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Bound states without potentials: Localization at singularities
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Bound-state formation is a classic feature of quantum mechanics, where a particle localizes in the vicinity of
an attractive potential. This is typically understood as the particle lowering its potential energy. In this article,
we discuss a paradigm where bound states arise purely due to kinetic-energy considerations. This phenomenon
occurs in certain nonmanifold spaces that consist of multiple smooth surfaces that intersect one another. The
intersection region can be viewed as a singularity where dimensionality is not defined. We demonstrate this
idea in a setting where a particle moves on M spaces (M = 2, 3, 4, . . .), each of dimensionality D (D = 1, 2,
and 3). The spaces intersect at a common point, which serves as a singularity. To study quantum behavior in
this setting, we discretize space and adopt a tight-binding approach. We generically find a ground state that
is localized around the singular point, bound by the kinetic energy of “shuttling” among the M surfaces. We
draw a quantitative analogy between singularities on the one hand and local attractive potentials on the other.
To each singularity, we assign an equivalent potential that produces the same bound state wave function and
binding energy. The degree of a singularity M (the number of intersecting surfaces) determines the strength of the
equivalent potential. With D = 1 and D = 2, we show that any singularity creates a bound state. This is analogous
to the well-known fact that any attractive potential creates a bound state in one and two dimensions. In contrast,
with D = 3, bound states appear only when the degree of the singularity exceeds a threshold value. This is
analogous to the fact that in three dimensions, a threshold potential strength is required for bound-state formation.
We discuss implications for experiments and theoretical studies in various domains of quantum physics.
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I. INTRODUCTION

A free particle, in its quantum-mechanical ground state,
typically spreads uniformly to occupy all available space. This
allows the particle to lower its kinetic energy. However, in
the presence of an attractive potential, it may localize into a
bound state to lower its potential energy. This phenomenon
reflects competition between kinetic and potential energies.
In this article, we discuss a paradigm where bound states
form without any potentials. Rather, the particle moves on
a singular space consisting of multiple surfaces that inter-
sect at a “junction.” This allows for a new type of kinetic
energy that favors localization of the particle. We present a
detailed analysis of this phenomenon, focusing on the role of
dimensionality.

Quantum mechanics on intersecting spaces is a concrete,
testable proposition. Experiments with semiconductor archi-
tectures have explored X junctions and T junctions. Indeed,
bound states have been seen where electrons or holes are
localized near junctions [1–4]. Collective excitonic excitations
have also been found to bind to junctions [5–8]. Analogous
phenomena may also occur in classical wave mechanics,
e.g., in junctions of photonic [9] or phononic waveguides
[10,11]. Recently, singular spaces have been invoked to
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describe quantum magnets. At low energies, the physics of
a quantum magnet resembles that of a particle moving on the
space of classical ground states [12,13]. In certain magnetic
clusters, frustration leads to complex spaces that contain in-
tersecting wires and sheets. At very low energies, the magnet
freezes at the intersection; that is, it orders in a particular
classical configuration. This is equivalent to a particle bind-
ing to a junction due to bound-state formation. This effect
has been called “order by singularity,” a special case of the
well-known order-by-disorder phenomenon [12–15]. In these
various experimental settings, junctions induce bound states
with dramatic physical consequences. The goal of this article
is to develop an understanding of this phenomenon, its physi-
cal origin, and its organizing principles.

We consider a class of spaces consisting of multiple sur-
faces that intersect one another. The locus of intersection
represents a singularity. In the discussion below, we charac-
terize each singularity by two quantities: codimension and
degree. Figure 1 shows some examples. In the left panel, we
show three one-dimensional channels that intersect at a point-
like junction. A generic point in this space lies on one of the
channels; its local neighborhood is one-dimensional. In con-
trast, the junction is a zero-dimensional region (a point) whose
local neighborhood does not have a well-defined dimension-
ality. The difference between these two dimensionalities is the
codimension, which is unity here. In addition, we assign a
degree of 3, representing the number of channels that meet
at this junction. In the middle panel of Fig. 1, we see two
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FIG. 1. Self-intersecting spaces. Left: Three wires
(one-dimensional spaces) that intersect at a point. Middle:
Two sheets (two-dimensional spaces) that intersect at a point. Right:
Three cubes (three-dimensional spaces) that intersect at a point.

sheets that intersect at a point. This represents a singularity
of codimension 2. The space is generically two-dimensional
(2D), while the singularity is pointlike. As we have two sheets,
the degree is 2. In the right panel of Fig. 1, we see three cubes
which are understood to share a common point. The common
point is a zero-dimensional singularity. The codimension and
the degree are 3 in this case.

