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Interference phenomena are often claimed to resist classical explanation. However, such claims are under-
mined by the fact that the specific aspects of the phenomenology upon which they are based can in fact be
reproduced in a noncontextual ontological model [Catani et al., arXiv:2111.13727]. This raises the question
of what other aspects of the phenomenology of interference do in fact resist classical explanation. We answer
this question by demonstrating that the most basic quantum wave-particle duality relation, which expresses the
precise tradeoff between path distinguishability and fringe visibility, cannot be reproduced in any noncontextual
model. We do this by showing that it is a specific type of uncertainty relation and then leveraging a recent result
establishing that noncontextuality restricts the functional form of this uncertainty relation [Catani et al., Phys.
Rev. Lett. 129, 240401 (2022)]. Finally, we discuss what sorts of interferometric experiment can demonstrate
contextuality via the wave-particle duality relation.
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I. INTRODUCTION

The canonical thought experiment concerning wave-
particle duality, as with so many thought experiments in the
foundations of quantum theory, originates with Einstein. Bohr
attributes it to him in Ref. [1], describing it thus:

If a semi-reflecting mirror is placed in the way of a photon,
having two possibilities for its direction of propagation, the
photon may either be recorded on one, and only one, of two
photographic plates [...] in the two directions in question,
or else we may, by replacing the plates by mirrors, observe
effects exhibiting an interference between the two reflected
wave-trains.

This pair of possibilities is depicted in Figs. 1(a) and 1(b),
respectively. The semireflecting mirror can be presumed to be
a 50-50 beamsplitter, and in the case where the mirrors are in
place, the interference is observed by recombining the beams
at a second 50-50 beamsplitter. This setup, of course, is the
famous Mach-Zehnder interferometer [2,3].

In modern versions of the thought experiment, it is usually
further noted that (i) if the photographic plates in Fig. 1(a) are
replaced by nondestructive detectors and the beams are again
recombined at the second 50-50 beamsplitter (so that one
has a Mach-Zehnder interferometer wherein a nondestructive
which-way measurement is implemented), then one still does
not see any interference, and (ii) as it is assumed that the
source generates only a single photon, it suffices to have a
detector in just one of the arms to implement a which-way
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measurement and destroy the interference. Consequently, the
modern version of the thought experiment differs from that de-
picted in Fig. 1 in that it typically considers two configurations
of a Mach-Zehnder interferometer: the first, which replaces
the setup depicted in Fig. 1(a), is an interferometer wherein
there is a (nondestructive) detector on one of the arms between
the pair of beamsplitters; the second is a variant of Fig. 1(b) in
which there is a phase shifter on one arm, and where it is suffi-
cient to consider two choices of the local phase shift that allow
one to toggle the relative phase shift between 0 and π . In the
second configuration one sees perfect interference, with the
dark port (the one corresponding to destructive interference)
toggling between left and right as one toggles the choice of
the local phase shift. In the first configuration, the presence of
the detector destroys this interference.

Some version of this thought experiment is familiar to all
students of quantum theory, since certain aspects of its phe-
nomenology have been heralded as capturing the essence of
quantum theory, with Feynman being one of the most promi-
nent advocates of this view [4]. (Note that Feynman considers
the case of the double-slit experiment, but the aspects
of the phenomenology that he makes use of are features that
the double-slit and the Mach-Zehnder interferometer have in
common.) The relevant aspects of the phenomenology include
those in the previous paragraph (and some extensions thereof);
see Ref. [5] for a complete discussion. In that article the
collection of these aspects is called the TRAP phenomenol-
ogy, where TRAP stands for “traditionally regarded as
problematic.”

The claim that the TRAP phenomenology captures the
essence of quantum theory is unlike similar claims that focus
on Bell inequality violations [6–9] or violations of inequalities
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FIG. 1. Einstein’s thought experiment concerning wave-particle
duality. (a) A single-photon source at the left input of a 50-50 beam-
splitter leads to detection in one and only one arm. (b) If the detectors
on the arms are not present and the two beams are recombined at a
second 50-50 beamsplitter, interference is observed.

derived from generalized noncontextuality [10–15], because it
is not supported by a no-go theorem that establishes rigorously
the inconsistency between the TRAP phenomenology and
certain stipulated principles that formally define a notion of
classical explainability (such as the principles of locality or
noncontextuality within the framework of ontological models
[16]). This leaves open the possibility that a classical model
of this interference phenomenology could be constructed. In-
deed, such a model does exist, as was shown in Ref. [5]. This
model is classical in the sense that its kinematical state space
is represented by a set, and its dynamics are represented by
functions on this set [17], while also respecting the principles
of locality and generalized noncontextuality.

We here take a phenomenon to be classically explainable
if and only if it can be reproduced in a generalized-
noncontextual ontological model [10]. We define this notion
formally further on but pause here to make a few comments
about its credentials. Generalized noncontextuality can be mo-
tivated by a methodological version of Leibniz’s principle of
the ontological identity of empirical indiscernibles [17,18] or
by the principle of operational no fine-tuning [19]. Realizabil-
ity by a generalized-noncontextual ontological model implies
the existence of a locally causal model [6,7], the existence of
a Kochen-Specker noncontextual model [20] for sharp mea-
surements [12,21], the existence of a simplex embedding for
a generalized probabilistic theory [22,23], and the existence
of a non-negative quasiprobability representation [24,25], and
is implied by the existence of a macrorealist explanation [26].
Under appropriate conditions, various other indicators of non-
classicality (including anomalous weak values [27], violations
of the Leggett-Garg inequality [28], and universal quan-
tum computation [29,30]) imply the failure of generalized
noncontextuality. The failure of generalized noncontextu-
ality is also a resource for various forms of information
processing [11,31–40].

