
∫

�

(J + JδĤ + CδĤ )dt,

(32)

W� =
∫

�

P ′dt =
∫

�

(P + 〈∂tδĤ〉)dt,

for P and J both defined in (8), and JδĤ and CδĤ both defined
in (13). Needless to say, Q� + W� = �〈Ĥ ′〉 is the integral
representation of the first law in (19).

For thermodynamical-invariant systems, those satisfying
the invariance conditions (29), all thermodynamical paths (30)
collapse into �0, the path identified with the system evolution,

FIG. 1. Schematic representation of thermodynamical paths.
Each of curves �1, �2, �3, and �4 represents a specific thermody-
namical process, with its amount of heat and work. The covariance
of the mean energy rate in (19) ensures the validity of the first law
along each path since the sum of heat and work gives the variation of
the (gauge-dependent) mean energy. These paths differ by the gauge
parameters {γμ,Uμν, φ} and are projected into a unique curve �0 in
the state space, representing the system evolution and its invariance
under gauge transformations. A gauge can even change during the
evolution due to the temporal dependence of {γμ,Uμν, φ}, a situation
depicted by the crossing curves.

thus Q� = Q�0 and W� = W�0 ∀ �, with

Q�0 =
∫

�0

J dt, W�0 =
∫

�0

Pdt, �〈Ĥ〉 = Q�0 + W�0 .

(33)
For noninvariant systems, the differences

Q� − Q�0 =
∫

�0

(JδĤ + CδĤ )dt,

(34)

W� − W�0 =
∫

�0

〈∂tδĤ〉dt,

are the gauge contributions for the heat and work and, of
course, are related through �〈Ĥ ′〉 − �〈Ĥ〉 = �〈δĤ〉.

Path �0 is not special compared with the other paths �, it
is actually only a didactic reference, a choice for operators of
the system, which can be anyone in (4) or any path (30). The
only fixed quantity is the generator L of the ME since it is the
same for any path. Once �0 is chosen, all the other paths, and
all thermodynamical quantities, will be related to this one by
gauge transformations (4).

In the end, we must say that there is nothing new regarding
a path-dependence in quantum thermodynamics since two
quantum states can be connected by the temporal evolution
ruled by different MEs; in our description, these MEs are
associated with different curves �0 in the state space (equiv-
alence classes), see Fig. 1. Our interpretation resides on the
association of different paths � to the same state evolution.

A. Unitary dynamics and noninteracting systems

The analysis of this simple situation may be enlightening
and paves the way to discussing the remaining point about the
invariance condition ∂tφ = 0 in (26).

Regarding the unitary dynamics ruled by (22), mathe-
matically the phase addition Ĥ → Ĥ ′ = Ĥ + φ(t ) is a U(1)
symmetry of the Liouville-von Neumann equation and a
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thermodynamical path � = {Ĥ, φ} is the one-dimensional
manifold of the unitary operator Û ′

t , the solution of the
Schrödinger equation ih̄∂tÛ ′

t = Ĥ ′Û ′
t . Two paths, say �1 =

{Ĥ, φ1} and �2 = {Ĥ, φ2}, are members of the equivalence
class �0 = {Ĥ}, the manifold of the unitary operator satisfying
ih̄∂tÛt = ĤÛt .

Of course, the phase φ(t ) is a global and instantaneous
shift of the energy levels, which does not change the system
dynamics (22), however, it does cause a change in system
energy, thermodynamically accounted by the work in (32)
with δĤ = φ(t ), CδĤ = 0, and P = 〈∂t Ĥ〉. As a trivial exam-
ple, the phase φ(t ) = 1

2 h̄ω(t ) is a power source appearing in
the time-dependent Hamiltonian Ĥ = h̄ω(t )n̂ + φ(t ) of the
harmonic oscillator; some thermodynamical properties of this
system were described in Ref. [12].

We now return to the point regarding the phase and the
thermodynamical invariance. Whereas φ has its origin in a
gauge transformation, the condition ∂tφ = 0 in Eq. (26), and
also in Eq. (29), is awkward. Nevertheless, φ appears as a
source of power for a system governed by a ME through δĤ ,
see Eqs. (17) and (5), in the same way as it appears in the uni-
tary evolution, where the power is unequivocally defined and
addition of phases simply describes the gauge group. Strictly
speaking, there is no thermodynamical invariance at all if one
is free to add a time-dependent phase to the Hamiltonian. As
in the unitary dynamics, the phase will change the energy of
a system governed by a ME (2). Besides 〈L̂μ〉 = 〈∂t L̂μ〉 = 0,
imposing the invariance condition for φ in (29) is actually a
restriction of the allowed gauge functions.

B. Analysis of particular processes

Among all possible gauges, it is interesting to pinpoint
some particular thermodynamical features associated with
specific processes for generic noninvariant systems.

(i) Energy preservation. The internal energy of a sys-
tem is not gauge-invariant, 〈Ĥ ′〉 = 〈Ĥ〉 + 〈δĤ〉, see Eq. (14).
Notwithstanding, there are many paths � in (30) such that
〈Ĥ ′〉 = 〈Ĥ〉: these are the ones such that 〈δĤ〉 = 0, of course.4

Considering the ME with the transformed generators (6),
the suitable choice γμ = Uμν〈L̂ν〉 and φ = 0 designs a path �

such that δĤ = gμν

2i [〈L̂†
μ〉L̂ν − 〈L̂μ〉L̂†

ν ], according to (5). Con-
sequently, 〈δĤ〉 = 0 and 〈Ĥ ′〉 = 〈Ĥ〉. For the chosen gauge,
the current is given by (16) and the power by (17) for the above
δĤ and, following (12), these are related through JδĤ + CδĤ =
−〈∂tδĤ〉. Note that this is true for any matrix U, since the
attained δĤ does not depend on it.