For comparison, we will also discuss bound states induced
by attractive potentials on smooth spaces. There is exten-
sive literature available on bound states induced by various
potentials. It is well known that dimensionality plays a key
role. In one and two dimensions, an infinitesimal potential
suffices to create a bound state. However, in three and higher
dimensions, a threshold potential strength is required [16–19].
In this article, we use a tight-binding approach that can handle
both singularities and potentials on the same footing. Naively,
the problem of a potential appears to be very different from
that of a singularity. However, our results bring out a deep
connection. As we show below, any singularity is quantita-
tively equivalent to a potential in the sense that it produces the
same bound state.

II. THE TIGHT-BINDING APPROACH

The traditional approach to quantum mechanics is to con-
struct a Hamiltonian operator and find its eigenfunctions. This
cannot be carried out on singular spaces because the Hamilto-
nian cannot be written down in the vicinity of a singularity.
For example, a gradient operator cannot be defined near a
junction of two wires. Solutions can still be found using
ad hoc methods. For example, eigenfunctions can be found
on each smooth segment, with a suitable boundary condition
imposed at the singularity. The choice of boundary condition
can affect the result [20–22].

In this article, we take an alternative approach using tight
binding. Originally developed to describe band structure in
solids, tight binding typically describes an electron in a lattice
of atoms [23–25]. The Hilbert space is spanned by localized
wave functions centered on each atom. If the lattice constant
is not too small, an electron hops from an atom to any of
its neighbors. Here, we adapt this approach with “atoms”
arranged on a singular space rather than forming a regular
lattice.

The tight-binding approach lends itself to an ambiguity-
free procedure for a one-dimensional problem, such as the one
shown in Fig. 1 (left). In two dimensions and higher, there
can be multiple ways of discretizing a smooth surface. For

example, a smooth two-dimensional region can be discretized
into a square or a triangular grid. Once this choice is made,
there is no further ambiguity in the procedure or the solutions
obtained. In our calculations, we choose a square (cubic)
discretization for two (three) dimensions.

In the rest of this article, we solve free-particle tight-
binding Hamiltonians of the form

H = −t
∑
〈mn〉

{c†
mcn + c†

ncm}, (1)

where the hopping amplitude t sets the energy scale. The sum
runs over nearest-neighbor bonds, with m and n representing
sites at the end of each bond. The operator c†

m creates a particle
at site m, while cn annihilates a particle at site n. The Hamil-
tonian can be viewed as encoding time evolution on a discrete
graph. A particle that is initially localized at one site can hop
to the immediate neighbors in one step. Upon repeated action
of the Hamiltonian, the particle may hop onto the next-nearest
neighbors and further.

The geometry of the space is encoded in the assignment
of neighbors. Away from the singularity, each site has 2D
neighbors, where D is the dimensionality of the surface. As
shown in Fig. 1, the singularity is a single site with (2MD)
neighbors, where M is the degree of the singularity; we have
2D neighbors per surface, with M surfaces in total. Opera-
tionally, we take each surface to have linear dimension L with
periodic boundaries. The total number of sites in the problem
is then N = MLD − M + 1. The resulting Hamiltonian is an
N × N symmetric matrix. Its eigenvectors represent stationary
states, while the eigenvalues yield the corresponding energies.
For small system sizes, we carry out full diagonalization to
find all eigenvectors and eigenvalues. For large systems, we
take advantage of the sparse character of the tight-binding
Hamiltonian and employ Krylov-space-based routines to find
the lowest few eigenstates.

In the tight-binding setup, an eigenstate satisfies the fol-
lowing relation at every site:

−t
∑
m(n)

ψm = Eψn, (2)

where n represents any given site. The index m(n) runs over
the neighbors of n, ψp represents the eigenvector component
at site p, and E represents the eigenvalue.

A bound state can be identified in two ways: from the
eigenvector or from the eigenvalue. The eigenvector must
be peaked at the singularity, decaying to zero as we move
away. The eigenvalue must lie below a threshold value, −2Dt ,
representing the lowest value possible for a delocalized state
on a D-dimensional surface. This can be expressed in terms
of a binding energy, Ebinding = −2Dt − Estate. A bound state
must have a positive binding energy. The higher the binding
energy is, more bound the state is.

