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Many-body localization (MBL) can occur when strong disorders prevent an interacting system from
thermalization. To study the dynamics of such systems, performing an ensemble average over many dif-
ferent disorder configurations is typically necessary. Previous works have utilized an algorithm in which
different disorder profiles are mapped into a quantum ancilla. By preparing the ancilla in a quantum superposition
state, quantum parallelism can be harnessed to obtain the ensemble average in a single computation run. In this
work, we modify this algorithm by performing a measurement on the ancilla. This enables the determination
of conditional dynamics not only by the ensemble average but also by the quantum interference effect. Using a
phenomenological analysis based on local integrals of motion, we demonstrate that this protocol can lead to an
enhancement of the dephasing effect and a boost in entanglement growth for systems in the deep MBL phase.
For a typical MBL system with short-range interactions, reaching saturation in entanglement usually takes an
exponentially long time, which makes experimental explorations of long-time properties challenging. With our
protocol, we demonstrate a significant reduction in the saturation time by several orders. This advancement
facilitates easier access to the behavior in the long-time regime. We also present numerical simulations of the
random X XZ model where this enhancement is also present in a smaller disorder strength, beyond the deep MBL

regime.

DOI: 10.1103/PhysRevA.108.022203

I. INTRODUCTION

Thermalization is ubiquitous in nonintegrable many-body
systems. However, in a seminal work [1], Anderson demon-
strated that strong disorder can restore the integrability
and prevent the thermalization of noninteracting systems, a
phenomenon termed Anderson localization. Recently, both
experimental and theoretical investigations have shown that
strong disorders can also localize interacting systems, which
is known as many-body localization (MBL) [2—4]. One of
the milestones in this field is the proposal of a phenomeno-
logical model called local integrals of motions (LIOMs)
[5-11], which characterizes MBL systems with extensive con-
served quantities. From the perspective of LIOMs, the slow
logarithmic entanglement growth [12—14]—the hallmark of
MBL—can be explained by the dephasing mechanism to-
gether with the exponential decay law for interactions among
LIOMs. This insight has led to experimental proposals such as
spin-echo-type experiments [15—17] to identify MBL systems.

To extract meaningful information from such random
disordered systems, an ensemble average over many disor-
der configurations is usually necessary, which could be a
resource-intensive task. In Ref. [18], the authors proposed an
algorithm that utilizes quantum parallelism to address this is-
sue. The main idea is to encode different disorder profiles into
a quantum ancilla. The ancilla can be prepared in a quantum
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superposition state, allowing the MBL dynamics for different
profiles to run in parallel. By tracing out the ancilla at the
end, the ensemble average results can be obtained in a single
computation or experiment run [19-21].

Recently, the idea of using quantum ancilla to evolve
systems in parallel has also been adopted in various applica-
tions, including communication channels [22-27], quantum
thermodynamics [28-31], quantum metrology [32-34], open
quantum systems [35-38], and relativistic quantum theory
[39—41]. However, instead of directly discarding the ancilla
after an evolution, these works considered performing a mea-
surement on the ancilla. In this case, the conditional state of
the system may depend not only on the ensemble average
but also on the quantum interference effect among different
quantum evolutions, leading to nontrivial results.

Motivated by these works, we modify the algorithm pro-
posed in Ref. [18] by performing an additional measurement,
as mentioned earlier. Our aim is to investigate the poten-
tial impacts of this modified algorithm on MBL systems.
Here, we focus on spin-chain systems with on-site disorder
together with short-range interactions. We first provide ana-
lytical and numerical analysis based on LIOM representation.
Our findings show that the quantum interference for different
evolutions (disorder profiles) can generally enhance the de-
phasing effect and boost the entanglement growth for systems
in the deep MBL phase. As aforementioned, MBL systems
usually demonstrate slow logarithmic entanglement growth,
implying that the associated saturation times could be expo-
nentially large. Consequently, exploring long-time behavior
experimentally presents a formidable challenge. By utilizing
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our protocol, we show that the saturation time can be signif-
icantly reduced by several orders, making the behavior in the
long-time regime much more accessible.