Having a precise and well-motivated boundary between
classicality and nonclassicality is important because it in-
forms our attempts to solve various problems: (i) the project
of extending quantum theory into new domains, such as
gravitational physics, and of proposing quantum versions of

various classical theoretical frameworks, such as the frame-
works of causal inference [41] or algorithmic information
theory [42,43]; (ii) the project of uncovering novel quantum-
over-classical advantages for various tasks in computation,
communication, and cryptography [44]; (iii) the project of de-
termining the correct interpretation of the quantum formalism.

Given that the TRAP phenomenology of interference can
be reproduced in a generalized-noncontextual ontological
model and hence is classically explainable, it is natural to ask,
What aspects of interference phenomena, if any, are genuinely
nonclassical? That is, What aspects of interference phenom-
ena cannot be reproduced by any generalized-noncontextual
ontological model?

An easy but relatively uninformative way to answer this
question is to take any known proof of the failure of gener-
alized noncontextuality and recast it into an interferometric
scenario. For instance, a proof involving one or two abstract
qubits can be instantiated interferometrically by associating
each qubit with the two-dimensional Hilbert space corre-
sponding to the which path degree of freedom of the system,
termed a dual-rail qubit . This can always be done, but one
learns very little in the process, since it is merely a restatement
of known facts about the Hilbert space structure of quantum
theory in the language of interferometers. The more difficult
but more informative way to answer the question is to find
some operational phenomenology that was previously thought
to be significant to the study of quantum interference and show
that this phenomenology witnesses nonclassicality, in the
sense of being inconsistent with a generalized-noncontextual
or local ontological model. We show herein that the functional
form of the most basic wave-particle duality relation in quan-
tum theory [45] is such an aspect.

A wave-particle duality relation is a tradeoff relation be-
tween two quantities that are meant to represent wavelike and
particlelike behaviors, respectively. For the relation of interest
to us here [45,46], these quantities are the fringe visibility V
and the path distinguishability P . The path distinguishability
is defined in terms of the statistics of a measurement of the
type depicted in Fig. 2(a), which we term a which-way mea-
surement, while the fringe visibility is defined in terms of the
statistics of a measurement of the type depicted in Fig. 2(b),
which we term a which-phase measurement . (Their precise
definitions are given further on.) If we conceptualize the two
experiments depicted in Fig. 1 as involving a preparation stage
and a measurement stage for the dual-rail qubit (the division
between the stages being indicated by the blue dashed line),
then we see that the two possibilities for the measurement
stage are what we have picked out in Figs. 2(a) and 2(b).

The tradeoff relation we will consider between the fringe
visibility V and path distinguishability P holds for all states of
the dual-rail qubit. One of the ways of preparing an arbitrary
state of the dual-rail qubit is depicted in Fig. 2(c), where the
beamsplitter is allowed to have any reflectivity r in the range
[0,1], and there is a phase shifter on one of the arms that
can implement any phase shift φ in the range [0, 2π ). Thus
for each preparation of Fig. 2(c) we can imagine following it
up with the measurement in Fig. 2(a) or the measurement in
Fig. 2(b), and it is the statistics of these two counterfactual
possibilities for the measurement that are constrained by the
wave-particle duality relation of interest to us.
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FIG. 2. Measurement and preparation stages of the interferomet-
ric experiment. (a) Which-way and (b) which-phase measurements.
(c) A preparation procedure with beamsplitter reflectivity r and phase
shift φ, allowing for the implementation of any quantum state of the
dual-rail qubit.

We can now summarize our main result. Under a particular
symmetry condition (which we discuss below and which al-
ways holds in quantum theory), noncontextuality implies the
constraint

V + P � 1. (1)

This constitutes a noncontextuality inequality that is noise-
robust in the sense of Refs. [12,47,48]. Meanwhile, the
quantum tradeoff between visibility V and distinguishability
P is described by the relation [45,46]

V2 + P2 � 1. (2)

In Fig. 3 this tradeoff is plotted alongside the noncontextual
bound of Eq. (1). It is clear from this plot that the noncontex-
tual bound can be violated in quantum theory, demonstrating
the impossibility of explaining this aspect of quantum phe-
nomenology in terms of a noncontextual ontological model.

0 1
0

1

FIG. 3. Plots of fringe visibility V vs path distinguishability P .
The blue curve is the quantum tradeoff relation [Eq. (2)]. The red
curve is the bound on the tradeoff relation that is implied by the
assumption that there exists a noncontextual ontological model of
the experimental setup [Eq. (1)].

It is interesting to note that Greenberger and Yasin [45]
explicitly expressed surprise at how large the fringe visibility
can be for a given degree of path distinguishability in the
quantum tradeoff relation of Eq. (2). They did not, however,
articulate their reasons for expecting otherwise. While it is
true that the simplest form of such a tradeoff would be linear
(so that an increase in path distinguishability implies a pro-
portional decrease in fringe visibility), this is not a compelling
reason to expect linearity. Our result, however, provides such
a reason: if it were possible to explain the experimental setup
classically, in the sense of reproducing its predictions within a
generalized-noncontextual ontological model, then the trade-
off would be linear.