For the one-dimensional tight-binding problem with a
setup as shown in Fig. 1 (left), the bound state(s) can be
found using analytic arguments. They are exponentially lo-
calized around the singularity, as we show below. More
generally, the eigenvalues and eigenvectors can be found
numerically.
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III. D = 1: INTERSECTING WIRES

A. Analytic solution to the tight-binding problem

We first discuss the case of M one-dimensional wires
intersecting at a pointlike junction. The arguments in this
section were first presented in Ref. [15] in the context of a
certain magnetic model. To represent the wave function, we
denote the junction site as j = 0. To all other sites, we assign
an integer value that encodes distance from the junction. For
example, the immediate neighbors of the junction are assigned
j = 1. This tight-binding problem produces one bound eigen-
state, described by the ansatz

ψ j = 1

N e−αM j, ψ0 = 1

N . (3)

Here, N is a normalization constant. We demand that it be
an eigenstate with eigenvalue EM . At a site away from the
junction, the eigenstate condition of Eq. (2) yields

−t (e−αM + eαM ) = EM . (4)

At the junction site, the same condition yields

−2Mte−αM = EM . (5)

From Eqs. (4) and (5), we solve for αM and EM ,

αM = 1
2 ln{2M − 1}, EM = −2Mt/

√
2M − 1. (6)

Note that for M = 1, there is no singularity because we
have only one wire. In this limit, the bound state vanishes
as αM=1 = 0 and EM=1 = −2t . For M � 2, αM represents a
decay constant. The binding energy is given by Ebinding,D=1 =
(−2t − EM ). The normalization constant can be explicitly

found, N =
√

2M−1
M−1 .

For M � 2, αM monotonically increases with M. In paral-
lel, EM monotonically decreases, or equivalently, the binding
energy monotonically increases. This shows that the state
becomes progressively more bound as the degree of the singu-
larity increases. For very large M, the bound state is entirely
localized at the singularity.

B. Comparison with bound states induced by a potential

The bound state at the singularity can be compared to
one induced by a local attractive potential. Within the tight-
binding approach, we consider a smooth one-dimensional
chain with sites labeled by j, a coordinate that runs over all
integers. At j = 0, we have an on-site attractive potential of
strength g. The Hamiltonian is given by

H1D,g = −t
∑

j

{c†
j c j+1 + c†

j+1c j} − gc†
0c0. (7)

This problem also generates a bound state, with the wave
function

ψ j = 1

N ′ e
−αg| j|, (8)

where N ′ is a normalization constant. For j �= 0, the eigen-
state condition takes the same form as Eq. (4). At j = 0, the
condition is modified by the potential to give

−2te−αg − g = Eg, (9)

where Eg is the eigenvalue. It is convenient to express the
potential strength and the energy eigenvalue as dimensionless
quantities, using g̃ ≡ g/2t and Ẽg = Eg/2t . In terms of these
quantities, we find

αg = ln{g̃ +
√

g̃2 + 1}, Ẽg = −g̃2 − g̃
√

g̃2 + 1 − 1

g̃ +
√

g̃2 + 1
. (10)

The normalization constant comes out to be N ′ =√
1 + 1

g̃{g̃+
√

g̃2+1} . These values describe a bound state

induced by a potential on a smooth one-dimensional space
with no singularities. In contrast, those in Eq. (6) describe
a bound state created at a singularity of codimension 1 and
degree M, with no potential involved. Remarkably, the wave
functions have the same form in both cases as given by
Eqs. (3) and (8). This allows us to draw a precise equivalence,
M ↔ g̃M , where g̃M satisfies

M = [
g̃2

M + g̃M

√
g̃2

M + 1 + 1
]
. (11)

The equivalence can be stated as follows. On the one hand, we
consider a singularity of codimension 1 and degree M, with
no potential. On the other hand, we consider a potential of
strength g̃M on a smooth one-dimensional chain. These two
situations produce bound states with precisely the same decay
constant and binding energy.

The equivalent potential g̃M increases monotonically with
M. For large M, we see that g̃M ∼ √

M.

C. Mechanism for binding

A bound state has lower energy than the continuum of delo-
calized states. The underlying mechanism provides some way
for the bound state to lower its energy. What is the mechanism
in the case of a potential or in the case of a singularity? This
question can be directly addressed within the tight-binding
approach where the Hamiltonian is a sum of local terms. We
have one term for each bond, representing the kinetic energy
of hopping between two sites. In the case of a potential, we
also have an on-site potential energy. Given the ground-state
wave function, we may evaluate the contribution of each term
to its energy.

