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Time-frequency metrology with two single-photon states: Phase-space picture
and the Hong-Ou-Mandel interferometer
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We use time-frequency continuous variables as the standard framework to describe states of light in the
subspace of individual photons occupying distinguishable auxiliary modes. We adapt to this setting the interplay
between metrological properties and the phase-space picture already extensively studied for quadrature vari-
ables. We also discuss in details the Hong-Ou-Mandel interferometer, which was previously shown to saturate
precision limits, and provide a general formula for the coincidence probability of a generalized version of this
experiment. From the obtained expression, we systematically analyze the optimality of this measurement setting
for arbitrary unitary transformations applied to each one of the input photons. As concrete examples, we discuss
transformations which can be represented as translations and rotations in time-frequency phase space for some
specific states.
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I. INTRODUCTION

Much has been discovered since the first proposals to use
quantum systems in metrology. From the role of entanglement
[1–4] to the one of modes, for pure and noisy systems and
measurements, several main results have been established, and
the most important one is the fact that quantum-mechanical
protocols can provide a better scaling in precision with the
number of probes than classical ones. Nevertheless, much still
remains to be done, in particular concerning the application
and the adaptation of such results to specific physical con-
figurations. Of practical importance, for instance, is the issue
of finding measurement strategies that lead to the optimal
calculated limits and this is far from being obvious for gen-
eral states. Another relevant problem concerns adapting the
general principles to physical constraints as energy or temper-
ature limits and thresholds [5,6]. Those are the main issues of
this paper: in one hand, we deeply study the conditions for
optimality of a specific measurement setup and, on the other
hand, we consider a specific physical system, consisting of
individual photons, for measuring time and frequency related
parameters.

In order to measure a given parameter κ one performs an
experiment producing different outcomes x with associated
probabilities Pκ (x) and builds an unbiased estimator K such
that κ = 〈K〉κ is recovered. Here the index κ means that
we take the average for the probability distribution Pκ . The
Cramér-Rao bound (CRB) [7] imposes a limit on the precision
of parameter estimation:

δκ � 1√
NF

, (1)

where δκ is the standard deviation in the estimation of κ:
δκ = √

Varκ (K ), N is the number of independent measure-
ments which were performed to estimate κ , and F is the

quantity known as the Fisher information (FI), defined by
F = ∫

dx 1
Pκ (x) ( ∂Pκ (x)

∂κ
)2.

In a quantum setting, one can use as a probe a quantum
state |ψ〉, which can evolve under the action of an operator
Û (κ ) = e−iκĤ generated by a Hamiltonian Ĥ . By optimizing
the precision over all possible quantum measurements of a
parameter κ , one obtains a bound, called the quantum Cramér-
Rao bound (QCRB) [8], which reads

δκ � 1√
NQ

, (2)

where Q is a quantity known as the quantum Fisher
information (QFI) which for pure states and unitary evo-
lutions (as the ones considered in the present paper) is
equal to Q = 4(�Ĥ )2, with (�Ĥ )2 = 〈ψ (κ )|Ĥ2|ψ (κ )〉 −
〈ψ (κ )|Ĥ |ψ (κ )〉2.

The FI indicates the precision of a given measurement,
whereas the QFI is the maximum precision obtainable with
any measurement. For a given setting, we can thus compute
both quantities (FI and QFI) to have an idea if the measure-
ment is optimal (QFI = FI) or not (QFI > FI).

Determining the QFI is a mathematical task much easier
than finding a physical experimental setup that reaches it. In
quantum optical systems, several proposals and implementa-
tions exist where the QFI is indeed achieved [4,9–11], and
one example where this is possible is the Hong-Ou-Mandel
(HOM) experiment [12–15]. In this experiment, one focuses
on simple physical systems composed of two photons oc-
cupying distinguishable spatial modes with given spectral
distributions. This state is a particular example of a state
defined in the single photon subspace (where each mode is
populated by at most one photon), in which a general pure
state can be expanded as

|ψ〉 =
∫

dω1 · · · dωnF (ω1, . . . , ωn)|ω1, . . . , ωn〉. (3)
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In this formula, the indexes 1, 2, . . . , n label different auxil-
iary degrees of freedom (as for instance polarization or the
propagation direction). The state |ω1, . . . , ωn〉 is a pure state
where each photon propagating in the mode α is exactly
at the frequency ωα . The spectral function F also known
as the joint spectral amplitude (JSA) is normalized to one:∫ |F (ω1, . . . , ωn)|2dω1 . . . dωn = 1.

In this setting one can introduce time and frequency opera-
tors for each mode α: ω̂α and t̂α . They correspond respectively
to the generators of time and frequency shifts of the photon in
the mode labeled by α. An important property of these oper-
ators is that, in the considered single photon subspace, they
satisfy the commutation relation [ω̂α, t̂β] = iδα,β analogous
to the one observed for the quadrature operators X̂α and P̂α .
Notice that we are using throughout this paper dimensionless
operators, which are relative to particular time and frequency
scales of the associated implementation. For a more complete
description of the time-frequency continuous variables one
can refer to Appendix A and to [16].