For the same purpose, another path � is determined by the
choice

φ = −gμν

2i
(γ ∗

μUνκ〈L̂κ〉 − γμU ∗
νκ〈L̂†

κ〉),

which, according to (5), is such that 〈δĤ〉 = 0. Now Eq. (14)
gives J + P = J ′ + P ′ for any γμ and any U.

If in �0, the work exactly balances heat, i.e., P = −J , the
energy of the system following �0 will be conserved, ∂t 〈Ĥ〉 =

4The system energy invariance by 〈δĤ〉 = 0 is the necessary condi-
tion expressed in (25).

0, according to (7). Above designed gauges are specifically
useful to preserve this conservation since another generic
gauge transformation will generate a path with nonconserved
internal energy 〈Ĥ ′〉 such that ∂t 〈Ĥ ′〉 = ∂t 〈δĤ〉, obtained from
Eqs. (12) and (14) with P = −J .

(ii) Power preservation. Consider the following phase:

φ = − 1

2i

∫ t

0
〈∂τ (gμνγ

∗
μUνκ L̂κ − gμνγμU ∗

νκ L̂†
κ )〉dτ,

which defines a path �1 such that P ′ = P , see (17), since
〈∂tδĤ〉 = 0. The current will be the one in Eq. (16) with
JδĤ + CδĤ = ∂t 〈δĤ〉. Beyond that, one can choose a path �2

for the same phase above and also take γμ = Uμν〈L̂ν〉 for
a generic U, then 〈δĤ〉 = φ. However J ′ = J + ∂tφ and
〈Ĥ ′〉 = 〈Ĥ〉 + φ in �2. Even in the particular case of an au-
tonomous ME, J ′ 	= J , despite P ′ = P = 0, since φ is in
general a time-dependent function.

(iii) Current preservation. Since det U 	= 0, it is possible
to choose γμ as a “g-orthogonal” vector to Tr[Uνκ L̂κ∂t ρ̂], such
that gμνγ

∗
μUνκTr[L̂κ∂t ρ̂] = 0, according to which J ′ = J , as

can be seen by inserting (5) into (18) and comparing with
(16). Additionally, by choosing a phase φ such that 〈δĤ〉 = 0,
like in (i), one obtains 〈Ĥ ′〉 = 〈Ĥ〉 and thus P = P ′. This
choice for the functions {γμ, φ} designs infinite paths � 	= �0,
see Eq. (30), in which all thermodynamical quantities are
preserved, i.e., they have the same value as in �0.

(iv) Minimal dissipation. For systems described by finite-
dimensional Hilbert spaces, the gauge fixed by Uμν = δμν

and γμ = −Tr(L̂μ) ensures Tr(L̂′
μ) = 0 in (4), which is the

minimal dissipation condition postulated in Ref. [11].

V. ENTROPY PRODUCTION AND SECOND LAW

The von Neumann entropy S := −〈lnρ̂〉 is a state function,
an exclusive function of the density operator, thus invariant
under gauge transformations. According to (2), its evolution
is

∂tS = −Tr(lnρ̂∂t ρ̂) = gμν

h̄
Re〈L̂†

μ[L̂ν, lnρ̂]〉, (35)

which is also a state function. For concreteness, this conclu-
sion can be achieved by inserting (4) into (35). The similarity
of the above equation with the current in Eq. (8) is not a
coincidence, it actually refers to the statistical interpretation
[39]: currents are bonded to entropy changes since heat is
associated with the variation of populations dρ̂ = ∂t ρ̂dt , see
Sec. II D.

The contraction of the relative entropy S(�t [ρ̂0]|�t [ρ̂�]) �
S(ρ̂0|ρ̂�) [6] under the CPTP map �t in (1) associated with the
ME in (2) enables us to define, as in the strictly Markovian
case [4,24], the entropy production (EP)

� := S(ρ̂0|ρ̂�) − S(ρ̂t |ρ̂�) � 0, (36)

and its rate

E := ∂t� = ∂tS + ∂t Tr(ρ̂t lnρ̂�), (37)

where ∂tS is in (35), while the remaining term is related to
the entropy flux due to heat exchange between S and E. In the
above formulas, ρ̂� is a fixed point of the CPTP map, i.e., a
solution of �t [ρ̂�] = ρ̂�.
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Since S and ∂tS are state functions, one can easily gather
that both � and E are gauge-invariant, or also state functions.
For a non-Markovian evolution, the EP rate in Eq. (37) can be
momentarily negative, a feature associated with the break of
P-divisibility of �t [25], while � is always non-negative. The
(non)positivity of the EP rate, as stated in this paragraph, is a
vocable for the second law of thermodynamics in the quantum
realm, and its violation (break of P-divisibility) is associated
with non-Markovian effects [25].