For the case of a potential-induced bound state, the
Hamiltonian is given by Eq. (7) with the wave function
given by Eq. (8). Bound-state formation is driven by the
potential-energy term. This can be seen by examining the
potential-energy contribution as a fraction of the bound state’s
energy,

〈−gc†
0c0〉

Eg
=

(
g̃2 + g̃

√
g̃2 + 1

g̃2 + g̃
√

g̃2 + 1 + 1

)2

=
(−g̃

Ẽg

)2

. (12)

For very small g̃, this quantity approaches zero. This is be-
cause the state is well spread with low weight at the potential.
At g̃ = 1, it becomes 1

2 . For large g̃, it approaches unity; the
energy of the bound state comes almost entirely from the
potential-energy term. This reveals that the mechanism for
bound-state formation is potential energy lowering.

We now make a comparison with the case of a bound
state at a singularity. The Hamiltonian can be written in the
form of Eq. (1) with the wave function given by Eq. (3).
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FIG. 2. The ground state on a space with M 2D sheets intersecting at a point. The plots correspond to M = 2 (top left), M = 3 (top middle),
and M = 5 (top right). Each 2D sheet is taken to be a 100 × 100 grid with periodic boundaries. The origin is common to all the sheets. The
plots show the spatial variation in the probability (amplitude squared). These wave functions fit well to a modified Bessel form of order
0 (bottom left). As the degree of the singularity increases, the decay constant obtained from the fit increases (bottom middle), as does the
binding energy (bottom right). The binding energy is shown in units of t .

Binding is driven by the M bonds that connect outward from
the singularity. We evaluate

−t
∑

j(0)〈{c†
j c0 + c†

0c j}〉
EM

= 2M − 2

2M − 1
. (13)

The index j(0) runs over the 2M sites that are directly con-
nected to the singularity. When M = 1, this ratio vanishes
because we have a delocalized ground state. For M = 2, this
ratio yields 2/3, i.e., two thirds of the ground-state energy
arises from the immediate vicinity of the singularity. For large
M, this ratio approaches unity. That is, all of the ground
state’s energy comes from the 2M bonds that are connected
to the junction. This represents a kinetic-energy contribution,
arising from the particle’s “shuttling” motion from one wire
to another. This is a new form of kinetic energy that is not
present on smooth surfaces. The ground state is bound due to
shuttling kinetic energy that can be gained only in the vicinity
of the singularity.

IV. D = 2: INTERSECTING SHEETS

We next consider singularities of codimension 2, with an
example shown in Fig. 1 (middle). We consider the space of
M sheets that share a common point. We discretize the space
using a square grid for each sheet, assuming that they intersect
at the origin. This setup generates a single bound state for any
M � 2. However, the wave function cannot be expressed as a
simple analytic form. Instead, we present numerical solutions
and fit them to a suitable functional form.

A. Numerical solution to the tight-binding problem

We consider M sheets, each modeled as an L × L square
grid. The sheets may have open or periodic boundaries. A
generic point in this system has four nearest neighbors, as
it lies on a two-dimensional sheet. In contrast, the central
point in every sheet is taken to be the same. This point has
4M neighbors, four on each of the M sheets. This configura-
tion defines a graph with {ML2 − (M − 1)} sites. We solve
the tight-binding Hamiltonian of Eq. (1) on this graph by
numerical diagonalization. We identify the lowest eigenstate
and examine its wave function. As we show below, this state
decays rapidly as we move away from the center point. As it
decays before reaching the boundaries, it is not sensitive to
boundary conditions.

Figure 2 (top row) shows examples of the bound-state wave
function. It plots the squared amplitude, the probability of
finding the particle at each site. The panels, from left to right,
correspond to M = 2, 3, and 5. In each case, the wave function
on one of the intersecting sheets is shown; the same wave
function appears on every sheet. From the plots, we imme-
diately see localized character, with probability peaking at the
singularity and decaying as we move away. With increasing
degree of the singularity (increasing M), the ground state
becomes more tightly bound.