II. THE WAVE-PARTICLE DUALITY RELATION

The fringe visibility V in a generic interference pattern is
defined as the normalized difference between the maximum
and minimum intensities of the pattern:

V = Imax − Imin

Imax + Imin
. (3)

For the type of interference that is of interest in quantum
theory, the pattern is built up from detections of individual par-
ticles that exhibit statistical variation in their location (rather
than, for instance, describing a continuous physical quantity,
such as the height of a water wave). The intensity at a given
location tracks the number of detections in that location and
is consequently proportional to the probability of finding an
individual particle there, so that we can replace intensities
with probabilities in the expression for V:

V = Pmax − Pmin

Pmax + Pmin
. (4)

The expression further simplifies when we specialize to the
case of the measurement depicted in Fig. 2(b). In such an
interference pattern, there are only two spatial locations of in-
terest, namely, the two output ports of the second beamsplitter.
Consequently, the two probabilities of detection sum to unity,
trivializing the denominator.

Meanwhile, the path distinguishability P is defined as the
absolute value of the difference in the probability of finding
the particle on the left and the probability of finding it on the
right for a which-way measurement, such as the one depicted
in Fig. 2(a), i.e.,

P = |P (L) − P (R)|. (5)

Quantum theory predicts that there is a tradeoff between
the fringe visibility and the path distinguishability which
holds for all states, and hence for all preparations of the type
depicted in Fig. 2(c), namely, V2 + P2 � 1 [Eq. (2)]. This
relation was first derived by Wootters and Zurek [46], who
were considering the double-slit experiment, and it was later
rederived in the context of the Mach-Zehnder interferometer
by Greenberger and Yasin [45].1

1Note that this relation is distinct from the one described by En-
glert [49] [Eq. (10) therein], which concerns the tradeoff between
the fringe visibility and path distinguishability when one performs
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The extreme cases in the tradeoff relation of Eq. (2)
are (V,P ) = (1, 0) and (V,P ) = (0, 1). The point (V,P ) =
(1, 0) can be achieved by the preparation procedure where
the beamsplitter has reflectivity 1/2 (a 50-50 beamsplitter)
and the relative phase shift between the two paths is 0 or π ,
because in this case the which-phase measurement is perfectly
predictable, while the which-way measurement is completely
unpredictable. The point (V,P ) = (0, 1) can be achieved
by the preparation procedure where the beamsplitter has re-
flectivity 0 (i.e., no beamsplitter) or reflectivity 1 (a perfect
mirror), because in this case it is the which-way measurement
that is perfectly predictable and the which-phase measurement
that is completely unpredictable. If one wishes to make either
of these quantities nonzero, the other must become strictly less
than unity. The particular manner in which this occurs is what
the wave-particle duality relation stipulates.

III. WHY THE WAVE-PARTICLE DUALITY RELATION IS
AN UNCERTAINTY RELATION

As noted above, it is sufficient for our purposes to concep-
tualize the system that passes between the preparation stage
and the measurement stage as a dual-rail qubit, that is, as a
system described by a two-dimensional Hilbert space where
the basis {|L〉, |R〉} denotes the two eigenstates of a which-
way measurement, corresponding to the two “rails” or spatial
modes of the interferometer on which the particle might be
found; here, L denotes the left mode and R denotes the right
mode.2

The which-way measurement depicted in Fig. 2(a) corre-
sponds to measuring the dual-rail qubit in the {|L〉, |R〉} basis.
The Hermitian operator associated with such a measurement
when one associates the |L〉 (|R〉) outcome with the eigenvalue
+1 (−1) is given by the operator Ẑ := |L〉〈L| − |R〉〈R|, that
is, the Pauli-Z operator relative to the {|L〉, |R〉} basis. We
term this the which-way observable . By letting PZ denote the
probability distribution over the outcome of this measurement
(a random variable which we denote by Z), the path distin-
guishability P defined in Eq. (5) can be expressed as

P = |PZ (+1) − PZ (−1)| = |〈Z〉|. (6)

Here, 〈Z〉 = tr(Ẑρ), where ρ denotes the quantum state of the
dual-rail qubit associated to the preparation stage.

For a measurement with outcome M in the set {+1,−1},
the absolute value of its expectation value, |〈M〉|, is a measure
of the predictability of the measurement. Its maximum value
|〈M〉| = 1 occurs for a distribution that is weighted entirely
on the outcome +1 or entirely on the outcome −1, and its

unsharp versions of the which-phase and which-way measurements
simultaneously, rather than sharp versions of these as counterfactual
alternatives.

2This is a first-quantized description of the experimental setup.
In Ref. [5] it is argued that in order to properly analyze questions
about locality, the first-quantized description should be understood
to concern coarse grainings of the excitational degrees of freedom of
field modes rather than the motional degrees of freedom of particles.
Because we do not concern ourselves with issues of locality here, we
do not emphasize the distinction.

minimum value |〈M〉| = 0 occurs for a distribution that is
uniform over the two outcomes.

Equation (6) therefore shows that the path distinguisha-
bility P is simply a measure of the predictability of the
which-way measurement, and it is consequently appropriate
to describe P as the which-way predictability .