Another formula for an EP rate found in Ref. [11] considers
a situation in which system S is strongly coupled with a
thermal bath (system E) at inverse temperature β:

Ẽ = ∂tS − βJ = gμν

h̄
Re〈L̂†

μ[L̂ν, βĤ + lnρ̂]〉, (38)

where βJ is the flux associated with the total current in (8).
Despite positive for a P-divisible map (equivalent to a Marko-
vian ME) �t [11,25], the expression for Ẽ will be invariant if
and only if conditions (29) are satisfied, due to its dependence
on J . On another side, choosing a gauge like (iii) in Sec. IV B
ensures the preservation of Ẽ . Interestingly enough, Ẽ changes
according to the current, see Eq. (16),

Ẽ ′ = Ẽ − β(J ′ − J ) = Ẽ − β(JδĤ + CδĤ ), (39)

in order to keep the invariance of ∂tS .
The expression in (38) was deduced from a specific gauge

choice in Ref. [11], the minimal dissipation gauge, item
(iv) in Sec. IV B, therefore there is no strangeness on its
gauge dependence. The authors there consider an instanta-
neous Gibbs state of the Hamiltonian Ĥ present in the ME,
the gauge-transformed version in (39) is obtained consider-
ing the evolution of the system governed by the transformed
Hamiltonian Ĥ + δĤ .

The universal formulation of the EP, i.e., for arbitrary
subsystems (E and S) and arbitrary dynamics, considers the
system, the environment, and their joint unitary evolution
[13]. Part of this information is suppressed by the trace in (1)
and the expressions E and Ẽ were developed for specific ME
scenarios. While Eq. (37) simply raises from the contraction
of �t , it requires explicitly a fixed point ρ̂�, which is not
a generic property of MEs. On another side, assuming that
system E is a thermal environment, Eq. (38) deduced for the
ME [11] coincides with the thermodynamical EP in Ref. [14].

VI. EXAMPLE: PURE DECOHERENCE MODEL

In the wake of open quantum systems, decoherence has
a special appeal due to its relation with the quantum-
classical border [27]. In this section, we study the gauge-
thermodynamical behavior of the simpler non-Markovian
system that captures the essence of this phenomenon, the pure
decoherence model [24,25].

Let us consider the ME (2) for a two-level system with only
one Lindblad operator and a Hamiltonian, respectively, given
by

L̂ =
√

h̄|�(t )|σ̂z, Ĥ = h̄

2
ωσ̂z, (40)

where σ̂z is the standard Pauli matrix, ω is the transition fre-
quency, and �(t ) ∈ R is the decay rate, in principle, a generic

time-dependent function. For this system, Eq. (2) has M = 1
and g =: g = sign[�(t )].

The solution for the ME is easily obtained,

ρ00 = p = 1 − ρ11, ρ01(t ) = ρ01e−iωt D(t ), (41)

where ρi j (t ) = 〈i|ρ̂(t )| j〉 are the matrix elements of the
density operator and we denote ρi j = ρi j (t = 0). The ini-
tial populations 0 � p � 1 and 1 − p are constant, which
is not true for the coherence term ρ01 = ρ∗

10 ∈ C, the lat-
ter evolves according to the decoherence function D(t ) :=
exp{− ∫ t

0 �(s)ds}, which encapsulates all the decoherence
properties of the system [24,27].

Directly from the solution above, for a given initial state
with elements ρ00 = p and ρ01, the state

ρ̂� = p|0〉〈0| + (1 − p)|1〉〈1| (42)

is a fixed point of the dynamics. The long-term solution of
the ME will converge as ρ̂(t → ∞) = ρ̂�, if the decoher-
ence effects destroy completely the initial-state coherence ρ01,
which will happen for limt→∞ D(t ) = 0. The evolution will
be Markovian if D(t ) decreases monotonically since the envi-
ronment will progressively erase the coherences. Otherwise,
the nonmonotonic behavior of D(t ) will raise non-Markovian
effects since the environment will create coherence in the
system [24,25,27]. Recalling that, to represent a physical sys-
tem, ρ̂ must be a positive operator, which implies |ρ01(t )| �
(p − p2) ∀ t , thus |D(t )| � 1. At least theoretically, one can
consider any function D(t ) satisfying the positivity restriction;
nevertheless, the system may not converge to ρ̂�, which will
still be a fixed point of the ME.

For the thermodynamical analysis, we first consider the
path �0 defined in (31) for the operators in (40). The current
in (9) is null, J = − g

h̄ Re〈L̂†
μ[L̂ν, Ĥ ]〉 = 0, once [Ĥ , L̂] = 0.

The power in (8) is also null, P = 0, since ∂t Ĥ = 0. Conse-
quently, the energy 〈Ĥ〉 = 1

2 h̄ω(2p − 1) is constant for any
initial state, according to (7). This clearly agrees with (33),
which says that there is no heat exchange and no work per-
formed by/on the system in path �0.

Using the expressions in (41), we find

〈L̂〉 = (2p − 1)
√

|�(t )|, 〈∂t L̂〉 = (2p − 1)∂t

√
|�(t )|.