The same information is shown as a two-dimensional plot
in Fig. 2 (bottom left), with the wave-function amplitude
plotted against the radial coordinate (distance from the sin-
gularity). The solution has circular symmetry: sites with the
same radial coordinate have the same wave-function ampli-
tude. Note that the phase is uniform at all points. As shown in
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FIG. 3. The ground-state wave function on a 2D sheet with an on-site attractive potential. The panels on top correspond to g = t (left),
g = 2.032 t (middle), and g = 2.911 t (right). They show the spatial variation of the probability (amplitude squared). The 2D sheet is taken to
be a 100 × 100 grid with periodic boundaries. The wave-function profile is shown in the bottom left panel, with the amplitude plotted against
the radial coordinate. The data are fit to modified Bessel functions of order 0. In the bottom middle panel, we plot the decay constant vs g. In
the bottom right panel, we plot the binding energy (in units of t) vs the strength of the potential. The best-fit curve to the form Ebinding = Ae−B/g

is shown.

Fig. 2 (bottom left), the amplitude is well fit by a function of
the form

f (r) = a k0(γ r + b). (14)

Here, kν is the modified Bessel function of the second kind,
of order ν. This form is known from the continuum problem
of a bound state induced by an attractive local potential in two
dimensions, e.g., a square-well potential (see Refs. [18,19]).
The bound wave function takes this form in the external region
(outside the well). For each value of M, we obtain a, b, and γ

as fitting parameters. The coefficient b represents a horizontal
shift. For any M � 2, the best-fit value of b is less than the
lattice spacing. The quantity γ encodes a horizontal stretch.
It can be viewed as a decay constant—the higher the value of
γ is, the more tightly bound the wave function is. As shown
in Fig. 2 (bottom middle), γ increases monotonically with M.
Finally, Fig. 2 (bottom right) shows the binding energy vs M.
This encodes the energy difference between the bound state
and the lowest delocalized state (Emin.delocalized,2D = −4t). As
M increases, the binding energy increases. This supports the
contention that the ground state becomes more tightly bound.

We summarize these findings as follows. A bound state is
formed for any singularity of codimension 2. The higher the
degree of the singularity is, the more tightly bound the state.

B. Comparison with bound states induced by a potential

For comparison, we consider a smooth two-dimensional
surface with a local attractive potential. The Hamiltonian for

this system is similar to Eq. (7). We have a single L × L
sheet with an attractive potential of strength g at the central
site. Analytic solutions cannot be found, but a single bound
state is seen in the numerics for any attractive potential. If
the system size is large enough, the wave function decays
to zero at the boundaries. As a result, the ground state is
not sensitive to boundary conditions. We describe this state
below and compare it with the continuum problem of a local
attractive potential in two dimensions [18].

Figure 3 (top) shows the bound-state wave function for
g/t = 1, 2.032, and 2.911. The latter two values are chosen
as they are equivalent to singularities with M = 2 and 3, re-
spectively, as we discuss below. We emphasize that any value
of g produces a similar ground state. Figure 3 (bottom left)
shows the same wave functions, fitted to the form given in
Eq. (14). We find good agreement with the Bessel function
form, especially at large distances. As shown in the bottom
middle and right panels of Fig. 3, the decay constant γ and
the binding energy increase monotonically with g. The larger
the potential is, the tighter the bound state is. For small g, the
binding energy is exponentially weak. As shown Fig. 3, the
dependence on g is well fit by the function Ebinding = Ae−B/g.
This form is known from the continuum problem of a bound
state induced by a local potential (say, of the δ-function form).
For example, it is invoked in the discussion of the Cooper
instability [26,27], where electron pairs that are constrained to
live on a two-dimensional space experience a weak attraction.

We now compare bound states induced by singularities
with those induced by potentials. We treat M and g as
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FIG. 4. Top: Binding energy vs decay constant in two dimen-
sions. Blue circles represent bound states induced by a local potential
on a smooth two-dimensional sheet. From left to right, the points
correspond to increasing potential strength, with g increasing from 0
to 20t in steps of t . Red squares represent bound states induced by
singularities of codimension 2. From left to right, the degree of the
singularity M increases in steps of 5 from 0 to 100. The two data
sets collapse onto the same curve. Bottom: gM vs M, where gM is the
potential that is equivalent to a singularity of degree M. The data fit
well to a function of the form gM ∼ √

M.

tunable handles in the two cases. In both, we obtain localized
ground states that fit well to the same functional form. In
gross terms, the solutions are described by two parameters:
the decay constant and the binding energy. These are both
monotonically increasing functions of the tuning handle in
each case. Remarkably, they are not independent. The decay
constant immediately determines the binding energy and vice
versa. This is shown in Fig. 4, which plots the binding energy
vs decay constant for both singularity-induced and potential-
induced bound states. The data points collapse onto the same
curve. This leads us to conclude that potentials and singulari-
ties lead to the same bound states. For a singularity of degree

M, we can find an equivalent potential gM that generates a
bound state with the same decay constant and binding energy.
Figure 3 (bottom right) shows the variation in gM with M. As
M increases, the equivalent potential grows in strength. For
large M, we find gM ∼ √

M.
We have verified that the equivalence goes beyond the de-

cay constant and binding energy. It holds even for the precise
form of the wave function, up to a change in the normalization
to account for multiple sheets.