Moreover, we consider the random X X Z model [12,42,43],
the well-investigated model in the context of MBL, with pa-
rameters ranging from small to strong disorder strengths. We
also consider the case that can manifest Anderson localization.
The numerical results demonstrate a significant enhancement
of entanglement growth, while retaining the system’s initial
memory in both the scenarios of many-body localization and
Anderson localization. The results also indicate that super-
positions of disorders can reduce the saturation time to an
experimentally achievable regime. Furthermore, the protocol
can lead to a faster increase when the system size increases,
suggesting that the volume law of entanglement [13,14] could
be more visible in experiments.

The rest of this paper is organized as follows. In Sec. II,
we formulate the algorithm and present a phenomenological
analysis based on the LIOM representation. In Sec. III, we
present numerical results for the random XXZ model that
can demonstrate either many-body or Anderson localization.
Finally, we draw our conclusion in Sec. I'V.

II. PHENOMENOLOGICAL ANALYSIS

Throughout this work, we focus on one-dimensional spin
chains with on-site disorder and short-range interactions, e.g.,
the random XXZ model that is discussed later. In this sec-
tion, we keep the Hamiltonian of the system unspecified and
consider the well-known phenomenological model for MBL.
Specifically, when the spin chain is in an MBL phase, there
exist extensively conserved quantities that can be obtained by
the quasilocal unitary transformation U such that

., =U'o.;U
=0+, Y. Cuplirk)owopi+-. (1)
.k o,B=xyz

Here, {04 i}a=x,y,. are the usual Pauli operators on site i,
and t,; is the conserved quantity associated with o, ;. The
coefficient Cy g(j, k) decays exponentially with the distance
between the spins j and k. Conventionally, t,; and o,; are
called the localized bit (I-bit) and the physical bit (p-bit),
respectively. In other words, 1-bits can be regarded as p-
bits associated with quasilocal dressings. Because these 1-bits
are conserved, the diagonalized system’s Hamiltonian can be
written, in general, as

HupL = Zhifz,i + Z-li,j ToiTej oo 2)

i<j

Here, h; denotes the on-site potential and J; ; represents the
interaction between these 1-bits, which is described by an
exponential decay law, i.e., J; ; = JN,J exp(—|i — j|/&). Here,
& denotes a dimensionless characteristic length. Note that
the parameters #;, f, j» and Cy g(j, k) depend on the specific
realization of the on-site potential for the spin chain under in-
vestigation. Since the on-site potential is usually characterized
by a random variable, we expect that these parameters should
also inherit the randomness.

This model captures several dynamical features of a
generic MBL system. For instance, the characteristic trait of
slow entanglement generation can be described by the de-
phasing interactions among these 1-bits. Specifically, due to
the exponential decay of the interaction between two distant
I-bits, it takes an exponentially long time to build up entan-
glement, which results in a logarithmic entanglement growth
[16,17]. As an example, we consider an initial product state:

1 1
ﬁ(IT) + ) ® ﬁ(IT) +HIH®-, ()
where 7,|1) = |1) and .|| ) = —|]). We focus on the reduced
dynamics of the first I-bit (i.e., j = 1). Additionally, we con-
sider a simplified variant of the model Hamiltonian where we
only keep the two-body interactions in Eq. (2):

HypL = E JijTite)

[Y0) =

i<j
=10 Tt =)l T+ H
j>1 j>1
with H' = " J; 1.7 . (4)
l<i<j

In this case, the reduced dynamics of the first 1-bit can be
expressed as

p(t) = trj[exp(—iHvprt) Vo) (Yol exp(iHwpLt )]
= UM+ D)+ O UL+ @O L) (M, (5)

where the dephasing factor is given by

¢(t) = [ [ cos@/1 j0). (6)

j>1

The dephasing factor directly reflects the entanglement dy-
namics. For instance, one can quantify the entanglement
between the first and other 1-bits by linear entanglement en-
tropy, i.e., Sp = (1 — |¢()[*)/2. ~