We now consider the fringe visibility. Note that in its def-
inition, Eq. (4), the maximum and minimum probabilities are
obtained by ranging over all the values of the phase shift on
one arm. These extrema are achieved for a pair of phases, φmax

and φmax + π . For convenience, we henceforth consider an
interferometer wherein the path lengths are chosen such that
it is possible to take φmax = 0 and that for this trivial phase
shift, it is the detector at the left output port of the second
beamsplitter that fires.

For such an interferometer, the beamsplitter transformation
in the measurement depicted in Fig. 2(b) is represented by the
Hadamard unitary (relative to the basis {|L〉, |R〉}) and there-
fore the effective measurement on the dual-rail qubit is of the
basis {|+〉, |−〉}, where the two states |±〉 := 1√

2
(|L〉 ± |R〉)

correspond to the relative phase between the left and right
modes being 0 or π, respectively. It is for this reason that
it is apt to call the measurement depicted in Fig. 2(b) a
which-phase measurement. We adopt the convention that the
outcome +1 (−1) is associated to the firing of the detector
at the left (right) output port of the second beamsplitter and
hence to the case where the relative phase is 0 (π ). In this
case, the Hermitian operator associated to this measurement,
the which-phase observable, is X̂ = |+〉〈+| − |−〉〈−|, that is,
the Pauli-X operator relative to the {|L〉, |R〉} basis. Letting PX

denote the probability distribution over the outcome of this
measurement (a random variable which we denote by X ), the
fringe visibility V defined in Eq. (4) can be expressed as

V = max{PX (+1),PX (−1)} − min{PX (+1),PX (−1)}
= |PX (+1) − PX (−1)| = |〈X 〉|. (7)

Equation (7) shows that the fringe visibility V is simply the
absolute value of the expectation value of the ±1-valued
variable X that describes the outcome of the which-phase
measurement and so is a measure of the predictability of this
measurement. It is consequently appropriate to describe V as
the which-phase predictability.

Given the identification of V and P as predictabilities of the
outcomes of the which-phase and which-way measurements,
respectively, the wave-particle duality relation of Eq. (2) can
be understood as a tradeoff of predictabilities, or equivalently,
as a tradeoff of unpredictabilities or uncertainties. An uncer-
tainty relation is a tradeoff of predictabilities that holds for all
states . Because the tradeoff between which-path and which-
way predictability is of this type, it describes an uncertainty
relation.

In fact, the wave-particle duality relation is simply a special
case of an uncertainty relation for an arbitrary qubit. One
can quantify the predictability of measurements of Pauli-Z
and Pauli-X observables by |〈Z〉| and |〈X 〉|, respectively. It
follows from the fact that the quantum state space of a qubit is
the Bloch sphere that the tradeoff relation that holds between
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these predictabilities is

〈Z〉2 + 〈X 〉2 � 1. (8)

This can be understood as an uncertainty relation for a qubit.
[See Appendix D of Ref. [50] for an account of the history
of conceptualizing Eq. (8) as an uncertainty relation.] Given
Eqs. (6) and (7), we see that the quantum wave-particle duality
relation of Eq. (2) is simply an instance of this uncertainty
relation, specialized to the case of the which-way and which-
phase observables of a dual-rail qubit.

It should be noted that Greenberger and Yasin [45] ex-
plicitly denied that their wave-particle duality relation could
be interpreted as an uncertainty relation. Our impression is
that this arose from having an overly narrow conception of
what constitutes an uncertainty relation. Many other authors,
however, have recognized that wave-particle duality relations
wherein the which-way and which-phase measurements are
counterfactual alternatives (the type considered here) are in-
stances of uncertainty relations [51–56].

IV. OPERATIONAL THEORIES, ONTOLOGICAL
MODELS, AND GENERALIZED NONCONTEXTUALITY

We now briefly introduce the relevant preliminaries for dis-
cussing noncontextuality for prepare-measure scenarios. For
a given system, an operational theory stipulates the possible
preparations and measurements, as well as the probability
P (y|M, P) of obtaining each outcome y of measurement M
when performed on preparation P. When characterized in
the framework of generalized probabilistic theories (GPTs)
[57–59], one represents each preparation P and each effect
[y|M] by real-valued vectors �sP and �ey|M , respectively, where
the probabilities are given by P (y|M, P) = �sP · �ey|M .

An ontological model of an operational theory provides an
explanation of the operational predictions of the latter in terms
of processes (stochastic maps) on an underlying classical state
space [16]. An ontological model associates a set �, known
as the ontic state space, with each given system. (For our
purposes this set can be taken to be finite without loss of
generality.) An element λ ∈ � is known as an ontic state and
encodes all physical properties of the system. The ontolog-
ical model represents each preparation P in the operational
theory as a probability distribution μ(λ|P) over ontic states.
Each effect [y|M] is represented by a conditional probability
distribution ξ (y|M, λ) describing the probability of obtaining
outcome y given that measurement M was implemented on
a system with ontic state λ. We can associate μ(λ|P) and
ξ (y|M, λ) with vectors, denoted (respectively) by �μP and �ξy|M .
An ontological model of an operational theory must reproduce
the predictions of that theory as follows:

P (y|M, P) =
∑

λ∈�

ξ (y|M, λ)μ(λ|P) = �ξy|M · �μP. (9)

Such a model satisfies the principle of generalized noncon-
textuality3 if operationally equivalent laboratory procedures
are represented as identical processes in the ontological model

3Henceforth, we shall use the term “noncontextuality” as a short-
hand for “generalized noncontextuality.”

