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Path distance of a quantum unitary evolution
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The Hamiltonian and evolution time of a quantum unitary system completely determine a unitary operator,
which turns an initial state ρ0 into its time-evolved state ρt and may also turn another state σ0 into its time-
evolved state σt . Although the two pairs of states (ρ0, ρt ) and (σ0, σt ) are governed by the same Hamiltonian
and experience equal evolution periods, their state distances are not necessarily equal to each other. Specifically,
the evolution operator contains information about the evolution other than that reflected by two specific states
connected through it. As a matter of fact, two pairs of states with different state distances may have equal path
distances. Here we propose a geometric measure for the path distance contained in a quantum unitary evolution,
which depends only on the unitary operator itself and is independent of any pair of states connected through it.
This path distance meets the basic requirements for a good measure of distance and is valid during the whole
evolution process, no matter how long the evolution time is. This path distance is bounded by the path length of
the evolution from above and by the Bures angle between the two states connected through it from below. It has
potential applications in quantum information processing, such as providing another way to study the optimal
control between two quantum states. We finally present the form of Hamiltonian to realize a unitary operator on
demand.
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I. INTRODUCTION

The speed of quantum evolution has attracted a great
deal of attention in recent years owing to its significance
in quantum information processing. It is closely related to
the computational capacity of quantum computation [1,2],
the transferring rate of information [3–5], the measurement
precision in quantum metrology [6–8], the entropy production
rate in nonequilibrium quantum processes [9,10], the charging
power of quantum batteries [11,12], and so on. Since the
length of the geodesic path connecting two quantum states,
usually defined as the angular distance between them, is no
longer than the length of any other path, it could be used to
investigate the speed limit of a quantum evolution [13,14].

Let us consider quantum evolution in a simple case.
Given a quantum system governed by a time-independent
Hamiltonian H , an initial state ρ0 turns into its time-evolved
state ρt = Utρ0U

†
t , where the unitary operator Ut is com-

pletely determined by the Hamiltonian H and evolution time t
through the relation Ut = exp(−iHt ). If the quantum system
is initially prepared in another state σ0, it will turn into its
time-evolved state σt = Utσ0U

†
t under the same unitary oper-

ator Ut . Although the two initial states ρ0 and σ0 are connected
to their time-evolved states ρt and σt through the same unitary
operator, the two pairs of states (ρ0, ρt ) and (σ0, σt ) may
have different state distances. For example, the two states
ρ0 = (0 0

0 1) and σ0 = 1
2 (1 1

1 1) turn into ρt = (1 0
0 0) and σt =

*liu-fuyao@163.com
†lgqin@foxmail.com

σ0 under the action of the unitary operator Ut = (0 1
1 0), re-

spectively. However, the distance between the pairwise states
(ρ0, ρt ), quantified by the Bures angle [15]

dB(ρ0, ρt ) = arccosF (ρ0, ρt ), (1)

with

F (ρ0, ρt ) = Tr(
√√

ρ0ρt
√

ρ0) (2)

the Uhlmann fidelity [16,17], is not equal to the distance
between the pairwise states (σ0, σt ), for dB(ρ0, ρt ) = π

2 and
dB(σ0, σt ) = 0.

Since different quantum states may have different dis-
tance to their own time-evolved states under the action of the
same unitary operator, we believe a unitary operator contains
some common information about the evolution. In this paper
we propose a measure for the path distance contained in a
unitary evolution operator U , i.e., d (U ), which is determined
by the unitary operator itself and is independent of the state of
a quantum system. As is expected, the path distance proposed
here is bounded from above by the path length of the evolution
and bounded from below by the Bures angle between the
two states connected through it. If a quantum state remains
unchanged, the corresponding evolution operator is the iden-
tity operator I , and the path distance contained in a unitary
evolution operator U proposed here could be regarded as the
abbreviation of the distance between the evolution operator
U and the identity operator I , i.e., d (U ) = d (I,U ), which
could be generalized to measure the distance between any two
unitary operators. For example, if two unitary operators U1

and U2 are connected to each other through another unitary
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operator U12, U2 = U12U1, then the distance between the two
unitary operators U1 and U2 is equal to the path distance con-
tained in the unitary operator U12, i.e., d (U1,U2) = d (U12) =
d (U2U

†
1 ).

The tool of path distance could be used to investigate
the issues on quantum evolution and has some potential ap-
plications in quantum information processing, for example,
(i) defining the evolution speed as the changing rate of the path
distance to reexam the quantum speed limit, (ii) minimizing
the evolution time to reach a given path distance to study the
optimal control of a quantum system, and (iii) preparing a
quantum state in time. This paper is organized as follows. We
introduce the path distance in Sec. II and discuss its properties
and potential applications in Sec. III. In Sec. IV we present
two examples used to compare the current path distance with
the Bures angle and the Mandelstam-Tamm bound [13]. The
main conclusions of this paper are summarized in Sec. V.

II. PATH DISTANCE

For the sake of simplicity, we consider in this paper the
simple case in which the Hamiltonian H is time indepen-
dent. The unitary operator Ut is then determined by H and
the evolution time t through the relation Ut = exp(−iHt ),
where we have set the Planck constant h̄ = 1. Now we focus
on the unitary operator Ut itself and apply it to a quantum pure
state |ψ0〉. The generalization to the case of mixed states will
be presented in the next section.