V. D = 3: INTERSECTING THREE-DIMENSIONAL SPACES

We proceed to singularities of codimension 3, with an ex-
ample shown in Fig. 1 (right). As with codimension 2, analytic
solutions cannot be found. We present numerical solutions and
fit them to functional forms that are inspired by the continuum
problem.

A. Numerical solution to the tight-binding problem

We consider M three-dimensional (3D) spaces that share a
common point. We discretize each space using an L × L × L
cubic grid. The central point is taken to be common to all
spaces. While a generic point has six neighbors, the center
has 6M neighbors. This configuration defines a graph with
{ML3 − (M − 1)} sites. We solve the tight-binding Hamil-
tonian of Eq. (1) on this graph numerically. We examine
the energy and wave function of the lowest eigenstate. If
a state is bound and L is large enough, the wave function
will decay before reaching the boundaries. The wave func-
tion will then be indifferent to open or periodic boundary
conditions.

The codimension-3 solutions present a remarkable differ-
ence when compared with codimensions 1 and 2. A bound
state forms only when the degree of the singularity exceeds a
threshold value. For example, as shown in Fig. 5 (left), we find
no bound state for M = 3 (three cubes intersecting a point).
However, there is a clear bound state when M = 5 (five cubes
intersecting at a point), as shown in Fig. 5 (right). This can
be seen in various ways, as we describe below. We first note
that any such analysis requires a systematic approach to the
thermodynamic limit by increasing L. A true bound state will
remain bound with a constant “width” as L increases. In con-
trast, a delocalized state will expand with increasing system
size.

We introduce a quantitative measure for localization,

ravg =
∑

j

|
r j − 
r0| × |ψ j,0|2, (15)

where j runs over all sites in the tight-binding setup. The
distance between the origin and site j is denoted as |
r j − 
r0|.
Note that distances are calculated as on the usual cubic lat-
tice: a point with coordinates (x, y, z) is at a distance of√

x2 + y2 + z2 from the origin. The probability amplitude of
the ground state at this site is denoted as |ψ j,0|. Assuming
that the particle resides in the ground state, ravg denotes its
average separation from the singularity. If the ground state
represents a true bound state, ravg/L will extrapolate to zero
as L → ∞. Instead, if the ground state is delocalized, ravg/L
will extrapolate to a nonzero value. Figure 5 (bottom left)
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FIG. 5. The ground state of a particle on a space of M cubes intersecting at a point, where M = 3 (top left), M = 4 (top middle), and
M = 5 (top right). Each cube is taken to be a 20 × 20 × 20 grid with periodic boundaries. The center point is shared by all cubes, representing
a point of intersection. In each plot, both the size and color of the markers represent the same quantity. They encode the probability of finding
the particle (amplitude squared) at a certain site. We show only sites on a single cube because the wave function is the same across cubes.
In the bottom left panel, we plot ravg/L vs 1/L (see text). The data are fit to the form y = a + b/L + c/L2 in order to extrapolate to L → ∞.
In the bottom middle panel, we plot the binding energy vs 1/L with fits to the form y = a + b/L + c/L2. Finally, in the bottom right panel, we
plot the wave-function amplitude against the radial coordinate for M = 4, 6, 8. The data are fit to a modified Bessel form (see text).

compares ravg/L vs 1/L for various M values. We see a
qualitative shift between M = 3 and M = 4, with M � 4
showing bound-state formation.

We next examine the binding energy. It is defined as
the energy separation between the lowest state and the bot-
tom of the delocalized continuum (Emin.delocalized,3D = −6t).
If the ground state is truly bound, Ebinding will approach a
nonzero value as L → ∞. In a delocalized state, Ebinding will
vanish for large L. Figure 5 (bottom middle) shows Ebinding

vs 1/L for various M values. Once again, we find behav-
ior that is consistent with bound-state formation only when
M � 4.