[10]. In the case of preparation procedures (which is all we
require in this work), this can be formalized as follows. Two
preparation procedures P and P′ are operationally equivalent
if they lead to the same statistics for all possible measure-
ments, so that ∀M : P (y|M, P) = P (y|M, P′). We denote this
equivalence relation by P 	 P′. Then an ontological model is
noncontextual if any two such preparations are represented by
the same probability distribution over ontic states:

P 	 P′ ⇒ �μP = �μP′ . (10)

The representation of operational procedures as real-valued
GPT vectors (introduced above) throws away all information
about those procedures except for their operational equiva-
lence class. As a consequence, a noncontextual ontological
representation of an operational theory is one wherein all
procedures associated to the same GPT state vector are rep-
resented by the same probability distribution over ontic states.
For example, if two different mixtures of GPT states are
equal, the corresponding mixtures of their representations as
probability distributions must also be equal:

∑

i

wi�si =
∑

j

w′
j�s ′

j ⇒
∑

i

wi �μi =
∑

j

w′
j �μ ′

j , (11)

where {wi}i and {w′
j} j are probability distributions.

V. WITNESSING CONTEXTUALITY VIA THE
WAVE-PARTICLE DUALITY RELATION

A. A noncontextuality no-go theorem based on
wave-particle duality

Our main result is an application of a result from Ref. [50]
concerning how to witness contextuality via uncertainty rela-
tions. We therefore begin by summarizing this prior result.

Consider an arbitrary operational theory and two binary-
outcome measurements therein, denoted M and M ′. We will
also use M and M ′ to denote the outcomes of these measure-
ments, which are assumed to take values in the set {+1,−1}.

We will consider the tradeoff between the M and the M ′
predictability for an operational state that satisfies a certain
condition, termed A2

1-orbit realizability (which is defined rela-
tive to M and M ′). It consists of two subconditions. The first is
that the operational state has equal-predictability counterparts
relative to M and M ′ : if the operational state is �s1, then one
can find three other operational states, �s2, �s3, and �s4, such that
the quadruple of states gives equal predictabilities for the M
and M ′ measurements but vary over all possible signs of the
expectation values for the pair:

〈M〉�s1 = 〈M〉�s2 = −〈M〉�s3 = −〈M〉�s4 ,

〈M ′〉�s1 = −〈M ′〉�s2 = −〈M ′〉�s3 = 〈M ′〉�s4 . (12)

Notice that all four of these states assign the same values to
|〈M〉| and |〈M ′〉|, and therefore any tradeoff between |〈M〉|
and |〈M ′〉| applies to all of them. The second subcondition is
that this quadruple of states satisfies the operational equiva-
lence relation

1
2�s1 + 1

2�s3 = 1
2�s2 + 1

2�s4. (13)
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(a) (b)

FIG. 4. (a) Example of a pair of quantum measurements, M and
M ′, relative to which qubit quantum theory fails to have A2

1 symmetry.
(b) By contrast, for a pair of complementary measurements, such as
Pauli Z and Pauli X , qubit quantum theory has A2

1 symmetry.

(Note that some operational equivalence relation among the
states is always required in order for the principle of noncon-
textuality to imply constraints on the ontological model.)

In summary, a state satisfies the A2
1-orbit-realizability con-

dition relative to M and M ′ if it is part of a quadruple of
states satisfying Eqs. (12) and (13). The condition is referred
to as “A2

1-orbit realizability” because any such quadruple
of states is an orbit of A2

1, the Coxeter group describing
the abstract version of the group of reflections across two
planes.

An operational theory is said to have A2
1-symmetry relative

to M and M ′ if all operational states in the theory satisfy the
A2

1-orbit-realizability condition relative to M and M ′.
For example, consider qubit quantum theory. The only

pairs of measurements relative to which all states satisfy the
A2

1-orbit realizability condition are pairs of measurements as-
sociated to complementary bases (i.e., orthogonal directions
in the Bloch sphere). This fact can be inferred from the ge-
ometry of the Bloch sphere, as we now explain (see Fig. 4).
Consider two observables, M and M ′, whose +1 outcomes are
associated to directions that subtend an angle strictly greater
than 90◦ in the Bloch sphere. Now consider the Bloch vector
�s1 that describes a pure state that assigns positive expectation
values to both M and M ′. The state �s1 is an example of one that
does not satisfy the A2

1-orbit-realizability condition relative
to M and M ′. This is because, to satisfy the condition, there
must be an operational state �s2 that satisfies 〈M〉�s2 = 〈M〉�s1

and 〈M ′〉�s2 = −〈M ′〉�s1 , but this places �s2 outside the Bloch
sphere so that it does not describe a valid quantum state. If
M and M ′ describe a pair of observables whose +1 outcomes
are associated to directions that subtend an angle strictly less
than 90◦ in the Bloch sphere, then any pure state that assigns
a positive expectation value to M and a negative expectation
value to M ′ provides an example of one that does not satisfy
the A2

1-orbit-realizability condition, by similar logic. In this
way we reach the conclusion that M and M ′ must correspond
to orthogonal directions in the Bloch sphere. For any pair of
orthogonal directions (corresponding to a pair of complemen-
tary measurements), it is easy to see that every state in the
Bloch sphere satisfies the A2

1-orbit-realizability condition, as
illustrated in Fig. 4(b).