Hence, according to conditions (29), nonequilibrium thermo-
dynamical invariance is fulfilled solely for states with equally
populated levels, i.e., p = 1/2. Since ρ00 and ρ11 are constant
throughout the whole evolution, if the initial state is equally
populated, the system will be thermodynamically invariant for
any time. For such an initial state, the values of the thermody-
namical quantities in �0, ∂t 〈Ĥ〉 = J = P = 0, are the same
for any gauge transformation (4) with ∂tφ = 0, which for this
system is written as

L̂′ = eiθ (t )L̂ + γ (t ), δĤ = g
√

|�(t )|Im[γ (t )]σ̂z + φ.

Each of the above gauge transformations defines a path
� according to (30), for simplicity in what follows we will
consider paths such that θ (t ) = 0 and that γ (0) = 0.
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For a noninvariant initial state, the internal energy in � is

〈Ĥ ′〉 = 〈Ĥ〉 + 〈δĤ〉

=
(

1

2
h̄ω + g

√
|�(t )|Im[γ (t )]

)
(2p − 1) + φ,

which is no longer constant, ∂t 〈Ĥ ′〉 	= 0. Heat current
also vanishes in �, J ′ = J = 0, because JδĤ = CδĤ = 0 in
Eq. (13); therefore, within this generic path, the work is equal
to the change in internal energy:

W� =
∫ t

0
∂t 〈δĤ〉dt = (2p − 1)g

√
|�(t )|Im[γ (t )], (43)

see Eq. (32). Its rate provides the power P ′ = ∂t 〈δĤ〉 along �.
The EP in (36) is a state function, meaning that it has the

same value for any path �, which is equal to its value in �0.
Diagonalizing the operator ρ̂(t ) in (41), its eigenvalues are
1
2 ± R(t ), where

R(t ) :=
√(

p − 1

2

)2

+ |ρ01D(t )|2 � 1/2 ∀ t � 0

is a real bounded function as a consequence of the positivity
of ρ̂(t ); note that D(0) = 1 and |D(t )| � 1. Using (42) and the
eigenvalues of ρ̂(t ), it is possible to write the EP as

� = H[R(t )] − H[R(0)] � 0,

H(x) := −(
1
2 + x

)
ln

(
1
2 + x

) − (
1
2 − x

)
ln

(
1
2 − x

)
.

The function H is Schur-concave [41] for 0 � x � 1
2 , which

implies H[R(t )] � H[R(0)], thus � � 0, as expected.
The EP rate becomes

E = −∂t H[R(t )] = −|ρ01|2
R(t )

Arctgh[2R(t )]∂t [D(t )]2,

which is positive whenever ∂t D < 0. Recalling that a mono-
tonically decreasing D(t ) corresponds to a Markovian dy-
namics, non-Markovianity emerges for functions D(t ) with
∂t D > 0, which will also give rise to a negative EP rate and
is associated with violations of the second law for quantum
systems [11,25].

The thermodynamical behavior of decoherence is similar
to the classical experiment of “free expansion” [23], where a
gas irreversibly expands without exchanging heat or perform-
ing work, due exclusively to positive entropy production. This
is the same behavior of the example for an invariant initial
state, or even for the system following the path �0, where
there are no energetic changes, only entropic ones associated
with � � 0. Furthermore, for the same classical experiment,
when isolated and expanding against a piston, there will be
entropy production and work will be realized by the gas. This
situation is comparable to any path other than �0 followed by
the quantum system, where the power is not null and provides
work in (43). Noteworthy, this analogy is lawful even when
non-Markovianity takes place in the dynamics of the quantum
system since � � 0 regardless of the sign of E .

VII. APPLICATION TO THERMAL MACHINES

A quantum thermal machine is nothing but a system evolv-
ing cyclically with period τ , while interacting with reservoirs.

The whole system evolution, a closed thermodynamical path
�0, see Eq. (31), is described by periodic operators, i.e.,
Ĥ (t + τ ) = Ĥ (τ ), L̂μ(t + τ ) = L̂μ(t ) ∀ μ. For this path, heat
and work in one period are given by (33), which in this case
are closed integrals,

Q�0 =
∮

�0

J dt, W�0 =
∮

�0

Pdt, (44)

for J and P in (8) written for the Hamiltonian and Lindblad
operators governing the system evolution.

For a machine composed of two thermal reservoirs, a
colder c and a hotter h, as in the classical Carnot system
[23], the total current in (8) will be the sum (9). However,
each reservoir may be described by more than one Lindblad
operator, which leads us to define Jc and Jh as sums of the
currents of the respective Lindblad operators and write the
total current as J = Jc + Jh. Consequently, the heat entering
the system from the hotter reservoir and the heat leaving the
system to the colder are, respectively, written as

Qh
0 :=

∮
�0

Jhdt, Qc
0 :=

∮
�0

Jcdt, (45)

and, according to (44), Qc
0 + Qh

0 = Q�0 .
As the system returns to the initial state, the mean energy

assumes its initial value, since the Hamiltonian is periodic.
Consequently, W�0 + Q�0 = 0 is the integral expression of the
first law (7) for a whole cycle of the machine. The efficiency
of the machine, as in a classical cycle, will be defined by the
ratio

η = ∣∣W�0

∣∣/Qh
0 = 1 − ∣∣Qc

0

∣∣/Qh
0. (46)

The von Neumann entropy also returns to its initial value
after a cycle due to the periodicity of the Lindblad operators,
see (35). Using Eq. (38),

�S =
∮

�0

(Ẽ + βJ )dt = 0.