Here, we consider that the prefactor J; ; is uniformly drawn
from the interval [—7, J], suggesting that the dynamics can
be divided into two regimes according to the product form
in Eq. (6). (i) The short-time regime where Jt < exp(1/£)
and the entanglement generation are governed by the inter-
actions nearby the first 1-bit (i.e., |1 — j| < &), resulting in
a power-law increase in the entanglement entropy. (ii) When
Jt > exp(1/€), the dynamics is governed by the long-range
interactions (i.e., |1 — j| > &), where the effect of the expo-
nential decay factor in the interactions becomes significant
and results in the logarithmic entanglement growth. Note that
¢(t) is independent of the evolution governed by H’, wherein
the interactions do not involve the first 1-bit. However, as
shown in the following, this is not the case when we consider
quantum superpositions of disorders by using the quantum
ancilla, which leads to faster entanglement growth.

Let us consider our algorithm, bearing in mind that the
explicit expressions of t,; and the diagonalized Hamilto-
nian described by Eq. (2) depend on the specific parameters
of the system, such as a particular disorder configuration.
However, in a deep MBL regime, e.g., the strong disorder
limit, the dressing terms in Eq. (1) become negligible [i.e.,
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Schematic illustration of the algorithm for a spin chain subject to a “quantum superposition” of random on-site potential (presented
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by the histograms), where the profiles are encoded in a quantum ancilla. In step (i), we prepare the ancilla in a quantum superposition
state |y,) = Zp |p.)/~/N, that is, the superposition of profiles of on-site potentials. In step (ii), the total system is evolved according to
the Hamiltonian defined in Eq. (7) to achieve quantum parallel computation. In step (iii), we postselect the spin system associated with the
ancilla state |,), and the conditional state of the spin |1/ (¢)) can be obtained.

Co.p(j, k) ~ 0] and the 1-bits and p-bits roughly coincide.
Along this reasoning, we expect that different disorder profiles
will give rise to different realizations of the prefactors {J; ;} of
the diagonalized Hamiltonian, while the explicit expressions
of I-bits remain unchanged.

Suppose we encode N different disorder profiles into a
quantum ancilla, which can then determine N different evo-
lutions. The ancilla-system total Hamiltonian is given by

Hyo = Z |Pa)(Pal ® HMBL({J(p)})~
p=1

(7

Here, I:IMBL({J;”;)}) denotes the Hamiltonian with a specified

realization of the interactions {Jif’;.)}, and {|p,)} forms an or-
thonormal basis with (p.|p,) = 8, . In Fig. 1, we illustrate
the algorithm for a spin chain subject to on-site random po-
tentials, which can be divided into three steps.

(i) Initialization. We initialize the spin system in state
[Y0). In this section, we consider the state in Eq. (3). In
Sec. III, we consider the Néel state, which is formally intro-
duced later. The quantum ancilla is prepared in a superposition
state [Y,) = Y »1Pa)/ /N to achieve quantum superposition
of disorder configurations.

(i) Global evolution. We let the ancilla-spin system
evolve. The time-dependent state can then be written as

Vi) = —= Y 1pa) ® exp [—iBypr ({77 })t]1v0). (8)

p

f

(iii) Postselection. We postselect the state |y,) on the
ancilla before discarding it. After the postselection, the con-
ditional state of the system reads

LO))
o= ||&(r)||’
with [{(1)) = — Zexp [y ({77 ) )lvo). ()

The effective dephasing factor of the first 1-bit can be
described by

¢eff(t) X 1% Z,MI(w(/)|Fp,q(t)ép,q(t)|w(/)>’
with

F, ,(t) = exp(—i[H"" — H'P]t),

Gpgt) =exp | =i y_ (1" + D)z it |.

j>1

KNEAND
@Mt

j>1

V) = (10)