The which-way and which-phase measurements in quan-
tum theory are an instance of a pair of complementary
measurements, and so every state of a dual-rail qubit satisfies
A2

1-orbit realizability relative to the which-way and which-
phase measurements. In other words, the dual-rail qubit has
the A2

1-symmetry property.
The significance of having the A2

1-symmetry property is
that it is under this condition that noncontextuality implies a
bound on the predictability tradeoff for the pair of measure-
ments in question. Specifically, the operational equivalence of
Eq. (13), together with the specific instance of noncontextu-
ality described in Eq. (11), implies nontrivial constraints on
the ontological representations of the states. These constraints
have consequences for the possible measurement statistics,
which are derived in Ref. [50] (see Appendix A) and which
we recall here:

Proposition A.1. Consider an operational theory having A2
1

symmetry relative to the pair of measurements M and M ′.
The operational theory admits of a noncontextual ontological
model if and only if the tradeoff of predictabilities for this
pair of measurements satisfies the following bound for all
states:

|〈M〉| + |〈M ′〉| � 1. (14)

If we take M and M ′ to be the which-way and which-
phase measurements, respectively, so that |〈M〉| = |〈Z〉| = P
[where we have used Eq. (6)], and |〈M ′〉| = |〈X 〉| = V [where
we have used Eq. (7)], then we get the following corollary:

Corollary A.1. Consider an operational theory having
A2

1-symmetry relative to which-way and which-phase mea-
surements. The operational theory admits of a noncontextual
ontological model if and only if the wave-particle duality
relation in the operational theory satisfies the bound

V + P � 1. (15)

As we noted above, a dual-rail qubit has the A2
1

symmetry property relative to the which-way and which-
phase measurements. Consequently, the fact that it can
saturate the wave-particle duality relation of Eq. (2), namely,
V2 + P2 � 1, and thereby violate the bound of Eq. (15),
implies that the functional form of its wave-particle duality
relation witnesses contextuality. This is illustrated in Fig. 3.

Imagine now some operational theory that describes an
alternative to quantum theory, i.e., a foil to quantum theory
[60]. Suppose that it allows for a which-way measurement
and a which-phase measurement and that it has A2

1 symmetry
relative to these measurements. Such theories also have trade-
off relations between the predictabilities of the which-way
and which-phase measurements, and these can be distinct
from the quantum one. For instance, one can construct four
examples of such tradeoff relations from the four foil theories
presented in Ref. [50] if one takes the pair of complementary
measurements described in each of these to be which-way
and which-phase measurements. Under this mapping, the
various forms of uncertainty relation for complementary mea-
surements that are achieved for these different foil theories
(described in Eqs. (3)–(6) of Ref. [50]) yield corresponding
forms of the wave-particle duality relation.
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B. How to implement an experimental test of contextuality
based on wave-particle duality

It is also possible to implement an experimental test of
contextuality via the phenomenology of wave-particle duality
relations. Here again, we leverage a result from Ref. [50].

Any experimental test of contextuality should not presume
the correctness of quantum theory but should instead allow
that some other operational theory describes the experiment.
It follows that one cannot assume that the operational theory
governing the experiment satisfies the A2

1-symmetry property.
Instead, one simply needs to experimentally identify two
measurements M and M ′ and an experimentally realizable op-
erational state that satisfies the A2

1-orbit-realizability condition
relative to M and M ′ and then test the noncontextual bound on
these.

The result can be summarized as follows.
Proposition B.1. Consider an experimentally realizable

state that satisfies the A2
1-orbit-realizability condition relative

to measurements M and M ′. The experiment fails to admit of
a noncontextual ontological model if and only if the measured
values of the M and M ′ predictability for this state violate the
inequality of Eq. (14).

The specialization of this result to the case where M and
M ′ are the which-way and which-phase measurements can be
summarized as follows:

Corollary B.1. Consider an experimentally realizable state
that satisfies the A2

1-orbit-realizability condition relative to the
which-way and which-phase measurements. The experiment
fails to admit of a noncontextual ontological model if and only
if the measured values of the path distinguishability P and the
fringe visibility V for this state violate the inequality V + P �
1 [Eq. (15)].

For concreteness, we now describe a quantum setup that,
according to the theoretical ideal, allows for the preparation of
a state that saturates the quantum wave-particle duality rela-
tion while also satisfying the A2

1-orbit-realizability condition.
Consider the preparation procedure depicted in Fig. 2(c),

but where the phase shift φ is limited to be 0 or π , and the
reflectivity is limited to a pair of values r and 1 − r, which
are bounded away from 0 and 1. In quantum theory, these
procedures are represented by the following quadruple of pure
states of the dual-rail qubit {ρi = |ψi〉〈ψi|}i=1,...,4, where

|ψ1〉 = √
r|L〉 + √

1 − r|R〉, |ψ2〉 = √
r|L〉 − √

1 − r|R〉,
|ψ3〉 = √

1 − r|L〉 − √
r|R〉, |ψ4〉 = √

1 − r|L〉 + √
r|R〉.