We first make an eigenvalue decomposition on the unitary
operator Ut , i.e., Ut = V �V †, where � is a diagonal matrix
composed of the eigenvalues of the unitary operator Ut and
V is formed of a set of orthogonal column vectors {|ψ j〉}
( j = 1, 2, . . . , N) corresponding to the eigenvalues {λ j} in �.
As is well known, every unitary operator satisfies the relation
UU † = I , with I the identity operator, so the eigenvalues of
the unitary operator Ut have the form of {λ j = eiφ j } ( j =
1, 2, . . . , N). Without loss of generality, we assume that the
eigenvalues {λ j} are sorted in the diagonal matrix � based on
the phases {φ j} in ascending order, φ1 � φ2 � · · · � φN ,

� =

⎛
⎜⎜⎜⎝

eiφ1 0 · · · 0
0 eiφ2 · · · 0
...

...
. . .

...

0 0 · · · eiφN

⎞
⎟⎟⎟⎠. (3)

Here the phases {φ j} are confined in the range (−π, π ], which
is in fact the principal argument of the eigenvalues of the
unitary operator Ut .

In the basis of the eigenvectors of Ut , i.e., {|ψ j〉}, an initial
pure state |ψ0〉 = ∑N

j=1 c j |ψ j〉, with the normalization con-

dition
∑N

j=1 |c j |2 = 1, turns into its time-evolved state |ψt 〉 =∑N
j=1 c jeiφ j |ψ j〉 after the action of the unitary operator Ut , i.e.,

|ψt 〉 = Ut |ψ0〉. The Uhlmann fidelity between the initial state
|ψ0〉 and its time-evolved state |ψt 〉 is

F (|ψ0〉, |ψt 〉) =
∣∣∣∣∣∣

N∑
j=1

|c j |2eiφ j

∣∣∣∣∣∣. (4)

FIG. 1. Angular distance illustrated in a polar system. The ab-
solute value of the difference between the two phases φ1 and φ2 is
smaller than π , so the angular distance between them is d (φ1, φ2) =
|φ2 − φ1|, corresponding to the sector angle filled with red dots.
The absolute value of the difference between the two phases φ1

and φ3 is greater than π , so the angular distance between them is
d (φ1, φ3) = 2π − |φ3 − φ1|, corresponding to the sector angle filled
with blue crosshatching.

As a matter of fact, the Uhlmann fidelity is invariant un-
der a global rotation of an arbitrary phase for the quantum
states under consideration, so we could rewrite the above
Uhlmann fidelity as F (|ψ0〉, |ψt 〉)=|eφ0

∑N
j=1 |c j |2ei(φ j−φ0 )|=

| ∑N
j=1 |c j |2ei(φ j−φ0 )|, with the overall phase φ0 confined in

the range (−π, π ] for simplicity. Now we define the angular
distance between the two phases φ j and φ0 as

d (φ j, φ0) =
{|φ j − φ0| for |φ j − φ0| � π

2π − |φ j − φ0| for |φ j − φ0| > π.
(5)

The angular distance d (φ j, φ0) between the two phases φ j and
φ0 is similar to the angular distance between two lines with
polar angles φ j and φ0 in the polar coordinate system. For
example, the absolute value of the difference between the two
phases φ1 and φ2 is smaller than π in the polar coordinate
system plotted in Fig. 1 and the angular distance between
them is then d (φ1, φ2) = |φ2 − φ1| (see the sector angle filled
with red dots in Fig. 1). For the two phases φ1 and φ3, the
absolute value of their difference is larger than π in Fig. 1,
i.e., |φ3 − φ1| > π , so the angular distance between them is
d (φ1, φ3) = 2π − |φ3 − φ1| (see the sector angle filled with
blue crosshatching in Fig. 1). The maximum angular dis-
tance among the phases {φ j} with respect to the overall phase
φ0 ∈ (−π, π ] is defined as Pφ0 = maxφ j [d (φ j, φ0)] hereafter,
which plays an important role in the following discussion.

In the case of Pφ0 � π
2 , the inequality cos(φ j − φ0) �

cos(Pφ0 ) is valid for all j = 1, 2, . . . , N . Then the Uhlmann
fidelity has a lower bound

F (|ψ0〉, |ψt 〉) �

∣∣∣∣∣∣
N∑

j=1

|c j |2 cos(φ j − φ0)

∣∣∣∣∣∣ � cos(Pφ0 ). (6)
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The Uhlmann fidelity is used to quantify the closeness of two
pure states, and its inverse-cosine-function value is regarded
as the angular distance between the two quantum states, called
the Bures angle [15]. Based on the Bures angle in Eq. (1), the
above inequality is equivalent to

dB(|ψ0〉, |ψt 〉) = arccosF (|ψ0〉, |ψt 〉) � Pφ0 , (7)

which implies that the angular distance between the initial
state |ψ0〉 and its time-evolved state |ψt 〉 is no larger than the
maximum angular distance among the phases {φ j} = arg(Ut )
with respect to an arbitrarily chosen overall phase φ0. This
conclusion is also valid in the case of Pφ0 > π

2 , because the
angular distance between two quantum states is inside the
range [0, π

2 ], i.e., 0 � dB(|ψ0〉, |ψt 〉) � π
2 .