Note that the effective dephasing factor now includes the term
H' through the factor Fp,q(t), with p # g, which originates
from the quantum interference effect [38] between the profiles
p and ¢g. This factor introduces additional contributions of
interactions, i.e., J; ; with i, j > 1, into the dephasing factor.
Following the intuition of the product form in Eq. (6), one can
expect that the dephasing effect and the entanglement growth
will become stronger. To confirm this intuition, in Fig. 2, we

Sn(t)

100 10° 107 10

10~ 10!
t(units of J 1)

FIG. 2. Time evolutions of half-chain entanglement of an eight-I1-
bit system with 1, 2, and 10 superposed disorder configurations. Here
J =1 and & = 0.3. The results are averaged over 1000 disorder
realizations.
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present numerical simulations of entanglement dynamics for
an eight-1-bit system with 7 = 1 and & = 0.3. The entangle-
ment is quantified by the half-chain von Neumann entropy
Syx = trplog, p, where p denotes the half-chain reduced
density matrix. One can clearly observe that entanglement
growth is enhanced as the number of superposed evolutions
N increases. Therefore, the results indicate that the quantum
interference effect for dynamics with different disorder profiles
can enhance the entanglement growth for a generic system in
the deep MBL regime. Moreover, we can observe that the satu-
ration time of entanglement significantly decreases by several
orders. More specifically, the saturation times for the cases
of N =1, N =2, and N = 10 are roughly of the orders 10°,
107, and 10° in units of 1 /J . In practice, this could make the
investigations of long-time properties much more accessible.

III. XXZ CHAIN WITH RANDOM EXTERNAL FIELD

In this section, we consider an X X Z Heisenberg chain with
a random external field [12,42,43], where the Hamiltonian
reads

Hxxz = Zg(Sx,in,Hl +8),iSyir1) + AS; ;S i1
+ ZhiSz,i. (11)

Here, {S:; =0.:/2,8,;=0yi/2,S;; = 0,;/2} denote spin-
1/2 operators on site i. Also, g and A describe the hopping
and interaction energies between each spin and their nearest
neighbors. The &; represents the strength of the external field
on site i and is uniformly drawn from [—-W, W], with W
being the disorder strength. When the disorder strength is
sufficiently strong, the system can display localization behav-
ior. Note that, for the case A = 0, the system can exhibit
Anderson localization, whereas for the case A # 0, the sys-
tem can demonstrate many-body localization. In addition to
the entanglement dynamics, we also consider the imbalance,
which is an experimental relevant quantifier of the system’s
memory [44-49], as an indicator for the localization behavior.
We initialize the system in the Néel state, i.e,

|WNée]>=|lv_171a_la"'>v (12)
with o,| & 1) = £| &= 1). The imbalance is defined as
(1) = Z(—UM(llf(t)lffz,illlf(t))' (13)

i=1

Since the imbalance quantifies the amount of the initial mem-
ory of the system at the time #, one expects that the I(¢)
decays to zero in an ergodic (thermalized), implying that the
initial memory is completely lost. Therefore, the presence of
a nonzero value of imbalance in the long-time limit suggests
that the system is in a localized phase.

In Fig. 3, we present the dynamics of the half-chain entan-
glement S,N and the imbalance /() for an eight-spin chain
with different numbers of superposed disorder profiles N.
Throughout the following discussions, we set the hopping
energy g = 1. We consider both the cases A = 0.2and A =0
and set W = 3 so that many-body localization and Anderson
localization can be observed. As shown in Fig. 3(a), for the

100 100 10° 100 100 10

100 100 107 S0t 10 T 10°
t(units of g~ 1) t(units of g~ 1)

FIG. 3. Time evolutions of entanglement entropy [panels (a) and
(b)] and imbalance [panels (c) and (d)] for different numbers
of profiles N in quantum superposition. The disorder strength is
W = 3, and we consider A = 0.2 and A = 0, which can demonstrate
many-body localization and Anderson localization, respectively. The
results are obtained by averaging over 10 000 disorder realizations.