Defining the EP as �̃ := ∮
�0
Ẽdt , using (44) and (45), and

performing the integration, one finds

�̃ + βhQh
0 + βcQc

0 = 0. (47)

The positivity of the EP, �̃ � 0, implies βc|Q0
c | � βhQ0

h,
which replaced in (46) shows that the efficiency is bounded
by the Carnot limit, i.e.,

η = 1 − ∣∣Qc
0

∣∣/Qh
0 � 1 − βh/βc. (48)

To take into account the gauge effects, we choose a closed
thermodynamical path �, see Eq. (30), described by periodic
gauge functions {γμ,Uμν, φ}. In this way, the Hamiltonian
Ĥ ′ = Ĥ + δĤ and the Lindblad operators L̂′

μ will be also
periodic operators. Nonperiodic gauge functions (open paths
�), could be equally considered, although thermodynamical
quantities will not return to their initial value after one period,
a necessary requisite for a proper machine.

The heat Q� and work W� will be given by (32) and for-
mulas (34) remain valid for the closed integral. The current
after a gauge (16) is the sum of the currents of each reservoir,
J ′ = J ′

c + J ′
h, as well Q�

c + Q�
h = Q� will be the total heat
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with

Qh
� :=

∮
�

J ′
hdt, Qc

� :=
∮

�

J ′
c dt . (49)

As before, after a period W� + Q� = 0, although W�0 +
Q�0 = 0. Consequently, using (34) and (11),∮

∂t 〈δĤ〉dt = 0

is in agreement with the periodicity of δĤ and is independent
of the path �.

For the EP, the periodicity of the von Neumann entropy
gives ∮

�

(Ẽ ′ + βJ ′)dt = �̃′ + βhQh
� + βcQc

� = 0, (50)

which, from the positivity of the EP �̃′ := ∮
�
Ẽ ′dt � 0, en-

sures that the efficiency, despite not gauge-invariant, is also
bounded by the Carnot limit for any gauge:

η′ = |W�|/Qh
� = 1 − ∣∣Qc

�

∣∣/Qh
� � 1 − βh/βc. (51)

A. General comments

Despite the lack of a general theory for the EP for ME,
see Sec. V, the obtainment of (47) or (50) was only possible
due to the recent developments in Ref. [11], which derives
the EP for a system strongly coupled to a thermal reservoir.
In some sense, excepting the gauges, the machine description
and treatment is commonly found in the literature on Marko-
vian machines, see Refs. [5,22] and the references therein.

While Eq. (48) refers to a machine where the dynamics is
ruled by a ME (2), but describing the evolution of a system
(strongly) coupled to thermal reservoirs, see Ref. [11], its
particular Markovian version [38] is identical and was derived
in Ref. [3], including the limitation by the Carnot bound. The
efficiency and the Carnot bound have also been studied for
quantum machines which do not fit in both of these scenarios,
for instance, generic Markovian master equations with fixed
points [42], the replacement of a thermal bath by a squeezed
version [43], and also a machine governed by a global unitary
evolution [21].

The formulas for the EP, Eqs. (47) or (50), are promptly
obtained if the closed path is composed, as in a Carnot ma-
chine, by strokes: an isothermal at a definite temperature,
representing the coupling with a reservoir, followed by an
isentropic, in which the evolution is unitary. An evolution
like this may be devised using periodic Lindblad operators
becoming cyclically null throughout the isentropics. The EP in
each isothermal will be given by Eq. (38), while it will be null
throughout the isentropic since the unitary evolution ensures
J = 0 and ∂St = 0. For the whole cycle, the EP will be (47)
with Qh

0 and Qc
0, the heat exchanged along the hot and the cold

isotherms, respectively. The positivity of �̃ in each isotherm,
given by (38), is ensured if the evolution is Markovian [11],
which gives the limitation by the Carnot bound.

Reciprocating machines, those in which combined strokes
describes the evolution, are suitable for analytical calculations
due to the convenient separation between the generators of
the ME [5], as described by the Carnot-like machine above.
“Continuous-time” quantum machines [5] are those in which

the path cannot be separated in strokes. In this case, the inte-
gral of (Ẽ + βJ ) can be split as a sum of many infinitesimal
connected paths, in which each alternate path represents the
evolution of the system interacting with only one reservoir,
and Eq. (38) can be applied in each piece. This scenario can
be theoretically described in the scope of a Floquet theory for
MEs [22].

The positivity of the EP, a statement of the second law,
ensures the limitation of the efficiency by the Carnot bound in
(46) and in (51). However, it is also a necessary condition for
Markovian dynamics, see Sec. V, thus a violation of the sec-
ond law may happen for non-Markovian evolutions and that
bound may be surpassed. This would happen for any gauge
since the dynamics is invariant under gauge transformations.

B. Gauge and efficiency

Our previous results show that all gauges of a thermal
machine described by a Markovian ME are subjected to the
Carnot bound, however, it remains to show how the efficiency
changes according to a gauge choice. We will tackle this
question for a thermodynamical-invariant thermal machine,
which unexpectedly has its efficiency changed, despite the
invariance.