Previous works on quantum metrology using the electro-
magnetic field quadratures or particles’ position and momen-
tum have shown how the phase space (x1, . . . , xn, p1, . . . , pn)
can provide not only insight but also an elegant geometrical
picture of the measurement precision [16–18]. Indeed the QFI
can also be estimated from the geometrical trajectory realized
by a quantum state and its width in the trajectory’s direction.
The main idea is that the precision provided by a quantum
state is given by the minimum displacement necessary to
nullify the overlap between the Wigner function of the evolved
state and the one of the initial state. The QFI is a measure
of how much the Wigner function must be shifted so as to
become orthogonal to the initial one. A consequence of this is
that the maximum precision of a measurement can be seen
geometrically on the Wigner function, by looking at their
typical size of variation in the direction of an evolution [17].
Since in the case of single photon states one can also de-
fine a time-frequency phase space associated to the variables
(τ1, . . . , τn, ϕ1, . . . , ϕn), it is natural to investigate whether the
same type of interpretation makes sense in this context.

The present paper’s purposes are thus twofold: in the first
place, we provide general conditions for the HOM to satu-
rate precision limits using time-frequency (TF) variables. For
such, we consider arbitrary evolution operators acting on TF
variables of single photons. In the second place, we provide a
phase-space picture and interpretation of the QFI for this type
of system. Indeed, as shown in [16], there is an analogy be-
tween the quadrature phase space and the TF phase space from
which metrological properties of time and frequency states
can be inferred. Nevertheless, in the present case, photons
have both spectral classical wave-like properties and quantum
particle-like ones. Interpreting from a quantum perspective
both the role of the spectral distribution and of collective
quantum properties as entanglement in the single photon sub-
space has shown to demand taking a different perspective on
the TF phase space [19]. Having this in mind, we investigate
how relevant examples of evolution operators, taken from the
universal set of continuous variables’ quantum gates, can be
implemented and represented in phase space, as well as the
precision reached when one measures them using the HOM
experiment. We will concentrate on single-mode Gaussian

operations, analogously to what was done in [5], even though
we provide a general formula for any transformation.

This paper is organized as follows. In Sec. II we provide
a description of the TF phase space and introduce the states
we will discuss in details as well as their representation. In
Sec. III we discuss the HOM experiment and the conditions
for it to reach optimal precision limits. Finally, in Secs. IV and
V we discuss two different Gaussian operations in phase space
as well as their implementation and the associated precision
reached in the HOM experiment.

II. TIME-FREQUENCY PHASE SPACE

We consider pure two-photon states which can be written
in the form |ψ〉 = ∫

dω1dω2F (ω1, ω2)|ω1, ω2〉. The Wigner
function in variables (τ1, τ2, ϕ1, ϕ2) of such states can be
defined as

W|ψ〉(τ1, τ2, ϕ1, ϕ2)

=
∫

dω1dω2e2i(ω1τ1+ω2τ2 )F (ϕ1 + ω1, ϕ2 + ω2)

× F ∗(ϕ1 − ω1, ϕ2 − ω2). (4)

Evolutions generated by ω̂α and t̂α (α = 1, 2) correspond to
translations in phase space:

We−iω̂1κ |ψ〉(τ1, τ2, ϕ1, ϕ2) = W|ψ〉(τ1 − κ, τ2, ϕ1, ϕ2), (5a)

We−it̂1κ |ψ〉(τ1, τ2, ϕ1, ϕ2) = W|ψ〉(τ1, τ2, ϕ1 − κ, ϕ2), (5b)

and analogously for ω̂2 and t̂2.
To gain some familiarity with the studied problem we start

with the case of a single-photon state |ψ〉 = ∫
dω S(ω)|ω〉.

Although using this type of state is not current in metrology,
this simpler case can be seen as a building block and will
help in understanding the role of the spectrum in the present
configuration.

For a single photon, the Wigner function is defined as
W (τ, ϕ) = ∫

dω e2iωτ S(ϕ + ω)S∗(ϕ − ω). In the case of a
Gaussian state |ψG〉 with spectral wave function SG(ω) =

e
− ω2

4σ2

(2πσ 2 )1/4 its Wigner function is also Gaussian: WG(τ, ϕ) =
exp(−2σ 2τ 2 − ϕ2

2σ 2 ). It is characterized by its width in the
orthogonal directions τ and ϕ: 1/2σ and σ , respectively.

An evolution generated by ω̂ corresponds to a translation in
the direction τ in phase space. The associated measurement
precision is given by the smallest value of dκ such that the
initial Wigner function is almost orthogonal to the translated
one in the corresponding direction. Since the width of the
Wigner function in the direction of evolution is proportional
to 1/σ , we have dκ ∼ 1/σ leading to a QFI of the order of
Q ∼ σ 2. Alternatively, if one considers the generator t̂ , the
associated width of the state will be σ leading to a QFI of
the order of Q ∼ 1/σ 2. We thus remark that the estimated
QFI depends on the width of the state in phase space in the
direction of evolution. We notice as well the similarities and
differences with the quadrature phase-space case: even though
the relation between the phase-space geometrical properties
and metrological interest are common to both variables, in the
case of quadrature they are related to some absolute quantum
resource dependent quantity—the number of photons of the
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FIG. 1. Schematic representation of the HOM experiment.

state. In the present case, the single photon spectrum is a
classical resource and its width can only set a relative size
scale in phase space.

It is interesting to notice that this type of interpretation is
also possible for classical fields, as studied in [20–22]. In this
classical context, the electromagnetic-field amplitude replaces
the function F and one can also relate spectral metrological
properties to the phase-space structures. Nevertheless, as dis-
cussed in [19], this picture is merely associated to classical
metrological properties of single mode fields (their spectrum)
and no interesting scaling can be observed in this context.
As a matter of fact, the classical single mode field and the
single-photon phase space can be mapped into one another.