case of A = 0.2, one can observe a slow logarithmic growth
in SyN followed by an initial fast growth, which is the hallmark
of many-body localization. In contrast, for the case of A =0
[Fig. 3(b)], i.e., Anderson localization, the slow logarithmic
growth is absent. One can also observe that increasing the
number N can boost the initial entanglement growth and en-
hance the saturated entanglement for both cases. Furthermore,
for the case A = 0.2, the duration for the logarithmic growth
becomes shorter when increasing the number N. However,
the enhancement of entanglement does not imply a strong
thermalization of the system, as shown in Figs. 3(c) and 3(d),
where we find that the dynamics and the saturation value of
the imbalance I(¢) are relatively insusceptible to the number
N, suggesting that the system can stay in a localized phase.
In other words, the initial memory can be preserved, while
generating more entanglement among the spins. Therefore,
one can conclude that increasing the number N results in
a stronger dephasing effect, as suggested in the previous
section.

In Figs. 4(a)-4(d), we present the saturation values of Syn
and I with different disorder strengths W = {1, 3, 5}. The
saturation values are defined by

Qsat =

iy
f dt Q(1), (14)
tf — 1 t;
with Q € {Syn, I}. Also, we sett;/g = 10° and t;/g = 10'°. In
Fig. 4(e), we consider the saturation time of Syn (for the case
A = 0.2), which is defined by

Ty = min¢ such that [Syn(f) — SyNsat| < €. (15)

Here, we set the tolerance € = 1073, One can observe that,
when W decreases, Iy, (Synsat) decreases (increases), indicat-
ing that the system becomes more thermalized as the disorder
strength decreases. Further, for a fixed W, one can observe
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FIG. 4. (a)—(d) The saturation values of entanglement entropy
and imbalance for different disorder strengths and different numbers
of superposed profiles. The many-body localization scenario (A =
0.2) and the Anderson localization scenario (A = 0) are considered.
(e) The saturation time (for the case A = 0.2) of the entanglement
entropy for different disorder strengths and different numbers of
superposed profiles. All of the results are obtained by averaging over
10000 disorder realizations.

that Syn sat 1S enhanced when N increases. In addition, we can
find that increasing N does not significantly reduce Iy, even
for a smaller disorder strength. It means that the mechanism,
enhancing the dephasing effect, also manifests beyond the
deep MBL regime for this model. We can also observe that the
saturation time of entanglement T, significantly reduces for a
larger disorder strength. In particular, for the case of N = 10,
the saturation time can be reduced to roughly thousands of
tunneling time (Ty/g ~ 10%) that could be achievable for
current experiments [44—47].

Finally, we investigate the volume law of entanglement
by considering Synsa for different sizes of spin chains as
shown in Fig. 5. The number of spins ranges from 6 to 12.
For the ordinary ensemble average results (i.e., N = 1), the
saturated entanglement for A = 0.2 (A = 0) demonstrates a
volume (area) law. This means that SyN s, increases (remains
constant) as the length of the spin chain increases [16,17]. In
addition, when considering a larger number N of superposed
profiles, we can observe that the saturated entanglement dis-
plays a more rapid growth relative to the system size. This
phenomenon could enhance the visibility of the volume-law
signal for both experimental and theoretical investigations.
Note that both the value of saturated entanglement and the
rate of increase with respect to system size are higher for
the case of A = 0.2 compared to that of A = 0. This obser-

L4 14(b)—e— N =1
—% N =2
R ERR
% %
0.6 030.6-/‘/‘
A=0.2 A=0
6 8 0 12 6 8 0 12

Number of spins Number of spins

FIG. 5. The saturation values of entanglement entropy for differ-
ent numbers of superposed profiles with respect to different lengths
of the spin chain. The disorder strength is W = 5, and the results are
obtained by averaging over 1000 disorder realizations.

vation aligns with the physical intuition that the interaction
terms can lead to a stronger generation of entanglement.