To characterize the wave function in a systematic manner,
we fit it to the form

h(r) = c r−1/2k1/2(γ r + b). (16)

Here, k1/2 represents a modified Bessel function of the second
kind of order 1/2. This form is known from the continuum
problem of a 3D attractive square well. When a bound state is
produced, its wave function follows this form in the external
region (outside the well) [18,19]. We find a good fit to the
modified Bessel form as long as M � 4, as shown in Fig. 5
(bottom right). The wave-function amplitude at each site de-
pends solely on the radial distance from the singularity. The
phase is ignored as it is uniform at all sites.

From the fit, we obtain the decay constant γ . For M � 4,
the decay constant increases with increasing M, as does the

binding energy, as we discuss below. The ground state be-
comes progressively more bound.

B. Comparison with bound states induced by a potential

Like before, we compare our results with a smooth three-
dimensional surface with a local attractive potential. We
model this as a tight-binding problem on an L × L × L cubic
grid. We place an attractive on-site potential of strength g
at the center. For small values of g, the ground state is not
localized. A bound state is formed only when g exceeds a
threshold value. The ground state is plotted in the top panels of
Fig. 6 for g = 4t , 4.657t , and 5.246t . The first clearly shows
a delocalized ground state, while the latter two are bound.
In fact, we will argue below that the latter two values are
equivalent to M = 4 and 5.

We approach the question of bound-state formation in the
same manner as for the singularity above. The bottom left and
middle panels of Fig. 6 show ravg/L and the binding energy vs
1/L for a few potential strengths. We see two clear regimes,
g � 4t and g � 4.05t . In the former, ravg/L extrapolates to
a nonzero value as L → ∞. At the same time, the binding
energy extrapolates to zero. In the latter, ravg/L extrapolates
to zero, while the binding energy extrapolates to a nonzero
value. This suggests a threshold value, gcritical, that separates
bound and unbound behavior. This result is the tight-binding
analog of a well-known result in quantum mechanics: in three
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FIG. 6. The ground state on a 3D space with a local attractive potential. The panels on top correspond to g = 4 t (left), g = 4.657 t (middle)
and g = 5.246 t (right). The space is taken to be a 20 × 20 × 20 cubic grid with periodic boundaries with the on-site potential at the center. In
each plot, the size and color of the markers represent the probability of finding the particle (amplitude squared) at a certain site. In the bottom
left panel, we plot ravg/L vs 1/L for various potential strengths. The data are fit to the form y = a + b/L + c/L2. In the bottom middle panel,
we plot the binding energy (see text) vs 1/L, with fits to the form y = a + b/L2. In the bottom right panel, the wave-function amplitude is
plotted as a function of the radial distance from the potential. The data are fit to a modified Bessel function form (see text).

dimensions, a critical potential strength is required for bound-
state formation.

The precise location of the critical point is difficult to
pinpoint due to system-size limitations. For example, near
the transition, the fitting curves to ravg/L vs 1/L cannot be
reliably extrapolated to 1/L → 0 within accessible system
sizes. The binding-energy curves in Fig. 6 (bottom middle)
are somewhat clearer: gcritical appears to lie between g = 4.00t
and 4.05t .

Figure 6 (bottom left) shows the evolution of ravg/L with
g. We see a qualitative change between two regimes, one
where ravg/L extrapolates to zero as L → ∞ and one where it
tends to a nonzero value. The boundary between these regimes
cannot be precisely discerned within accessible system sizes.
In Fig. 6 (bottom middle), we see the evolution of binding
energy with system size for various values of g. Based on the
values extrapolated to L → ∞, we conclude that the critical
potential strength lies between g = 4.00t and 4.05t . Figure 6
(bottom left) shows the evolution of ravg/L with g.

When the potential exceeds gcritical, the resulting bound
state fits well to the modified Bessel form of Eq. (16). This is
shown in Fig. 6 (bottom right). The best-fit value of the decay
constant γ increases monotonically with increasing g. Like-
wise, the binding energy increases with g. A bound state forms
when g exceeds gcritical, becoming progressively more bound
as g increases further. We now compare results for a singular-
ity with those for a potential. Bound states fit well to the same
analytic form in both cases. As with the two-dimensional
case, the decay constant and the binding energy are not

independent. Figure 7 (top) plots the variation of these two
parameters for singularity-driven and potential-driven bound
states. Data from both cases collapse onto a single curve. This
brings out a quantitative equivalence between singularities
and potentials. For a singularity of degree M, we assign an
equivalent potential gM . The degree-M singularity produces a
bound state with the same decay constant and binding energy
as an attractive potential of strength gM . Figure 7 (bottom)
shows a plot of gM vs M. For large M, gM approximately
scales as

√
M. The equivalence is not restricted to the decay

constant and binding energy. We have verified that it holds for
the precise forms of the wave function, up to a change in the
normalization constant.