In the present paper, the multimodal character of the quan-
tum field is an essential ingredient for the discussion of the
quantum metrological advantage, since it is a consequence of
the multiphoton state. We will see in particular how these two
features (spectral and particle-like) of the considered single-
photon subspace are combined in the QFI.

The situation is different and richer for biphoton states,
since the phase space is of dimension 4. One can thus imagine
different directions of translation as for instance the ones
generated by operators ω̂1, ω̂2, ω̂1 − ω̂2, . . . . Then, optimiz-
ing the measurement precision involves, for a given spectral
distribution, choosing a direction of evolution for which the
Wigner function of the state has the smallest scale structures.
This direction, as we will see, will depend on the number of
photons and can display a nonclassical scaling.

III. HOM AS A MEASUREMENT DEVICE

A. Setup

In the setup proposed by Hong, Ou, and Mandel [23] two
photons impinge into a balanced beam splitter (BS), each
one of them from a different port, as represented on Fig. 1.
By measuring the output of the beam splitter using single-
photon detectors we can compute the probability of obtaining
coincidences (when the two photons exit the BS by different
paths) or anticoincidences (when they bunch and exit the BS
at the same path). Since its original proposal and imple-

mentation, many modifications and adaptations were made
to the HOM setup, which was shown to be very versatile to
reveal different aspects of quantum optics using two-photon
interference [24]: it can be used to witness particle [25] and
spectral [26] entanglement, to saturate precision bounds on
time delay measurements [12,13], or to directly measure the
Wigner function of the incoming state [27,28].

We are interested in quantum metrological tasks, so we
will start by discussing the results obtained in [12], where
the authors provided experimental evidence that the HOM
device can saturate precision limits on time measurements. To
achieve this result, the authors considered the initial state:

|ψU 〉 = 1√
2

∫
d� f (�)

[∣∣ω0
1 + �,ω0

2 − �
〉

− ∣∣ω0
2 + �,ω0

1 − �
〉]
, (6)

where ω0
1 and ω0

2 are the central frequencies of the photons.
Due to the energy conservation and to the phase-matching
conditions, the support of the JSA associated to (6) is the
line ω1 + ω2 = 0 in the plane (ω1, ω2). It is antidiagonal
in the plane (ω1, ω2) and infinitely thin along the diagonal
direction ω− = ω1 − ω2. Adding a delay in the arm 1 of the
HOM interferometer corresponds to an evolution generated
by the operator ω̂1, corresponding to a translation κ in the
τ1 direction. The QFI is simply calculated as Q = 4�(ω̂1)2.
After the beam splitter, the measurement can lead to two
outcomes: coincidence or anticoincidence, with probability
Pc and Pa, respectively. The FI is thus expressed as F =
1
Pc

( ∂Pc
∂κ

)2 + 1
Pa

( ∂Pa
∂κ

)2. The authors of [12] thus showed that
using the input state (6) in the HOM interferometer, the two
quantities F and Q are the same.

In [13] the HOM interferometer was also used and shown
to lead to the QFI in a two-parameter estimation experiment.
Finally, in [14] biphoton states were classified as metrological
resources according to their spectral width, still in the situ-
ation where the HOM experiment is used as a measurement
apparatus.

B. Generalization: HOM as an optimal measurement device
for quantum metrology with biphotons

We now make a general description of the HOM experi-
ment as a parameter estimation device and try to understand
and determine when it corresponds to an optimal measure-
ment strategy. In [13], the authors tackle a part of this problem
by studying the HOM as a measurement apparatus for two
parameter estimation by establishing conditions on frequency
correlation states. In this reference, the authors restrict them-
selves to time delay evolutions.

In the present paper, we are interested in studying any evo-
lution that can be described by a two photon unitary |ψ (κ )〉 =
Û (κ )|ψ〉 = e−iĤκ |ψ〉 (see Fig. 2). We will see that, under a
symmetry assumption on the JSA of the state, it is possible
to obtain an explicit formula for the FI and this formula can
be used to compute at a glance if the measurement setup
considered is optimal or not.

For any input state |ψ〉, the QFI will then be expressed as

Q = 4�(Ĥ )2. (7)
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FIG. 2. HOM setup where we apply a general gate Û before the
BS.

On the other hand, one can show that the coincidence proba-
bility is

Pc = 1
2 (1 − 〈ψ |Û †ŜÛ |ψ〉) (8)

(see Appendix B), where we introduced the Hermitian swap
operators Ŝ whose action on the states is given by Ŝ|ω1, ω2〉 =
|ω2, ω1〉. Furthermore, we can compute the associated FI. If
the state |ψ〉 is symmetric or antisymmetric (i.e., Ŝ|ψ〉 =
±|ψ〉) the FI at κ = 0 is given by

F = �(Ĥ − ŜĤ Ŝ)2 (9)

(see Appendix B). This means that, under the symmetry as-
sumption on the JSA, comparing the QFI and the FI is done
simply by comparing the variance of two different opera-
tors, mainly 2Ĥ and Ĥ − ŜĤ Ŝ. Equation (9) implies that if
[Ĥ, Ŝ] = 0, then F = 0 and no information can be obtained
about κ from the measurements. However, if {Ĥ , Ŝ} = 0,
then F = Q since ŜĤ Ŝ = −Ŝ2Ĥ = −Ĥ . In this last case,
the measurement strategy is optimal. In [29], general condi-
tions for reaching the QFI were also obtained in the context
of amplitude correlation measurements. These conditions are
based on a quantum state’s symmetry under (unphysical) path
exchange.