IV. CONCLUSIONS

We consider an algorithm which can superpose dynamics
with different disorder profiles, and we investigate its impact
on MBL systems. Through a phenomenological analysis, we
demonstrate that the interference effect can result in an en-
hancement of entanglement generation for spin-chain systems
in a deep MBL regime. Moreover, we present numerical simu-
lations on the random X X Z model and consider two scenarios
that can manifest many-body localization and Anderson local-
ization. For both cases, the long-time saturated entanglement
is enhanced. Notably, the protocol can significantly reduce
the saturation time and enhance the volume-law behavior of
entanglement for the MBL scenario. This makes the long-time
properties more visible and easier to explore.

This work raises several open questions. For instance, a
direct extension of this work is to consider long-range inter-
action [50-54], which is a built-in feature for various physical
systems. Also, since our protocol can be used to manipulate
the entanglement properties of MBL systems, it is natural
to ask about its implications for practical applications, e.g.,
quantum many-body battery [55] and quantum computation
[56], etc. From a more general perspective, the proposed algo-
rithm can be regarded as a many-body engineering protocol.
Therefore, it would be intriguing to investigate its applications
to other exotic many-body effects, such as quantum informa-
tion scrambling [57-61] and quantum time crystals [62].

Regarding the possible experimental implementations, we
note that there are existing proposals based on cold atoms
[63—66] and trapped ions [67]. In these setups, the random
on-site potential can be controlled through an auxiliary system
using two-body interactions. As a possible future exploration,
one could consider quantum control of random interactions
[68], which could be realized by a similar disorder mapping
together with multibody interactions [69,70], as elaborated in
the Appendix.

ACKNOWLEDGMENTS

This work is supported by the National Center for The-
oretical Sciences and the National Science and Technology
Council, Taiwan, under Grant No. MOST 111-2123-M-006-
001.

022203-5



JHEN-DONG LIN AND YUEH-NAN CHEN

PHYSICAL REVIEW A 108, 022203 (2023)

exp(_iaz,a ® O2z,s1 & 02,52 t)|1/)a,> & |¢0>
I

[Ve) 2 —@ -
sl @ @
woll
0) -—& l e 1ozt l S—-|0)

e 1

FIG. 6. Circuit implementation of the dynamics governed by the
Hamiltonian in Eq. (A2). Here, |,) and |y) are the initial states for
the ancilla and the system, respectively.

APPENDIX: PHYSICAL REALIZATION
OF CONTROLLING RANDOM INTERACTIONS
BY QUANTUM ANCILLA

Here, we propose a physical realization for the quantum
control of random interactions. It is worth noting that, as
already proposed in Ref. [18], quantum control of on-site
potentials can be implemented by considering two species of
atoms together with two-body interactions between them. For
instance, let us consider a two-qubit model, where one qubit
represents the system and the other acts as the ancilla. Suppose
that the ancilla-system complex is governed by a Hamiltonian

with two-body interaction:

02,0 ® 075 = [02){04] ® 05 + [1a) (1a] ® (—075),

[7P%1]

where the labels “a” and “‘s” respectively represent the ancilla
and the system qubits. We observe that this two-body inter-
action enables the mapping of different external fields (41
and —1) onto the ancilla, thereby allowing quantum control
over the potential experienced by the system.

Following a similar approach to the disorder mapping,
quantum control over random interactions can be realized by
multibody interactions. To illustrate this idea, we consider the
simplest scenario, where the interaction of a two-qubit system
is controlled by an ancillary qubit. The quantum control is
accomplished through the following three-body interaction
Hamiltonian:

(AL)

02,0 ® 051 ® 0,0 = 10)(04] ® 0,51 ® 02
+ |1d)(1a| ® (_Uz,sl ® Uz,s2)-

In this case, the ancillary qubit serves as a quantum control for
the interactions between system qubits labeled s1 and s2. This
multibody interaction can be implemented by analog simu-
lators (such as superconducting circuits [69] or cold atoms
[70]) as well as gate-based quantum processors. Specifically,
the dynamics governed by Eq. (A2) can be simulated using the
circuit model shown in Fig. 6, originally proposed in Ref. [71].
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