VI. DISCUSSION

We have demonstrated that singularities arising from inter-
sections produce bound states in the same way as attractive
potentials. This mapping is quantitative in nature, where each
singularity can be assigned an effective potential strength.
In singularities, the binding mechanism is the kinetic energy
of shuttling, where the particle moves back and forth across
surfaces. This can be viewed as “quantum indecision”—the
particle remains frozen at a crossroads as it is unable to pick
a direction of propagation. A bound state allows the system to
sample all surfaces to small distances while rapidly shuttling
among surfaces. This notion can be tested in semiconductor
architectures [28], ultracold atomic gases [29] and supercon-
ducting circuits [30].
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FIG. 7. Top: Binding energy vs decay constant in three di-
mensions. Blue circles represent bound states induced by a local
potential. From left to right, points correspond to increasing potential
strength, with g increasing from 4.5t to 20t in steps of 0.5t . Red
squares represent bound states induced by singularities of codimen-
sion 3. From left to right, the degree of the singularity M increases
in steps of 5 from 5 to 60. The two data sets collapse onto the same
curve. Bottom: gM vs M, where gM is the potential that is equivalent
to a singularity of degree M.

We have focused on a class of spaces where the singular-
ity is zero-dimensional, i.e., where smooth spaces intersect
at a point. Within this class, the key factor that determines
bound-state formation is the dimensionality of the spaces in-
volved. Our results can be generalized to higher-dimensional
singularities, with the key factor being codimensionality—the
difference in dimensionality between the smooth spaces and
the singularity. For example, consider two 2D sheets that inter-
sect along a line. In this case, we have translational symmetry
along the intersection line. This generates a new conserved
quantity—momentum along the intersection line. For each
value of this momentum, we are left with an effective problem
of two lines that intersect at a point. We conclude that a bound

state can form for each momentum. All of these states may
not be truly bound. If the kinetic energy of motion along the
intersection line exceeds the binding energy, this state can
scatter and delocalize. An example of this physics is discussed
in Sec. IX of Ref. [12].

Our results regarding the role of dimensionality in bound-
state formation are particularly relevant to quantum magnets.
In the presence of frustration, the low-energy physics of a
magnet resembles a particle moving on an abstract space
[12,13]. When this space self-intersects, the particle localizes.
This manifests as magnetic ordering in a particular classical
configuration. Codimension-1 singularities have been found
and argued to host bound states [12,14,15]. Codimension-3
singularities have been found and argued not to host bound
states [13,31]. Building on these results, magnetic clusters can
be designed to simulate spaces with multiple wires, sheets,
or even three-dimensional spaces. The Kitaev spin-S chain
serves as an example, with classical ground states that form a
networklike space. Each node of the network is an intersection
of M wires, where M can be tuned by changing the length of
the chain [15].

The analogy between singularities and potentials high-
lights the role of dimensionality in bound-state formation.
In higher dimensions, the tendency of a particle to spread is
stronger because the space available for spreading is larger. As
a result, a stronger potential or a singularity of higher degree
is required. A similar idea is invoked in Anderson localization
[32,33]. In one or two dimensions, an infinitesimal amount of
disorder suffices to localize a particle. However, a threshold
disorder strength is required in three and higher dimensions.
This has been related to the problem of a random walker and
the mean time spent in a neighborhood [34]. The higher the
dimensionality is, the shorter the time spent in a neighborhood
is. The particle may show localizing tendencies, which, upon
quantization, manifest as bound states.

We have based our arguments on a tight-binding frame-
work where potentials and intersections can be handled on
the same footing. More generally, the same problem can also
be addressed in the continuum. There is extensive literature
on quantum graphs where eigenfunctions of the Schrödinger
operator can be found on each link, with suitable boundary
conditions enforced at junctions. Studies have explored vari-
ous choices for boundary conditions and their consequences
[22,35,36]. Reference [37] compared the traditional quantum
graph approach with tight binding (assuming plane-wave-like
unbound states). With continuum problems on open or sin-
gular spaces, a careful self-adjoint formulation can give rise
to bound states [38]. Our results pose an interesting question
for future studies: what are the boundary conditions in the
continuum problem that reproduce the tight-binding bound
state?
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