Since no other constraint is set for the overall phase φ0 ex-
cept for the range −π < φ0 � π , we could use the minimum
value of Pφ0 among all allowed overall phases φ0 to define
the path distance of the quantum evolution represented by the
unitary operator Ut ,

d (Ut ) = min
φ0

{Pφ0}. (8)

Now we discuss how to find the target overall phase φ0

to minimize Pφ0 = maxφ j [d (φ j, φ0)]. As mentioned above,
the phases {φ j} = arg(Ut ) are the principal argument of the
eigenvalues of the unitary operator Ut sorted in ascend-
ing order. We first work out the phase differences between
neighboring phases among {φ j}, i.e., Dj = φ j+1 − φ j for j =
1, 2, . . . , N − 1, and the last one in this series of phase dif-
ferences is calculated by DN = 2π + φ1 − φN . Suppose Dk

is the largest one among {Dj}; then the two neighboring
phases related to Dk , φk and φk+1 (φN and φ1 for DN ), are
used to determine the target overall phase through the relation
φ0 = 1

2 (φk + φk+1) ± π . Here the alternative choice of ± is
to make the obtained value of φ0 inside the range (−π, π ]. In
this case, the overall phase φ0 has the same angular distance to
the two phases φk and φk+1, d (φk, φ0) = d (φk+1, φ0) = π −
1
2 |φk+1 − φk| or d (φN , φ0) = d (φ1, φ0) = 1

2 (φN − φ1) for the
largest phase difference of φN and φ1, which is the largest
one among the angular distances of the overall phase φ0 to the
series of phases {φ j}. At the same time, this angular distance
is the smallest one among all allowed phases φ0, because it is
related to the two neighboring phases with the largest phase
difference among {φ j}. Then the path distance of the quantum
evolution represented by the unitary operator Ut in Eq. (8) is
finally simplified as

d (Ut ) = π − 1
2 max{Dj}, (9a)

with

Dj =
{
φ j+1 − φ j for j = 1, 2, . . . , N − 1

2π + φ1 − φN for j = N.
(9b)

Here {φ j} are the principal arguments of the eigenvalues of Ut

in ascending order and {Dj} could be regarded as the angular
difference between neighboring eigenvalues of Ut . The path
distance defined in Eq. (9a) is one of the main conclusions in
this paper. By combining Eqs. (7)–(9), we obtain the relation

dB(|ψ0〉, |ψt 〉) � d (Ut ). (10)

This relation has a clear physical meaning, i.e., the distance
between two pure states, quantified by the Bures angle, is a
lower bound for the distance of the evolution path connecting
the two states.

III. PROPERTIES OF PATH DISTANCE

The path distance defined above is determined through the
principal argument of the eigenvalues of the unitary operator
Ut only and is independent of any specific quantum state,
which is much different from previous measures of distance
between two quantum states. Because the eigenvalues of the
unitary operator Ut keep invariant under a unitary transforma-
tion, the path distance defined here is a basis-free invariant.
Furthermore, this path distance satisfies the basic require-
ments for a good measure of distance [18], which are

d (U ) � 0, (11a)

d (U ) = 0 if and only if U = eiφI, (11b)

d (U1U2) � d (U1) + d (U2). (11c)

The requirements (11a) and (11b) are satisfied obviously by
the path distance defined above. In the following, we give a
brief proof for the third requirement (11c), usually called the
triangle relation.

We denote the principal arguments of the eigenvalues of the
unitary operators U1 and U2 by {φ(1)

j } and {φ(2)
j }, respectively,

which are sorted in ascending order. By applying the distribu-
tion of {φ(1)

j } and {φ(2)
j } into Eq. (9), we could figure out the

path distance contained in U1 and U2, denoted by d (U1) and
d (U2), respectively. If d (U1) + d (U2) > π , then the triangle
relation d (U1U2) � d (U1) + d (U2) is satisfied automatically,
because the path distance contained in an arbitrary unitary
operator, including d (U1U2), is no larger than π . More details
about this conclusion are given in Sec. III B. So we only need
to consider the case of d (U1) + d (U2) � π , which implies
that 0 � d (U1) � π and 0 � d (U2) � π .