The main point is to take into consideration that the invari-
ance conditions in (29) do not apply for each current Jμ in
(15) but only for the whole J in (16). In other words, J ′

μ 	=
Jμ in general, even for an invariant system where J ′ = J .
Consequently, in general, J ′

c 	= Jc and J ′
h 	= Jh, as the sum

of the Lindblad operators relative to their respective reser-
voirs. However, the invariance of J and definitions Eqs. (45)
and (49) ensure

J ′
c + J ′

h = Jc + Jh ⇐⇒ (
Qh

� − Qh
0

) = −(
Qc

� − Qc
0

)
. (52)

Using (47), one can rewrite Eq. (50) as

�̃′ − �̃ = −βh
(
Qh

� − Qh
0

) − βc
(
Qc

� − Qc
0

)
= (βc − βh)

(
Qh

� − Qh
0

)
, (53)

which is the integral formulation of Eq. (39); the second
equality is obtained using the relation (52). The last equality in
(53) is symmetric concerning the paths � and �0, reflecting that
both paths are equally possible gauges of the same evolution.
It asserts that, if the entropy production (considered positive)
is bigger in one gauge, the positive heat will be greater than
in the other. The machine efficiency will change accordingly
due to the thermodynamical invariance. Since P = P ′, thus
|W�| = |W�0 |, which gives η′ = |W�|/Qh

� = |W�0 |/Qh
� , and the

machine efficiency increases for a reduction of the entropy
production and vice versa.

For a noninvariant system, the work performed and heat
absorbed both changes with gauges, and generically nothing
more can be said besides the limitation of the efficiency by the
Carnot bound, as stated in (51).

C. Example: The three-level maser

The quantum thermal engine introduced in Ref. [1] consid-
ers a three-level atom coupled to two thermal baths and to a
radiation field, as depicted in Fig. 2.
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FIG. 2. Scheme of a three-level quantum thermal machine for
a system with energies h̄ωm for m = 1, 2, 3. Bath α with popula-
tion n̄α = n̄α := (eβα h̄ωα − 1)−1 and inverse temperature βα induces
transitions with rate �α for α ∈ {c, h} with ωh = ω3 − ω1 and ωc =
ω3 − ω2. Levels 1 and 2 are connected by an external classical field
V̂ (t ) and, at the end of the cycle, a photon is emitted with frequency
ω. This figure is largely inspired by Fig. 1 of Ref. [34].

The Hamiltonian of this system is Ĥ = Ĥ0 + V̂ (t ) as in
Ref. [34], with

Ĥ0 =
3∑

m=1

h̄ωm|m〉〈m|,

V̂ (t ) = h̄ε(eiωt |1〉〈2| + e−iωt |2〉〈1|),
where Ĥ0 governs the dynamics of the atomic levels with
ω1 < ω2 < ω3, and the atom-field interaction potential V̂ (t )
has coupling constant ε, while ω is the field angular frequency.

Each thermal reservoir is described by two Lindblad opera-
tors, corresponding to thermal transitions between the energy
levels:

Âh,1 =
√

h̄�hn̄h|3〉〈1|, Âh,2 =
√

h̄�h(n̄h + 1)|1〉〈3|,
for the hotter at “inverse temperature” βh, while

Âc,1 =
√

h̄�cn̄c|3〉〈2|, Âc,2 =
√

h̄�c(n̄c + 1)|2〉〈3|,
are associated with the colder at temperature βc.

The ME governing the system evolution is written as (2)
with M = 4, μ ∈ {(h, 1), (h, 2), (c, 1), (c, 2)}, and gμν = δμν .
From now on and without loss of generality, we will use �h =
�c =: � and � = 0.

After a transient, the system attains a limit cycle, the path
�0 in (31), described by a periodic density matrix given by

ρ̂(t ) = ρ̂(t + τ ) =

⎛
⎜⎝ ρ11 ρ12eiωt 0

ρ∗
12e−iωt ρ22 0

0 0 ρ33

⎞
⎟⎠,

where the period of the cycle is determined by ω = ω2 −
ω1 = 2π/τ and the elements ρi j are constants (ρ j j ∈ R and

ρ12 ∈ C) given by [34]

ρ11 = [�n̄c(n̄h + 1) + λ(n̄c + n̄h + 2)]K−1,

ρ22 = [�(n̄c + 1)n̄h + λ(n̄c + n̄h + 2)]K−1,

ρ33 = 1 − ρ11 − ρ22, ρ12 = −iελ−1(ρ22 − ρ11),

where

λ := 8ε2�−1(n̄c + n̄h)−2,

K := λ(4 + 3n̄c + 3n̄h) + �(n̄c + n̄h + 3n̄cn̄h) > 0.

Despite the lengthy expressions, by now it will be helpful to
note only that Reρ12 � 0 and Imρ12 � 0.

The invariance condition in Eq. (29) is promptly verified
for the periodic solution, since 〈Âα, j〉 = Tr[ρ̂(t )Âα, j] = 0 for
α ∈ {h, c} and j = 1, 2. Thus, for a state in the limit cycle,
J ′ = J , P ′ = P , and 〈Ĥ ′〉 = 〈Ĥ〉. So, heat and work are
determined by (33) for any gauge. Noteworthy, in the tran-
sient, the system will be only gauge-invariant if the initial state
satisfies Eq. (29).