The previous calculations form a simple tool that can be
applied to different evolution Hamiltonians Ĥ . We will now
discuss examples taken from the universal set of quantum
gates in continuous variables: translations (generated by op-
erator ω̂α’s) and rotations [generated by Ĥ = (ω̂2 + t̂2)/2].
These gates have already been studied in [5] in the case of
quadrature or position and momentum. In the present physical
configuration, they correspond to the free evolution of single
photons in free space (translations) or in a dispersive medium,
as for instance an optical fiber combined to time lenses
(rotation).

IV. TIME-FREQUENCY PHASE-SPACE TRANSLATIONS

A. Different types of translations

Since we are considering two-photon states, translations
can be represented by any linear combination of the corre-
sponding operators, that is, Ĥ = αω̂1 + βω̂2 + γ t̂1 + δt̂2. To

illustrate our results we choose to focus on the four operators
ω̂1, ω̂2, and ω̂± = ω̂1 ± ω̂2, since they are the most easily
implemented in HOM experiment. Notice that ω̂± are collec-
tive operators acting in both input photons while ω̂1,2 act in a
single photon only.

If we consider a state which is (anti)symmetric and separa-
ble in the variables ω± = ω1 ± ω2, we can write

|ψ〉 = 1√
2

∫
dω+dω− f (ω+)g(ω−)

∣∣∣∣ω+ + ω−
2

,
ω+ − ω−

2

〉
,

(10)

with g satisfying g(−ω) = ±g(ω) and the functions g and f
being normalized to one. The specific form of each function
is related to the phase-matching conditions and the energy
conservation of the two-photon generation process and this
type of state can be experimentally produced in many setups
[30,31]. Using Eqs. (7) and (9) we can compute the QFI and
FI associated to each type of evolution as follows.

(i) For Ĥ = ω̂1, we get Q = �(2ω̂1)2 = �(ω̂+ + ω̂−)2 =
�(ω̂−)2 + �(ω̂+)2, while F = �(ω̂−)2. Thus this situation is
optimal only if �(ω̂+)2 = 0, which was the case for the state
|ψU 〉 of Eq. (6) used in [12]). We obtain the same type of result
for ω̂2.

(ii) For Ĥ = ω̂+, Q = 4�(ω̂+)2, while F = �(ω̂+ −
ω̂+)2 = 0. In this situation the precision of the measurement
is zero and the reason for that is that variables ω+ cannot
be measured using the HOM experiment (we notice that
[ω̂+, Ŝ] = 0).

(iii) For Ĥ = ω̂−, we get Q = 4�(ω̂−)2, while F =
�(ω̂− + ω̂−)2 = 4�(ω̂−)2. This time we have F = Q, which
means that the measurement is optimal. In this case, we have
that {ω̂−, Ŝ} = 0.

We now illustrate these general expressions and interpret
them using different quantum states and their phase-space
representations.

B. Example: Gaussian and Schrödinger cat–like state

To illustrate our point we discuss as an example two states
|ψG〉 and |ψC〉 that can be expressed in the form of Eq. (10).
For |ψG〉, f and g are Gaussians:

fG(ω+) = e
− (ω+−ωp )2

4σ2+

(2πσ 2+)1/4
, gG(ω−) = e

− ω2−
4σ2−

(2πσ 2−)1/4
, (11)

where σ± is the width of the corresponding function and ωp

is a constant, which is also the photon’s central frequency.
As for state |ψC〉, it can be seen as the generalization of (6).
We consider f to be Gaussian and g to be the sum of two
Gaussians:

fC (ω+) = fG(ω+),

gC (ω−) = 1√
2

[gG(ω− + �/2) − gG(ω− − �/2)], (12)

where � is the distance between the two Gaussian peaks
of gC . We assume that the two peaks are well separated:
� � σ−. Consequently, gC is approximately normalized to
one. We can verify that with these definitions the function gG

is even while gC is odd by exchange of variables ω1 and ω2.
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TABLE I. Variance of various time translation operators for
states |ψG〉 and |ψC〉. See Appendix C for details.

State |ψG〉 |ψC〉
�(ω̂1)2 or �(ω̂2)2 1

4 σ 2
+ + 1

4 σ 2
−

1
16 �2 + 1

4 σ 2
+ + 1

4 σ 2
−

(�ω̂+)2 σ 2
+ σ 2

+
(�ω̂−)2 σ 2

−
1
4 �2 + σ 2

−

We first compute the variances for both states (Table I) and
then apply the formulas (7) and (9).

So for the case of an evolution generated by ω̂1, for |ψG〉
we obtain

Q = σ 2
+ + σ 2

−, F = σ 2
−, (13)

while for |ψC〉 we have

Q = 1
4�2 + σ 2

+ + σ 2
−, F = 1

4�2 + σ 2
−. (14)

We thus see that time precision using the HOM measurement
and the quantum state evolution generated by ω̂1 is optimal
only if the parameter σ+ is negligible compared to � or σ−.
This is exactly the case for the state (6) where σ+ = 0.