Now we add an overall phase to the unitary operator U1

(or U2) to get eiϕ1U1 (eiϕ2U2) and they contain the equal
path distance d (eiϕ1U1) = d (U1) [d (eiϕ2U2) = d (U2)] no mat-
ter what value the added overall phase ϕ1 (or ϕ2) is. In the
case of 0 � d (U1) � π [0 � d (U2) � π ], we could always
find at least one appropriate overall phase ϕ1 (ϕ2) so that
the principal arguments of the eigenvalues of the unitary op-
erators eiϕ1U1 (or eiϕ2U2) are confined in the range φ

′(1)
j ∈

[−π
2 , π

2 ] (φ′(2)
j ∈ [−π

2 , π
2 ]). Then the distance contained in

the unitary operator eiϕ1U1 (eiϕ2U2) has a simple formula,
which is equal to half the difference between the maxi-
mum and minimum values among the principal arguments of
{φ′(1)

j } ({φ′(2)
j }), i.e., d (eiϕ1U1) = 1

2 (max{φ′(1)
j } − min{φ′(1)

j })

[d (eiϕ2U2) = 1
2 (max{φ′(2)

j } − min{φ′(2)
j })]. See Proposition 2

in Sec. III B for a brief interpretation of this result.
Based on the eigenvalue decomposition of the two uni-

tary operators eiϕ1U1 = V1�1V
†

1 and eiϕ2U2 = V2�2V
†

2 , we
have (eiϕ1U1)(eiϕ2U2) = V1�1V

†
1 V2�2V

†
2 , which has the same

eigenvalues as the matrix �1V12�2V
†

12 with V12 = V †
1 V2. The

phases {φ′(1)
j } ({φ′(2)

j }) mentioned above are just the prin-
cipal arguments of the diagonal elements of the diagonal
matrix �1 (�2). The unitary transformation V12�2V

†
12 could
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be regarded as the rotation of the diagonal matrix �2, which
does not change the eigenvalues. If this rotation makes the
eigenvector |ψ ′(2)

max〉 (|ψ ′(2)
min〉) of the matrix V12�2V

†
12, which is

associated with the maximum (minimum) principal argument
of its eigenvalues, meet the eigenvector |ψ (1)

max〉 (|ψ (1)
min〉) of the

matrix �1 exactly, which is associated with the maximum
(minimum) principal argument of the eigenvalues of �1, the
difference between the maximum and minimum values among
the principal arguments of �1V12�2V

†
12, denoted by {φ(12)

j },
reaches its maximum value. Equivalently, the difference be-
tween the maximum and minimum values among the principal
arguments of (eiϕ1U1)(eiϕ2U2) satisfies

max
{
φ

(12)
j

} − min
{
φ

(12)
j

}
�

(
max

{
φ

′(1)
j

} + max
{
φ

′(2)
j

}) − (
min

{
φ

′(1)
j

}
+ min

{
φ

′(2)
j

})
= 2[d (eiϕ1U1) + d (eiϕ2U2)] = 2[d (U1) + d (U2)]. (12)

According to Proposition 1 presented in Sec. III B, the path
distance contained in the unitary operator (eiϕ1U1)(eiϕ2U2)
is bounded from above by half the difference between the
maximum and minimum values, max{φ(12)

j } and min{φ(12)
j },

among the principal arguments of (eiϕ1U1)(eiϕ2U2). So we
finally derive the above triangle relation

d (U1U2) = d[(eiϕ1U1)(eiϕ2U2)]

� 1
2 (max{φ(12)

j } − min{φ(12)
j }) � d (U1) + d (U2).

(13)

In the following, we introduce some other properties of the
path distance defined above.

A. Path distance bounded by the state distance from below

In an N-dimensional quantum unitary system, an initial
state ρ0 turns to its time-evolved state ρt through the action
of a unitary operator Ut , ρt = Utρ0U

†
t , which is why we be-

lieve the unitary operator Ut contains certain path information
during the evolution, including the path distance d (Ut ). Given
a Hamiltonian H for a quantum unitary evolution, the unitary
operator Ut12 = e−iH (t2−t1 ) represents the evolution from time
t1 to t2, which connects the two unitary operators Ut1 = e−iHt1

and Ut2 = e−iHt2 through the relation Ut12 = Ut2U
†
t1 . Just as we

mentioned in the Introduction, the path distance d (Ut12 ) is in
fact the abbreviation of d (Ut1 ,Ut2 ), which could be regarded
as the distance between the two points representing the two
operators Ut1 and Ut2 in the space of unitary operators SU(N ).
The path distance between two points is no larger than the
path length between the two points,

d (Ut12 ) = d (Ut1 ,Ut2 ) �
∫ t2

t1

(
ds

dt

)
dt, (14)

where ds is the path distance contained in the operator
Udt = e−iHdt , ds = limdt→0 d (Udt ) = limdt→0 d (Ut ,Ut+dt ).
The derivative ds

dt could be regarded as the evolution speed of
the path distance, which depends on the Hamiltonian H only,
ds
dt = d (e−iH ). The right-hand side of the above inequality
is similar to the quantum complexity of a unitary operator,

which is an operational definition for quantifying the cost
of simulating this unitary operator [19–22]. The difference
lies in that an optimization over all possible evolution paths
is involved in the definition of quantum complexity and the
path length defined on the right-hand side of the inequality
(14) is based on a specific evolution path governed by the
Hamiltonian H . The relation (14) is in fact a natural result
of the triangle relation presented in Eq. (11). In Eq. (10)
we showed that the path distance of a quantum evolution is
bounded from below by the state distance measured by the
Bures angle in the pure-state case. In the following, we will
prove this conclusion is also valid for mixed states.