The currents associated with the baths are Jh = Jh,1 +
Jh,2 and Jc = Jc,1 + Jc,2, where each current is given by (10)
with μ ∈ {(h, 1), (h, 2), (c, 1), (c, 2)}. Performing the calcu-
lations for the above Hamiltonian and Lindblad operators,

Jh = h̄�K−1(n̄h − n̄c)λωh � 0,

Jc = −h̄�K−1(n̄h − n̄c)λωc � 0. (54)

Although J is gauge invariant, the above currents in general
are not, as we will see in a while. From Eq. (8) and the above
Hamiltonian, the power becomes P = 〈∂tV̂ 〉 and, due to its
invariance, gauge-invariant work

W�0 =
∫ τ

0
〈∂tV̂ 〉dt = 4π h̄εIm(ρ12) � 0 (55)

is performed by the system, see Eq. (33), while heat is ab-
sorbed from the hotter reservoir.

To compare the efficiencies (46) and (51), we will choose
a closed path � in (30) described by the gauge functions

γh,1 = γ ∗
c,1 = Ceiωt/2, γh,2 = γc,2 = φ = 0, Uμν = δμν,

where ω is the same frequency as the state evolution. Explic-
itly calculating each J ′

μ in (15), using Jμ from (10) and above
gauge functions, the gauge induces the following change for
the hot current:

J ′
h − Jh = −1

2
�

√
n̄cn̄h|C|2Im(ρ12) > 0, (56)

which integrated over one period gives

Qh
� − Qh

�0
= τ (J ′

h − Jh) > 0.

From the invariance of J , see Eq. (52), J ′
c − Jc = −(J ′

h −
Jh) and Qc

� − Qc
�0

= −(Qh
� − Qh

�0
). Since Qh

� > Qh
�0

and the
work in (55) is invariant, from (51) and (46), the gauge trans-
formation thus decreases the efficiency, i.e., η′ < η, while
the EP increases, see (53). Replacing γc,1 by −γc,1, while
keeping all the other gauge functions, the relation (56) will
become J ′

h − Jh < 0. In this case, the efficiency and the EP
will respectively increase and decrease.

To show explicitly that the efficiency is bounded by the
Carnot limit, as stated in (48), we thus return to the gauge
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defined by the path �0 and use the currents in (54):

|Jc|
Jh

= ωc

ωh
= βh

βc
ln

(
n̄−1

c + 1

n̄−1
h + 1

)
� βh

βc
,

where we inverted the expression for the occupation number
n̄α , and the inequality is due to n̄h � n̄c. Using the definition
in (46) with Qα

0 = ∮
�0
Jαdt = τJα , the efficiency reads

η = 1 − |Jc|/Jh = 1 − ωc/ωh � 1 − βh/βc,

as we want to show. Trivially, since in path � the gauge trans-
formation reduces the efficiency, this will be also bounded by
the Carnot limit, agreeing with (51).

As a last comment, not all gauge transformations can
change the EP and the efficiency. For instance, choosing

γh,1 = γ ∗
c,1 = Ce−iωt , γh,2 = γc,2 = φ = 0, Uμν = δμν,

a very similar gauge to the previous one, we find

J ′
h − Jh = −1

2
�

√
n̄cn̄h|C|2Im(ρ12e3iωt ),

which integrated over one period gives Qh
� − Qh

�0
= 0, and

thus neither the efficiency nor the EP is changed.
Finally, we remark that in �0, the Lindblad operators Âμ

with μ ∈ {(h, 1), (h, 2), (c, 1), (c, 2)} have TrÂμ = 0 ∀ μ,
and thus satisfy the minimal dissipation condition (iv) in
Sec. IV A. The new set of Lindblad operators in � is such
that TrÂμ = γμ for μ ∈ {(h, 1), (c, 1)} and TrÂμ = 0 for μ ∈
{(h, 2), (c, 2)}, according to Eq. (4), which remove the sys-
tem from minimal dissipation. On another side, nonthermal
energy sources can change the efficiency of a quantum ma-
chine [43,44], which is a behind physical reason explaining
the gauge-induced efficiency change: The operators Âμ in �0

describe the interaction of the system with thermal reservoirs,
while in � they are “displaced” by the gauge, Â′

μ = Âμ + γμ,
representing the coupling with a nonthermal energy source.

VIII. FINAL REMARKS AND OUTLOOKS

The ME in (2) and the thermodynamical quantities in
(8) provide a natural generalization of the thermodynami-
cal paradigmatic model constituted by a system Markovianly
weak-coupled to thermal baths [38], developed mainly in
Refs. [3,4]. In any situation, ME gauges in (4) are ascribed
to information lack owing to the trace in (1). If instead,
one has access to the global system ρ̂0 ⊗ ρ̂E and the global
Hamiltonian ĤSE, then in this case, the unitary evolution
will ultimately determine the dynamics and the energetic ex-
changes undergone by the system without needing an ME
description or gauges. Nonetheless, the debate about ther-
modynamical definitions is open even for global unitary
evolution [9,13,16,21].

The unavoidable gauge influence on thermodynamics was
already noted in previous works [10,11]. Probably the first
in recognizing the problem, Ref. [10] circumvents the ques-
tion restricting the thermodynamic analysis only to the
Markovian weak-coupling-limit established by Davies [35],
which, however, is still gauge-dependent, while the authors of
Ref. [11] postulate one specific gauge for any ME, the min-

imal dissipation gauge in Sec. IV B, and develop the whole
thermodynamical circumscribed to this choice.