In addition, we see that there is a difference between the
QFI associated to |ψC〉 and |ψG〉 involving the parameter �.
This difference can be interpreted, as discussed in [14], as a
spectral effect. In this reference, the spectral width is consid-
ered as a resource and for a same spectral width state |ψC〉 has
a larger variance than state |ψG〉. Nevertheless, as discussed
in [19], this effect has a classical spectral engineering origin
and choosing to use one rather than the other depends on the
experimentalist’s constraints.

C. Interpretation of translations in the
time-frequency phase space

We now discuss the dependency of precision on the di-
rection of translation. For such, we can consider the Wigner
function associated to a JSA which is separable in the ω±
variables. Its Wigner function will also be separable on these
variables:

W (τ1, τ2, ϕ1, ϕ2) = W+(τ+, ϕ+)W−(τ−, ϕ−), (15)

where the phase-space variables τ± and ϕ± are defined as
ϕ± = ϕ1±ϕ2

2 and τ± = τ1 ± τ2. Even though the Wigner func-
tion W+ (W−) can be associated to the one of a single variable
[ω+ (ω−)] and spectral wave function f (g), it displays some
differences with the single-photon one. This fact is well illus-
trated in Fig. 3.

For state |ψC〉, according to (15) the projection of the
Wigner function W− in the plane τ−, φ− of the phase space
can be represented as shown in Fig. 3(a). We see that it is
composed of two basic shapes: two Gaussian peaks and an
oscillation pattern in between. Figure 3(b) represents another
way to project this very same Wigner function onto the plane
τ1, φ1 of the phase space. One can observe that in this case
the distance between the peaks is larger than in the previous
representation by a factor of 2. As precision is directly related
to the size of the Wigner function structures in phase space, we
observe that the interference fringes are closer together in the

FIG. 3. Wigner function of the cat-like state |ψC〉 projected in
different (dimensionless) variables. (a) Projection on the plane τ−,
ω−. (b) Projection on the plane τ1, ω1.

phase space associated to the minus variable than in the one
associated to mode 1. Thus the precision in parameter estima-
tion will be better using ω̂− as the generator of the evolution
than when using ω̂1. These phase-space-based observations
explain well the result of the computation of the QFI:

4�(ω̂1)2 = �(ω̂−)2, (16)

with the assumption that σ+ � �, σ−.
The reason for the appearance of a factor 2 difference in

fringe spacing for the Wigner function associated to variable
ω− is the fact that it is a collective variable, and translations in
the phase space associated to these variables are associated to
collective operators, acting on both input photons (instead of a
single one, as is the case of translations generated by operator
ω̂1, for instance). Thus one can observe, depending on the
biphoton quantum state (i.e., for some types of frequency en-
tangled states), a scaling depending on the number of particles
(in this case, two). As analyzed in [19] for general single-
photon states composed of n individual photons, we have
for frequency separable states a scaling corresponding to the
shot-noise one ( i.e., proportional to

√
n). A Heisenberg-like

scaling (proportional to n) can be achieved for nonphysical
maximally frequency correlated states and considering a phys-
ical nonsingular spectrum leads to a nonclassical scaling in
between the shot-noise and the Heisenberg limit.

Experimentally, such collective translation can be imple-
mented by adding a delay of τ in arm 1 and of −τ in arm
2. Notice that this situation is different from creating a delay
of 2τ in only one arm, even though both situations lead to
the same experimental results in the particular context of the
HOM experiment.

V. TIME-FREQUENCY PHASE-SPACE ROTATIONS

We now move to the discussion of the phase-space ro-
tations. For this, we will start by providing some intuition
by discussing in the first place the single-photon (or single
mode) situation. In this case, time-frequency phase-space ro-
tations are generated by the operators R̂ = 1

2 (ω̂2 + t̂2). As
previously mentioned, we consider here dimensionless ob-
servables. Physically, time-frequency phase-space rotations
correspond to performing a fractional Fourier transform of
the JSA. While for a transverse variable of single photons
the free propagation or a combination of lenses can be used
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for implementing this type of operation [32,33], in the case
of time and frequency this transformation corresponds to the
free propagation in a dispersive medium [34–38] combined to
temporal lenses [39–41].

A. Single mode rotations

In this section, we compute the QFI associated to a rotation
R̂ for a single-photon, single mode state using the variance of
this operator for different states |ψ〉 = ∫

dω S(ω)|ω〉. As for
the translation, this simpler configuration is used as a tool to
better understand the two photon case.

1. Gaussian state

We start by discussing a single-photon Gaussian state at
central frequency ω0 and spectral width σ :

|ψG(ω0)〉 = 1

(2πσ 2)1/4

∫
dω e− (ω−ω0 )2

4σ2 |ω〉. (17)

For this state, we have that

�(R̂)2 = σ 2ω2
0 + 1

8

[
1

4σ 4
+ 4σ 4 − 2

]
. (18)

Equation (18) has the following two types of contributions that
we can interpret.

(i) The first term σ 2ω2
0 corresponds to the distance in phase

space (ω0) of the center of the distribution to the origin of
the phase space (ω = 0, τ = 0) times the width of the state σ

in the direction of rotation [see Fig. 4(a)]. This term is quite
intuitive. The Wigner function of a state which is rotated by
an angle θ = 1/2σω0 has an overlap with the Wigner function
of the initial one which is close to zero.