As shown in Eqs. (1) and (2) in the Introduction, the state
distance of two mixed states ρ0 and ρt is usually quantified
by the Bures angle dB(ρ0, ρt ) = arccosF (ρ0, ρt ), where the
Uhlmann fidelity between the two mixed states is actually
equal to F (ρ0, ρt ) = Tr|√ρ0

√
ρt | [23], where Tr| · | repre-

sents the absolute-value sum of the eigenvalues. In a unitary
system, the initial state ρ0 and the time-evolved state ρt have
the same eigenvalue spectrum

�0 =

⎛
⎜⎜⎝

ν1 0 · · · 0
0 ν2 · · · 0
...

...
. . .

...

0 0 · · · νN

⎞
⎟⎟⎠,

N∑
j=1

ν j = 1. (15)

Given the unitary operator Ut and the initial state ρ0 =
M0�0M†

0 , with M0 = (ψ (1)
0 , ψ

(2)
0 , . . . , ψ

(N )
0 ) composed of its

column eigenvectors, the time evolution of the quantum sys-
tem is ρt = Utρ0U

†
t = Ut M0�0M†

0U †
t . The above Uhlmann

fidelity is rewritten as

F (ρ0, ρt ) = Tr|M0

√
�0M†

0Ut M0

√
�0M†

0U †
t |. (16)

Since a unitary operator would not change the absolute value
of the eigenvalues of a matrix, we have

F (ρ0, ρt ) = Tr|
√

�0M†
0Ut M0

√
�0|

� |Tr(
√

�0M†
0Ut M0

√
�0)| = |Tr(�0M†

0Ut M0)|

=
∣∣∣∣∣∣

N∑
j=1

ν j〈ψ ( j)
0 |ψ ( j)

t 〉
∣∣∣∣∣∣. (17)

The lower bound of the Uhlmann fidelity is finally simplified
as F (ρ0, ρt ) � | ∑N

j=1 ν jeiφ j |. Here {eiφ j } are the eigenvalues
of the unitary operators Ut .

Following the same proof as in the previous section, where
the Uhlmann fidelity between a pure state and its time-
evolved state is expressed in Eq. (4), i.e., F (|ψ0〉, |ψt 〉) =
| ∑N

j=1 |c j |2eiφ j |, with
∑N

j=1 |c j |2 = 1, we could also obtain
F (ρ0, ρt ) � cos(Pφ0 ). Here Pφ0 is the maximum angular dis-
tance, defined in Eq. (5), among the phases {φ j} with respect
to the overall phase φ0. Based on the definition (8), we could
obtain the path distance for the evolution of a quantum mixed
state by finding the minimum value of Pφ0 through the same
proof. The path distance for the evolution of a quantum mixed
state is also determined by the principal argument of the
eigenvalues of the time-evolution unitary operator Ut , which
has the same expression as the path distance for the evolution
of a quantum pure state [see Eq. (9)]. Similar to the relation
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between the state distance and path distance for the evolution
of a pure state, presented in Eq. (10), we also have

dB(ρ0, ρt ) � d (Ut ). (18)

So we conclude that the path distance contained in a unitary
operator is no smaller than the state distance between two
quantum states connected to each other through this unitary
operator, regardless of whether the initial state is a pure state
or a mixed state. This conclusion is valid for all possible
evolution paths, given the initial state and target state.

As is well known, the Uhlmann fidelity between a quantum
initial state and its time-evolved state in a unitary system has
another lower bound, called the Mandelstam-Tamm bound
[13], F (ρ0, ρt ) � cos(�Et ). Here �E ≡

√
〈H2〉 − 〈H〉2 is

the energy spread of the system, which remains constant for
a quantum system undergoing a unitary evolution. The state
distance measured by the Bures angle between the quantum
initial state and its time-evolved state is accordingly bounded
from above by

dB(ρ0, ρt ) � �Et . (19)

In the following, we call dMT(ρ0, ρt ) = �Et the Mandelstam-
Tamm bound of the state distance between an initial state and
its time-evolved state. Here the evolution time t should be
confined in the range [0, π

2�E ]; otherwise �Et > π
2 becomes

a trivial upper bound, because the Bures angle between two
quantum states is always smaller than or equal to π

2 . On the
contrary, the path distance defined above depends only on
the evolution operator Ut , where no constraint is imposed on
the evolution time t , so the path distance and the related
conclusions mentioned above are valid during the whole evo-
lution.

B. Value range of the path distance

In order to figure out the value range of the path distance
defined above, we give a brief interpretation of it. First, we
use N radii in a circle to indicate N principal arguments {φ j}
of the eigenvalues of the time-evolution unitary operator Ut ,
where the jth radius is at an angle φ j with respect to a fixed
axis, e.g., the x axis. Second, we find the smallest sector in
the circle to cover all N radii simultaneously. Then the path
distance of the evolution represented by Ut is equal to half of
the sector angle. We have two useful propositions related to
this conclusion, which already have been used in the above
proof of the triangle relation.