(16)

One easily verifies that these form an A2
1 orbit relative to the

which-way and which-phase observables.
A simple interferometric implementation of these four

states is depicted in Fig. 5. Rather than requiring two dis-
tinct beamsplitters, one with reflectivity r and the other with
reflectivity 1 − r, one uses the reflectivity-r beamsplitter to
simulate the reflectivity-(1 − r) beamsplitter by following it
up with a swap operation between the modes.

In such an experiment, one is aiming to implement the
theoretical ideal of each of the four preparation procedures
described in Fig. 5, as well as the theoretical ideal of the
which-way measurement and the which-phase measurement

L R

r

L R

r

π

(b)(a)

L R

r r

L R

r

π

(c) (d)

FIG. 5. Preparation procedures associated to each of the four
pure quantum states in Eq. (16).

depicted in Figs. 2(a) and 2(b), respectively. However, the
idealization of purity and sharpness is never realized in prac-
tice. Rather, one realizes noisy and inaccurate versions of
the pure states of Eq. (16) and of the sharp measurements
{|L〉, |R〉} and {|+〉, |−〉}. It follows that one must characterize
precisely which states and effects are realized in the experi-
ment. This can be achieved using the tomography scheme of
Refs. [61,62].

The latter scheme does not presume the correctness of
quantum theory but rather fits the data to states and effects
in the framework of generalized probabilistic theories. This
aspect of the scheme—that it is theory agnostic—enables one
to adjudicate between quantum theory and alternative opera-
tional theories, such as those that do admit of a noncontextual
model or those that manifest greater inequality violations than
quantum theory permits. In this way one obtains real-valued
vector representations of the two realized measurements, as
well as real-valued vector representations �s1, �s2, �s3, �s4 of the
realized preparation procedures.4

The four states that are actually realized in the experiment,
by virtue of being noisy and inaccurate versions of the the-
oretical ideals, will generally only approximately satisfy the

4Without presuming the correctness of quantum theory, one cannot
know in advance what sets of preparations and measurements are
tomographically complete, so the plausibility of the hypothesis of
completeness depends on how much work has been done in attempt-
ing to falsify it. The fact that the hypothesis could in principle be
falsified in the future by some exotic laboratory procedure is the
most significant loophole in experimental tests of noncontextuality.
See the Introductions of Refs. [61,62] or Refs. [63,64] for more
discussion of this point.
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A2
1-orbit-realizability condition relative to the realized mea-

surements [Eqs. (12) and (13)]. However, one can always
define a quadruple of secondary states lying in the convex hull
of those that were realized, such that these do satisfy the condi-
tion. Every state that is a convex mixture of the realized states
must be included in the operational theory, since the state
space is presumed to be convexly closed. As a result, these
secondary states are known to be included in the set that is
experimentally realizable. Hence, even though the states that
were actually realized in the experiment may not satisfy the
A2

1-orbit-realizability condition exactly, one can always define
secondary states that do, and if these violate the noncontextual
bound, one has witnessed the fact that the experimental data
cannot be explained by a noncontextual model. (See Ref. [47]
for a discussion of the technique of secondary procedures.)

Evidently, choosing the reflectivity r = 3/4 for the beam-
splitter in the preparation stage provides the best opportunity
for witnessing contextuality, as this is the value that, in the
ideal version of the experiment, leads to the largest violation
of the noncontextual bound.

VI. DISCUSSION

As seen in Fig. 3, the quantum tradeoff curve intersects the
noncontextual bound at (V,P ) = (1, 0) and (V,P ) = (0, 1).
As noted earlier, the (V,P ) = (1, 0) point corresponds to the
preparation of a which-phase eigenstate, and the (V,P ) =
(0, 1) point corresponds to the preparation of a which-way
eigenstate. These are the only cases that are typically refer-
enced by researchers who claim that interference phenomena
capture the essence of quantum theory. In other words, they
are the only cases that appear in the TRAP phenomenology.
In Ref. [5] it was shown that these cases admit of a noncontex-
tual ontological model, thereby undermining the conventional
claim. The present article provides an alternative way to see
that this is the case and hence provides an alternative way of
undermining the conventional claim.

The TRAP phenomenology of interference is fully cap-
tured by preparations of the dual-rail qubit that only make
use of a 50-50 beamsplitter and relative phase shifts that only
take values 0 or π (together with the which-way and which-
phase measurements). For any departure from this class of
preparation procedures, the question arises of whether one can
provide a classical explanation of it. Of course, to vindicate
the claim that a particular experimental setup resists classical
explanation, one must prove a no-go theorem, a methodologi-
cal point that was emphasized in Sec. V.B.4 of Ref. [5].

We noted in the Introduction that it is actually straight-
forward to prove a noncontextuality no-go theorem using a
dual-rail qubit. It suffices to translate into the concrete frame-
work of a dual-rail qubit any of the existing proofs based a
single qubit. There are many to choose from.5 Furthermore,
because many of these only make use of states and effects in a

5Those that leverage only operational equivalences among the
preparations include the first proof of the failure of generalized
noncontextuality, based on states forming a star of David in the Bloch
sphere [10], the proofs based on the probability of success in two-bit
or three-bit parity-oblivious multiplexing [11], the proof based on the

single plane of the Bloch sphere,6 it follows that simple mod-
ifications of the experimental setup appearing in the TRAP
phenomenology are sufficient to obtain a no-go result.