(ii) The term 1
4σ 4 + 4σ 4 − 2 reaches 0 as a minimum when

σ = 1√
2
. For this value the Wigner function is perfectly rota-

tionally symmetric. Its meaning can be intuitively understood
if we consider that ω0 = 0, so that this term becomes the only
contribution to the variance [see Fig. 4(b)]. In this case, we
are implementing a rotation around the center of the state. If
the state is fully symmetric, then this rotation has no effect
and the variance is 0. Only in the case where the distribution’s
rotational symmetry is broken do we obtain a nonzero contri-
bution.

2. Schrödinger cat–like state centered at the origin (ω = 0)

We now consider the superposition of two Gaussian states:

|ψ0
C〉 = 1√

2
[|ψG(�/2)〉 − |ψG(−�/2)〉]. (19)

This state is of course nonphysical as a single-photon state,
since it contains negative frequencies. However, since it can be
well defined using collective variables (as, for instance, ω−)
for a two or more photons state, we still discuss it. Assuming
that the two peaks are well separated (� � σ ), we can ignore

the terms proportional to e− �2

8σ2 and this leads to

�(R̂)2 = 1

8

[
1

4σ 4
+ 4σ 4 − 2

]
+ 1

4
�2σ 2. (20)

We see that there is no clear metrological advantage when
using this state compared to the Gaussian state: the quantity
�/2 plays the same role as ω0. This can be understood geo-
metrically once again, with the help of the Wigner function.

(a) (b)

(c) (d)

FIG. 4. Schematic representation of the Wigner function of vari-
ous states under rotation. The ellipses represent the typical width of
Gaussians. The dotted lines represent the rotated states. Variables are
dimensionless. (a) Gaussian state centered at ω0. For θω0 ∼ 1/2σ

the initial state and the rotated one are distinguishable. (b) Gaussian
state centered at the origin. The rotated state will be distinguishable
from the initial one only in the absence of rotational symmetry.
(c) Superposition of two Gaussian states (cat-like state) centered at
the origin. The small structures of the fringes do not play a relevant
role since they are only moved by a small distance under rotation.
(d) Superposition of two Gaussian states (cat-like state) centered at
ω0. The fringes play an important role since, with θω0 ∼ 1/�, the
two states are nearly orthogonal.

We see in Fig. 4(c) how the considered state evolves under a
rotation. In this situation the interference fringes are rotated
around their center so, even though they display a small scale
structure, they are moved only by a small amount, resulting in
a nonsignificant precision improvement.

3. Schrödinger cat–like state centered at any frequency

We can now discuss the state formed by the superposition
of two Gaussian states whose peaks are at frequencies ω0 −
�/2 and ω0 + �/2, and with the same spectral width σ as
previously considered:

|ψC〉 = 1√
2

(|ψG(ω0 + �/2)〉 − |ψG(ω0 − �/2)〉). (21)

Still under the assumption of a large separation between the
two central frequencies (� � σ ), we obtain

�(R̂)2 = 1

8

[
1

4σ 4
+ 4σ 4 − 2

]
+ 1

4
�2

(
σ 2 + ω2

0

) + σ 2ω2
0.

(22)

We can notice that by setting ω0 = 0 we recover the variance
corresponding to the same state rotated around its center.
Nevertheless, in the present case ω0 	= 0 and we have two
additional terms: σ 2ω2

0 and �2ω2
0/4. Both terms can be inter-

preted as a product of the state’s distance to the origin and its
structure in phase space. However, while the first one is simply
the one corresponding to the Gaussian state, the second one is
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TABLE II. QFI and FI of various rotation operators.

Operator QFI FI

R̂1 4�(R̂1)2 �(R̂1 − R̂2)2

R̂± 4�(R̂±)2 0
R̂1 + R̂2 4�(R̂1 + R̂2)2 0
R̂1 − R̂2 4�(R̂1 − R̂2)2 4�(R̂1 − R̂2)2

a product of the states’ distance to the origin and its small
structures in phase space, created by the interference between
the two Gaussian states [see Fig. 4(d)]. The interference pat-
tern is thus rotated by an angle θ corresponding to an arc of
length ω0θ and, since the distance between the fringes is of
order �, if θ ∼ 1/ω0� (corresponding to the term �2ω2

0/4
in the expression of the variance) the rotated state is close to
orthogonal to the initial one.

In all of this section, we have considered rotations about the
time and frequency origin of the phase space. Nevertheless,
it is of course possible to displace this origin and consider
instead rotations about different points of the TF phase space.
In this case, for a rotation around an arbitrary point τ0 and ϕ0,
the generator would be given by (ω̂ − ϕ0)2/2 + (t̂ − τ0)2/2.

B. Different types of rotations

We now move to the case of two single photons (biphoton
states). As for the case of translations, there are many possible
variables and we can consider rotations in different planes of
the phase space: R̂1, R̂2, R̂±, R̂1 ± R̂2 . . . , where R̂1 = 1

2 (ω̂2
1 +

t̂2
1 ) (and similarly for R̂2) and R̂± = 1

4 (ω̂2
± + t̂2

±) (recall that
ω̂± = ω̂1 ± ω̂2 and t̂± = t̂1 ± t̂2). For all these operators we
can as before apply the general formula for the QFI and of the
FI to the corresponding HOM measurement. The results are
displayed in Table II.