Proposition 1. The path distance contained in a unitary
operator U is bounded from above by half the difference
between the maximum and minimum values max{φ j} and
min{φ j} among the principal arguments of U , i.e., d (U ) �
1
2 (max{φ j} − min{φ j}). The equals sign holds when the dif-
ference DN between the phases of min{φ j} and max{φ j},
defined in Eq. (9b), is the largest one between neighboring
phases {Dj} among the principal arguments of U , where
min{φ j} and max{φ j} are just the φ1 and φN in Eq. (9b),
respectively. Let us reconsider the example plotted in Fig. 1.
Among the three phases {φ1, φ2, φ3}, with min{φ j} = φ1

and max{φ j} = φ3, we have D1 = φ2 − φ1, D2 = φ3 − φ2,
and D3 = 2π + φ1 − φ3. Here D1 and D3 are just the cen-
tral angles of the two sectors filled with red dots and blue

crosshatching, respectively. Based on Eq. (9a), the path dis-
tance contained in U satisfies

d (U ) = π − 1
2 max{D1, D2, D3} � π − 1

2 D3

= 1
2 (φ3 − φ1) = 1

2 (max{φ j} − min{φ j}). (20)

Proposition 2. If all principal arguments of the eigenvalues
of the unitary operators U are confined in the range φ j ∈
[−π

2 , π
2 ], the path distance contained in the unitary opera-

tors U is equal to d (U ) = 1
2 (max{φ j} − min{φ j}), because

the difference DN = 2π + φ1 − φN between the phases of
min{φ j} = φ1 and max{φ j} = φN is greater than π and thus
becomes automatically the largest one among {Dj} in this
situation.

In a two-dimensional system, we need two radii in the cir-
cle to indicate the two principal arguments of the eigenvalues
of the time-evolution unitary operator Ut . If the two radii form
a diameter of the circle, the smallest sector required to cover
the two radii is the semicircle and the path distance is π

2 in this
case. In a general case of an N-dimensional system, N radii of
the circle are required to indicate the N principal arguments
of the eigenvalues of the unitary operator Ut . When the N
radii are distributed uniformly in the circle, a sector with a
central angle 2(N−1)π

N is enough to cover all these radii and the
path distance is (N−1)π

N in this case. This is the largest sector
required to cover N radii in a circle, so we conclude that the
value range of the path distance of a quantum evolution in
an N-dimensional system is [0, (N−1)π

N ]. Note that the angle
between two vectors is in the range [0, π ).

IV. EXAMPLES AND DISCUSSION

Let us consider the simplest single-qubit example. In the
particular basis composed of the eigenvectors of the time-
independent Hamiltonian H , this Hamiltonian has a diagonal
form H = (a 0

0 b), which leads to a unitary operator Ut =
(
e−iat 0

0 e−ibt ) at the evolution time t . An initial state ρ0 =
(

1
2 + μ η∗

η 1
2 − μ

) evolves to a state ρt = (
1
2 + μ η∗ei(b−a)t

ηei(a−b)t 1
2 − μ

) at

the evolution time t with ρt = Utρ0U
†
t . Here we see that the

time evolution of the quantum state depends on the difference
between the two parameters a and b. To ensure the non-
negativity of the density matrix ρ0, the two parameters μ and η

should satisfy the conditions μ ∈ [− 1
2 , 1

2 ] and |η|2 � 1
4 − μ2.

The two quantum states ρ0 and ρt have the same energy
spread �E =

√
1
4 − μ2|a − b|. According to the definition

in Eq. (9), the path distance of the evolution represented by
the above unitary operator Ut is d (Ut ) = min[ 1

2 At , π − 1
2 At ],

where At = |a − b|t mod2π is in the range [0, 2π ) and |a −
b|t is the phase difference between the eigenvalues of Ut . In
Fig. 2 we plot the evolution of the state distance dB(ρ0, ρt ),
the path distance d (Ut ), and the Mandelstam-Tamm bound
dMT(ρ0, ρt ) between the initial state ρ0 and its time-evolved
state ρt .

In the special case of μ = 0 and η = 1
2 , the initial state

ρ0 and its time-evolved state ρt are in fact pure states
|ψ0〉 =

√
2

2 (1 1)T and |ψt 〉 =
√

2
2 (e−iat e−ibt )T , respectively.

The state distance dB, path distance d (Ut ), and Mandelstam-
Tamm bound dMT between the initial state |ψ0〉 and its
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FIG. 2. Under the action of the Hamiltonian H = diag(a b), the single-qubit pure state |ψ0〉 =
√

2
2 (1 1)T evolves to its time-evolved state

|ψt 〉 =
√

2
2 (e−iat e−ibt )T at time t . The Mandelstam-Tamm bound dMT(|ψ0〉, |ψt 〉) and the Bures angle dB(|ψ0〉, |ψt 〉) are both equal to the path

distance d (Ut ) in the time period t ∈ [0, π

|a−b| ], with the evolution operator Ut = diag(e−iat e−ibt ) [see the dotted part of the red zigzag (a)]. In
the time period t > π