For instance, if, in the preparation stage, one keeps the
reflectivity of the beamsplitter at 1

2 (as is the case for the
TRAP phenomenology) but one allows relative phase shifts
in the full region [0, 2π ] rather than simply 0 or π , then this
is sufficient to prepare any state in the x̂−ŷ plane of the Bloch
sphere (relative to the association of Pauli-Z and Pauli-X with
the bases {|L〉, |R〉} and {(1/

√
2)(|L〉 + |R〉), (1/

√
2)(|L〉 −

|R〉)}). If one has more than a single measurement in this
plane, for instance, one allows measurements of the bases
{(1/

√
2)(|L〉 + |R〉), (1/

√
2)(|L〉 − |R〉)} and {(1/

√
2)(|L〉 +

i|R〉), (1/
√

2)(|L〉 − i|R〉)}, that is, both the Pauli-X and Pauli-
Y observables, then one can derive a no-go result. However,
such a result cannot obviously be interpreted in terms of wave-
particle duality. Indeed, it is not clear whether it would have
any significance in terms of aspects of the phenomenology of
interference that were of prior interest to researchers.

But now consider the case where, in the preparation stage,
the relative phase shift is still constrained to be 0 or π (as
is the case for the TRAP phenomenology), but the reflectivity
of the beamsplitter is allowed to be anything in the range [0,1].
This is also sufficient to prepare any state in the plane of the
Bloch sphere spanned by the eigenstates of the which-way
and which-phase observables (i.e., the x̂−ẑ plane). Together
with the which-way and which-phase measurements, this is
sufficient to derive a no-go result. The no-go result described
in this article is an instance of this case. Because it refers
to the quantum tradeoff between the fringe visibility and the
path distinguishability, which has been previously thought to
be significant in the context of interferometry, it satisfies the
desideratum we articulated in the Introduction.

Recent work by Wagner et al. [69] also considered what
aspects of the phenomenology of interference might resist
explanation in terms of a noncontextual ontological model.
In particular, they translate the qubit proofs of contextuality

probability of error-free state discrimination of a pair of nonorthog-
onal states [34], the proof based on the probability of unambiguous
discrimination of a pair of nonorthogonal states [40], and the proof
based on the probability of success in probabilistic cloning of a pair
of nonorthogonal states [35]. In addition, there are those that also
leverage operational equivalences among the measurements. These
include the first proof based on an assumption of noncontextuality
for unsharp measurements, given in Sec. V of Ref. [10], which was
also used in Ref. [47], and the proof based on three unsharp measure-
ments that are jointly measurable pairwise but not triplewise [65].
There are even proofs that leverage operational equivalences among
transformations. These include the original proof of the failure of
transformation noncontextuality [10], the proof arising from different
decompositions of the completely depolarizing channel in terms of
Clifford unitaries [66], and proofs based on the transformative aspect
of measurements, which concern pre- and postselected scenarios
[27,67,68].

6Of the ones listed in footnote 5, the only ones that are not of
this type, i.e., the only ones that extend out of a single plane of the
Bloch sphere, are the three-bit scheme of Ref. [11] and the proofs in
Refs. [65] and [66].
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of Refs. [70,71] into the language of a dual-rail qubit. This
no-go result does not (as far as we can tell) directly relate to
phenomena that have been previously thought to be significant
in the context of interferometry. Nonetheless, Wagner et al.
also demonstrated a no-go result based on the probability of
succeeding in the task of quantum interrogation, which was of
prior interest in the interferometric setting. Quantum interro-
gation is a generalization of the bomb-testing task considered
by Elitzur and Vaidman [72] wherein one seeks to maximize
the probability of detecting the presence of a detector without
causing it to fire (or of detecting a bomb without exploding it).
The aspect of the task that Wagner et al. show can witness con-
textuality is the dependence of the efficiency (a function of the
probability of success in the task) on a parameter describing
the confusability of the states (related to the nonorthogonality
of the states in the quantum case). Since the probability of
success in this task has been of prior interest in the context
of interferometry, this result provides the type of answer to
the question of what is nonclassical about the phenomenology
of interference that we are looking for. It is a complementary
answer to the one we have given here.

Given that there has already been an experiment showing
that the quantum wave-particle duality relation considered
here (wherein the which-way and which-phase measurements
are counterfactual alternatives) can be saturated to good ap-
proximation [54], the question naturally arises whether this
experiment already demonstrated the nonclassical aspects of
the phenomenology of interference highlighted in this arti-
cle. The answer is, not quite. Although it did confirm that
there exist states that can approximately saturate the ideal
quantum tradeoff, it did not verify that these states satisfy the
A2

1-orbit-realizability condition. Only if the latter condition is
satisfied is one justified in inferring from the assumption of
noncontextuality that the tradeoff is bounded by a linear curve.
Furthermore, in order to allow for the possibility of a failure
of operational quantum theory in the experiment (for instance,
to allow for the possibility of violations of the noncontex-
tual bound greater than what quantum theory allows), it is

important to characterize the preparations and measurements
using the technique of theory-agnostic tomography [61,62].
It is relative to these characterizations that one can identify a
quadruple of preparations that satisfy the A2

1-orbit-realizability
condition and then test whether these yield values of fringe
visibility V and path distinguishability P that violate the
noncontextuality inequality V + P � 1. In this way one can
implement a direct experimental test of contextuality via the
wave-particle duality relation. This relation, therefore, is an
aspect of the phenomenology of interference that can witness
nonclassicality.
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