The crucial point of our work is the identification of the
gauge-contributions JδĤ and CδĤ in (13) and 〈∂tδĤ〉 with
the standard statistical interpretation of heat and work, see
Sec. II D. Thanks to this agreement, even for a noninvariant
system, the contributions of heat and work from the interac-
tion could be broken unequivocally as in Eq. (32). Since CδĤ
has no classical interpretation, see Sec. II D, our definition of
heat Q� in (32) is the amount of energy exchanged due to the
system E and is a posteriori justified in (39) as a contribution
to entropy production.

We stress the need for a process-dependent interpretation
linked to a gauge of the ME. Without an a priori physical
criterion, there is no way to select one specific gauge from
the system evolution, see Sec. IV, consequently, thermody-
namical quantities for the same system will be ill defined.
Fortunately, the mean energy of the system, despite gauge
dependent, is gauge covariant and legitimizes the first law
for each gauge, see Eq. (11). It is important to recall that,
even without gauges, the first law needs some modifications
to accomplish an interplay of terms between the generators,
which in the end is a gauge transformation, see Sec. II C.

A complete thermodynamical description of MEs still
lacks an EP formulation [7], see Sec. V, which would end
up in an expression for the second law. However, the recent
results in Ref. [11] already enabled the construction of a
quantum thermal machine for systems strongly coupled to
thermal baths, as well as its limitation by the Carnot bound
for any gauge of the system, as we presented in Sec. VII. In
the scope of MEs with fixed points, expressions for the EP and
its rate are known, see Sec. V, enabling a complete thermody-
namical description, which also takes into account the gauges.
This is exemplified in Sec. VI with the thermodynamical de-
scription of the decoherence effect. In both cases, violations
of the second law related to non-Markovianity [25,26] are
discussed. These violations are independent of gauges since
being Markovian or not is a property of the dynamics, which
is gauge-invariant.

Although Alicki in Ref. [3] had undertaken thermody-
namical definitions for the ME in (2), their interpretation is
independent of the dynamics itself. For instance, the first law
(7) is rewritten to emphasize the role of coherences [15–17],
similar to CδĤ in (13). The interchange among pictures of
quantum evolution (Schrödinger, Heisenberg, and Dirac) was
the main motivation for another modification of the first law
by the inclusion of a reminiscent work term [19], which is
similar to the gauge-induced power term (17). Gauge trans-
formations like (4) were not yet put forward for any one of the
above proposals and may provide interesting results.

Another perspective for quantum thermodynamics sets
aside a dynamical description by an ME and focuses on ther-
modynamical functions, in analogy to the Gibbs formulation
of potentials in classical thermodynamics [23]. In a typical
scenario, the system is pushed away from equilibrium by
generalized forces, often stochastic forces, see Ref. [20] and
its references. For instance, in Ref. [14] a system initially
in equilibrium with a thermal reservoir is isolated from it in
order to suffer a unitary evolution. At the end of this protocol,
the employment of the statistical interpretation determines
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the EP and all relevant thermodynamical functions; see also
Ref. [12], for applications to the harmonic oscillator. A similar
protocol is put forward in Ref. [21] to extract or perform
work from an individual quantum system as free-energy vari-
ation. On one side, these works provide strong definitions for
thermodynamical functions, which are immune to gauges. On
another side, the ME conjugated to Alicki’s formulas is not
restricted to specific protocols and environments.

Other approaches join MEs and thermodynamical func-
tions and one effortlessly proves that the energy or entropy
quantities are gauge-dependent. Defining the informational
free energy [42], the authors presented the correlation heat
and the system entropy which are gauge-dependent, despite
the gauge-invariance of informational free energy. The con-
secrated thermodynamical relation between entropy, internal
energy, and informational free energy is gauge-covariant, as
in (19). The works [43,45] adopt the concepts of passive
energy and ergotropy, both gauge-dependent energy pieces for
a gauge-covariant first law. The interpretation for the gauge-
induced modifications, as in Sec. II D, and their consequences
should be investigated.

In the end, we comment on wider applications of the ba-
sic concept behind our approach. Those gauge symmetries
are properties of the dynamics, thus functions of the system
operators {Ĥ, L̂μ} can be affected by gauge transformations.
Consider the following examples:

(i) The efficiency of a quantum thermal machine is re-
lated to fluctuations of heat and work [7,34] and, from the
perspective of thermodynamical uncertainty relations (TURs),

a gauge that increases the efficiency of the machine will in-
crease these fluctuations.

(ii) Multitime correlation functions are dynamic functions
of operators related to experimentally accessible quantities
[24,46], measures of the system energy will change depending
on a gauge choice.

(iii) Leggett-Garg inequalities constitute tests for macro-
realistic physical theories [47]. Violations or not of such
inequalities, for systems described by an ME [48], can be
affected by gauges if the operators involved in the inequalities
were associated with functions of {Ĥ, L̂μ}.

Recently, the work [49] appeared in ArXiv. The authors
there propose definitions of thermodynamical quantities based
on the invariance of the mean energy of the system. Alicki’s
thermodynamical functions are replaced by Haar-averaged
quantities over the unitary subgroup composed by unitary
symmetries of the Hamiltonian operator, which they called
gauge-emergent symmetry. Our treatment departs from an op-
posite direction: the noninvariance of the mean energy and the
consequential effects of the gauge transformations inherent to
the ME scenario. However, investigating a similar construc-
tion for our results is a question to be explored.
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