|a−b| , the Mandelstam-Tamm bound dMT(|ψ0〉, |ψt 〉) is invalid, but the Bures angle dB(|ψ0〉, |ψt 〉) and the path distance
d (Ut ) are still equal to each other in this period, illustrated as the solid part of the red zigzag (a). For the evolution of the single-qubit mixed
state ρ0 governed by the same Hamiltonian H , the Bures angle between ρ0 and its time-evolved state ρt , dB(ρ0, ρt ), is plotted as the blue
dash-dotted line (c), which is below the red zigzag (a) of the path distance d (Ut ) during the whole evolution. In this particular case, the Bures
angle dB(ρ0, ρt ) and the path distance d (Ut ) change synchronously with time and they reduce to zero periodically and simultaneously. The
Mandelstam-Tamm bound between the initial state ρ0 and its time-evolved state ρt , dMT(ρ0, ρt ) [see the black dashed line (b)], is also an upper
bound for the Bures angle dB(ρ0, ρt ) [blue dash-dotted line (c)], but the Mandelstam-Tamm bound dMT(ρ0, ρt ) is valid only in the time period
[0, π

2�E ].

time-evolved state |ψt 〉 could be obtained analytically,
which are dB(|ψ0〉, |ψt 〉) = arccos|cos (a−b)t

2 |, d (Ut ) =
min[ 1

2 At , π − 1
2 At ], and dMT(|ψ0〉, |ψt 〉) = 1

2 |a − b|t ,
respectively. In the time period t ∈ [0, π

|a−b| ], the state
distance dB, path distance d (Ut ), and Mandelstam-Tamm
bound dMT are equal to each other [see the dotted part
of the red zigzag (a) in Fig. 2, corresponding to the
evolution from the initial pure state |ψ0〉 =

√
2

2 (1 1)T to

its orthogonal state |ψτ 〉 =
√

2
2 (1 − 1)T ]. It has been proven

that such an evolution from a single-qubit pure state (or a
higher-dimensional state equivalent to a single-qubit pure
state) to its orthogonal state is the only case undergoing
the fastest evolution at the quantum speed limit of the
Mandelstam-Tamm bound [24]. In the time period t > π

|a−b| ,
the Bures angle dB and path distance d (Ut ) oscillate over
time, but still meet with each other during the evolution [see
the solid part of the red zigzag (a)]. The Mandelstam-Tamm
bound dMT plays no role in the time period t > π

|a−b| , because
it will present a trivial result of dMT(|ψ0〉, |ψt 〉) > π

2 in this
situation.

In the mixed-state case of |η|2 < 1
4 − μ2, the Bures angle

dB(ρ0, ρt ) is bounded from above by both the path distance
d (Ut ) and the Mandelstam-Tamm bound dMT(ρ0, ρt ). As an
example, we set the two parameters μ = η = 1

4 ; then the

initial mixed state ρ0 = 1
4 (

3 1
1 1) evolves to the mixed state

ρt = 1
4 (

3 ei(b−a)t

ei(a−b)t 1 ) at the evolution time t under the action
by the same Hamiltonian used above, and the evolution op-

erator Ut is the same as shown in the above pure-state case.
The evolution of the Mandelstam-Tamm bound dMT(ρ0, ρt )
and the Bures angle dB(ρ0, ρt ) between the initial mixed
state ρ0 and its time-evolved state ρt are numerically plotted
as the black dashed line (b) and blue dash-dotted line (c)
in Fig. 2, respectively. Here we see that the path distance
d (Ut ) [red zigzag (a)] and the Mandelstam-Tamm bound
dMT(ρ0, ρt ) [black dashed line (b)] is larger than the Bures
angle dB(ρ0, ρt ) [blue dash-dotted curve (c)] during the evolu-
tion. However, the Mandelstam-Tamm bound is valid only in
the period t � π

2�E , with the energy spread �E =
√

3
4 |a − b|

in the current mixed-state case. The path distance d (Ut ) is an
upper bound of the Bures angle dB(ρ0, ρt ) during the whole
evolution, no matter what evolution time is considered.

The pure state |ψ0〉 and the mixed state ρ0 are governed by
the same Hamiltonian in the current case and their evolution
is described by the same unitary operator Ut . Two different
quantum states under the same evolution operator have the
same path distance to their time-evolved states, but their fi-
delity or Bures angle with their own time evolution may be
different.

We finally introduce how to construct a time-independent
Hamiltonian to realize a unitary operator on demand, where
the quantum initial state would turn into a target state at a
fixed evolution speed. In a quantum unitary system, the initial
state and its time-evolved state share the same eigenvalue
spectrum; then the eigenvalue decompositions of the initial
state and the target state could be expressed as ρ0 = M0�0M†

0
and ρτ = Mτ�0M†

τ , respectively. The unitary operators M0
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and Mτ are formed of the eigenvectors of ρ0 and ρτ , and each
eigenvector has a deterministic form up to an overall phase.
The diagonal matrix �0 with the form in Eq. (15) is composed
of the eigenvalues {ν j} of ρ0 or ρτ . For simplicity, here we
consider only the nondegenerate case with ν j 
= νk for j 
= k.
Then the evolution operator Uτ connecting ρ0 and ρτ could be
expressed as Uτ = Mτ M†

0 so that the relation ρτ = Uτ ρ0U †
τ is

satisfied.
We further make an eigenvalue decomposition of the uni-

tary operator Uτ , that is, Mτ M†
0 = V �V †, where the diagonal

matrix � has the form of Eq. (3) with the principal argument
{φ j} of the eigenvalues of the unitary operator Uτ being con-
fined in the range (−π, π ]. Then the Hamiltonian could be
expressed as

H = ωV [i ln(�)]V † + R = iω ln(Uτ )

+ R = iω ln(Mτ M†
0 ) + R, (21)

where the real parameter ω could be used to control the
energy spread of the system so that it could be confined in
a restricted range. The real number R, which only induces
an overall phase to the time evolution and has no effect on
any observable, could be used to control the average energy
of the system. For example, we can always assume that the
Hamiltonian is represented by a traceless operator or has a
vanishing expectation value, and so on.