We see that the only two situations where the HOM can
indeed be useful as a measurement device for metrological
applications are R̂1 and R̂1 − R̂2. The reason for that is the
symmetry of R̂± and R̂1 + R̂2, which commute with the swap
operator Ŝ. As for R̂1, it corresponds to the rotation of only one
of the photons and may not be the optimal strategy. Finally,
R̂1 − R̂2 corresponds to the simultaneous rotation in opposite
directions of both photons sent into the two different input
spatial modes. As R̂1 − R̂2 anticommutes with Ŝ, then we can
affirm that the HOM measurement is optimal for this type of
evolution.

C. QFI and FI computation with Gaussian and cat-like states

We now compute the QFI and FI using the variance of R̂1

and R̂1 − R̂2 calculated for states |ψG〉 and |ψC〉.
For |ψG〉, we have

�(R̂1)2 = 1

32

[(
1

σ 2+
+ 1

σ 2−

)2

+ (σ 2
+ + σ 2

−)2 − 8

]

+ 1

16
ω2

p(σ 2
+ + σ 2

−),

�(R̂1 − R̂2) = 1

4

[
1

σ 2+σ 2−
+ σ 2

+σ 2
− − 2

]
+ 1

4
σ 2

−ω2
p. (23)

For |ψC〉, we have

�(R̂1)2 = 1

32

[(
1

σ 2+
+ 1

σ 2−

)2

+ (σ 2
+ + σ 2

−)2 − 8

]

+ 1

64

(
4ω2

p + �2
)
(σ 2

+ + σ 2
−)

+ 1

64
�2ω2

p + �2

128

(
1

σ 2−
+ σ 2

−

)
,

�(R̂1 − R̂2) = 1

4

[
1

σ 2+σ 2−
+ σ 2

+σ 2
− − 2

]
+ 1

4
σ 2

−ω2
p. (24)

We notice that for both states 4�(R̂1)2 � �(R̂1 − R̂2)2,
meaning that the measurement of a rotation implemented in
only one mode using the HOM is not an optimal measurement.

Experimentally realizing an evolution generated by R̂1 is
easier than implementing the one associated to R̂1 − R̂2. Fur-
thermore we see that for the Gaussian state |ψG〉 a dominant
term is ω2

pσ
2
−, which appears with the same factor in 4�(R̂1)2

and �(R̂1 − R̂2)2, meaning that one could perform a measure-
ment which although not optimal would be pretty efficient.
The same applies to the Schrödinger cat–like state |ψC〉 where
one dominant term is �2ω2

p.

D. Phase-space interpretation

We now provide a geometrical interpretation of the pre-
vious results. If we consider that σ− � σ+ in the case of a
Gaussian state or � � σ+ in the case of a Schrödinger cat–
like state, the projection of the Wigner function on the plane
corresponding to collective minus variables (τ−, φ−) is the
one presenting a relevant phase-space structure. Thus it would
be interesting to consider, as in the case of translations, that
these states are manipulated using operators acting on modes
associated to this collective variable. A naive guess would
then be trying to apply the rotation operator R̂−. However, it
comes with many difficulties. Indeed it first poses an experi-
mental problem, since this rotation corresponds to a nonlocal
action which would be very hard to implement. In addition,
the HOM is not able to measure such evolution. Finally, it
turns out that this is not the operator with the greatest QFI.
This fact can be understood by taking a more careful look
at the Wigner function of the considered states. The Wigner
function for separable states can be factorized as the product
of two Wigner functions defined in variables plus and minus
and we have that W+ is the Wigner function of a Gaussian state
centered at ωp [corresponding to the situation (a) in Fig. 4]. As
for W−, it is either the Wigner function of a Gaussian state or
the one associated to a superposition of two Gaussian states
centered around zero [corresponding to the situation (b) and
(c) in Fig. 4]. The QFI increases with the distance of the states
to the rotation point. For this reason, states |ψG〉 and |ψC〉
under a rotation using R̂− do not lead to a high QFI.

A higher QFI is obtained using rotations around a point
which is far away from the center of the state. In this case, the
QFI displays a term which is proportional to the distance from
the center of rotation squared divided by the width of the state
squared. Both terms ω2

pσ
2
− and �2ω2

p which were dominant
in the expression of the variance of R̂1 and R̂1 − R̂2 can be
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interpreted as such. This means that the rotation R̂1, whose
action is not easily seen in the variables plus and minus, can be
interpreted as a rotation which moves W− around the distance
ωp from the origin of the TF phase space (ω = 0).

For both states then, the main numerical contribution to the
QFI comes from a classical effect, related to the intrinsic reso-
lution associated to the central (high) frequency of the field. In
general, in phase-space rotations, both in the quadrature and in
the TF configuration, the distance from the phase-space origin
plays an important role, while in the quadrature configuration
this distance has a physical meaning that can be associated
both to the phase-space structure and to the number of probes.
In the case of TF phase space, the distance from the origin
and the phase-space scaling are independent. In particular,
the distance from the origin can be considered as a classical
resource that plays no role on the scaling with the number of
probes.

E. Discussion on scaling properties of rotations

The different types of TF phase-space rotations have differ-
ent types of interpretation in terms of scaling. The combined
rotations of the type R̂1 ± R̂2, for instance, can be generalized
to an n photon setup through operators as R̂ = ∑n

i αiR̂i, with
αi = ±1. In this situation, we have that rotation operators are
applied individually and independently to each one of the
n photons. In this case, we can expect, in the first place, a
collective (classical) effect, coming simply from the fact that
we have n probes (each photon). In addition, it is possible
to show that a Heisenberg-like scaling can be obtained by
considering states which are maximally mode entangled in a
mode basis corresponding to the eigenfunctions of operators
R̂i. Indeed, for each photon (the ith one), we can define a
mode basis such that R̂i|φk〉i = (k + 1/2)|φk〉i, with |φk〉i =

1√
2kk!