Based on the relation between the evolution operator and
the time-independent Hamiltonian Ut = e−iHt , we could ob-
tain the evolution operator induced by the above Hamiltonian,

Ut = e−iRtV (�ωt )V †. (22)

The target state is achieved when the evolution time is equal
to τ = 1/ω and the corresponding evolution operator is Uτ =
e−iR/ωV �V † = e−iR/ωMτ M†

0 . With the above Hamiltonian,
the parameter ω is the only factor affecting the evolution time
required to achieve a target state. The term e−iR/ω introduces
an overall phase to the target state. In the time period t ∈
[0, 1/ω], the path distance contained in the evolution opera-
tor (22) is d (Ut ) = d (�ωt ) = td (e−iH ). Here we see that the
path distance increases at a fixed speed d

dt d (Ut ) = d (e−iH ).
Equivalently, the initial state ρ0 approaches the target state ρτ

linearly with time under the action of the above Hamiltonian.
Let us look at a specific example of a two-qubit entangler

gate

Uτ =
√

2

2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎟⎠, (23)

which turns the four tensor-product two-qubit states |α〉 =
|00〉, |β〉 = |01〉, |γ 〉 = |10〉, and |η〉 = |11〉 into the four
maximally entangled Bell states |φ±〉 = (|00〉 ± |11〉)/

√
2

and |ψ±〉 = (|01〉 ± |10〉)/
√

2, respectively. Accordingly,
the mixture of the four states ρ0 = λ1|α〉〈α| + λ2|β〉〈β| +
λ3|γ 〉〈γ | + λ4|η〉〈η| would turn into the mixture ρτ =
λ1|φ+〉〈φ+|+λ2|φ−〉〈φ−|+λ3|ψ+〉〈ψ+|+λ4|ψ−〉〈ψ−| under
the action of the above entangler gate Uτ . By substituting
Uτ into the Hamiltonian in Eq. (21), we obtain the time-

independent Hamiltonian to realize it,

H = ω′

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎟⎠ + R′. (24)

The unitary operator induced by the above Hamiltonian could
be described as

Ut =

⎛
⎜⎜⎜⎜⎝

ct − i√
2
st 0 0 − i√

2
st

0 ct − i√
2
st − i√

2
st 0

0 − i√
2
st ct + i√

2
st 0

− i√
2
st 0 0 ct + i√

2
st

⎞
⎟⎟⎟⎟⎠,

(25)

with ct = cos(
√

2ω′t ) and st = sin(
√

2ω′t ). The path distance
contained in the above time-evolution operator Ut is d (Ut ) =√

2ω′t in the period t ∈ [0, π

2
√

2ω′ ], which increases linearly
with time t , until the target operator in Eq. (23) is achieved at
time t = π

2
√

2ω′ .

V. CONCLUSION

To summarize, the Hamiltonian in a quantum unitary sys-
tem completely determines a unitary operator, which contains
the main evolution information of the system. Since a unitary
operator connecting two quantum states could be used to
quantify the evolution distance between the two states, we
proposed here a geometric measure for the path distance con-
tained in a quantum unitary evolution, which relies only on the
unitary operator itself and is independent of the quantum state.
The path distance defined here meets the basic requirements
for a good measure of distance and is valid during the whole
evolution process. This path distance between two quantum
states is bounded from below by the state distance of the Bures
angle between them, so the path distance provides a feasible
way for the estimation of fidelity between a quantum state and
its time-evolved state, no matter what evolution time is under
consideration.

The path distance defined here is to map a unitary operator
to a non-negative value, which has some potential applica-
tions in quantum information processing. For example, the
quantification of evolution speed is usually based on the state
distance between the initial state and its time-evolved state in
the issue of quantum optimal control [25–30], and it will be
very interesting to study the quantum optimal control from
the perspective of path distance. By using the path distance
introduced here to replace the state distance, we could also
investigate several other issues in quantum information sci-
ence, such as the generalization of a quantum speed limit
[31–35] and estimation of the evolution time required to pre-
pare a target state. Quantum complexity is also a map from
unitary operators to non-negative values, which provides an
operational definition for quantifying the cost of simulating
a unitary operator. As is well known, quantum complex-
ity is widely used in several topics such as distinguishing
chaotic systems from integrable ones [36], studying aspects
of black holes and quantum chaos [37], and quantifying state
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complexity in continuous many-body quantum systems [38].
Since the path distance introduced here is easy to compute, it
will be very interesting to apply the path distance introduced
here to the relevant research.
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