1
π1/4

∫
dω e− ω2

2 Hk (ω)|ω〉i with Hk (ω) being the kth
Hermite polynomial associated to the ith photon. For a maxi-
mally entangled state in this mode basis, i.e., a state of the type
|φ〉 = ∑∞

k=0 Ak
⊗n

i=1 |φk〉i (where we recall that the subscript
i refers to each photon and k to the rotation eigenvalues), the
R̂ eigenvalues behave as random classical variables and we
can show that the QFI scales as n2.

As for rotations of the type R̂±, they cannot be decomposed
as independently acting on each photon, but consist of entan-
gling operators that can be treated exactly as R̂1 and R̂2 but
using variables ω± = ω1 ± ω2 instead of ω1 and ω2. We can
also compute the scaling of operators as Ĵ = ∑

�β
R̂�β

, where

�β = ∑n
i αiωi, αi = ±1, and β is one of the 2n−1 ways to

define a collective variable using the coefficients αi. For such,
we can use the same techniques as in the previous paragraph
but for the collective variables �β . Nevertheless, the experi-
mental complexity of producing this type of evolution and the
entangled states reaching the Heisenberg limit are such that
we will omit this discussion here.

VI. CONCLUSION

We have extensively analyzed a quantum optical setup, the
HOM interferometer, in terms of its quantum metrological
properties. We provided a general formula for the coincidence

probability of this experiment which led to a general formula
for the associated FI. We used this formula to analyze different
types of evolution and showed when it is possible to reach the
QFI in this setup. In particular, we made a clear difference
between collective quantum effects that contribute to a better
than classical precision scaling and classical only effects, as-
sociated to single mode spectral properties. We then briefly
discussed the general scaling properties of the QFI associated
to the studied operators.

Our results provide a complete recipe to optimize the
HOM experiment with metrological purposes. They rely on
the symmetry properties of quantum states that are revealed
by the HOM interferometer. An interesting perspective is to
generalize this type of reasoning for different setups where
different symmetries play a role on the measurement outputs.

ACKNOWLEDGMENTS

The French government through the action France 2030
from Agence Nationale de la Recherche, Ref. No. ANR-
22-PETQ-0006, provided financial support to this work. We
thank N. Fabre for fruitful discussions and comments on the
manuscript.

APPENDIX A: TIME-FREQUENCY FORMALISM

In quantum mechanics, light is described with the help
of modes [42], representing the various physical properties
a photon can have: frequency, position, spectral shape, wave
vector, polarization, etc. Mathematically we associate to each
mode α creation and annihilation operators â†

α and âα which
satisfy the familiar bosonic commutation relation [âα, â†

β ] =
δα,β . The quantum states are then obtained by acting with
the creation operators on the vacuum |vac〉, which can be
interpreted as adding a photon in the corresponding mode.

In time-frequency continuous variables we look at modes
parametrized by the frequency [16]. We will thus adapt the
terminology: for us a mode will correspond to all physical pa-
rameters needed to describe a photon excluding the frequency
(position, wave vector, polarization, etc.). In the following we
will look at interferometers and thus the parameter α will
describe in which arm the photon is propagating. We will
thus describe single-photon states in a given mode α with
frequency ω with the help of a creation operator acting on
the vacuum state: â†

α (ω). In this situation the commutation
relation is written as

[âα (ω), â†
β (ω′)] = δ(ω − ω′)δα,β, (A1)

with the other commutation relations (between two creation or
two annihilation operators) vanishing. It is useful to introduce
the conjugated temporal variable t , by the use of the Fourier
transform:

âα (t ) = 1√
2π

∫
dω âα (ω)e−iωt . (A2)

We can verify that the creation and annihilation operators in
the temporal domain verify the same commutation relation as
the one in the spectral domain: [âα (t ), â†

β (t ′)] = δ(t − t ′)δα,β .
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a. States in time-frequency variables

The creation operators allow one to define general single-
photon states on a single mode via

|ψ〉 =
∫

dω S(ω)â†(ω)|vac〉 =
∫

dω S(ω)|ω〉. (A3)

The spectrum S(ω) is the Fourier transform of the time of
arrival distribution and it can be recovered from the state
S(ω) = 〈ω〉ψ . If we are interested in a collection of n single-
photon states in n different modes, we can work with the state

|ψ〉 =
∫

dω1 · · · dωnF (ω1, . . . , ωn)â†
1(ω1) · · · â†

n(ωn)|vac〉

=
∫

dω1 · · · dωnF (ω1, . . . , ωn)|ω1, . . . , ωn〉, (A4)

where the spectral function F is normalized to one:∫ |F (ω1, . . . , ωn)|2dω1 · · · dωn = 1.

b. Time-frequency operators

We can introduce two very useful operators as follows:

t̂α =
∫

dt t â†
α (t )âα (t ), ω̂α =

∫
dω ωâ†

α (ω)âα (ω). (A5)

The fundamental property of these operators is the fact that
they verify the familiar commutation relation on the subspace
of single photons:

[ω̂α, t̂α] = i. (A6)

More precisely, we have the general result:

[ω̂α, t̂α] = i
∫ ∞

−∞
dω â†

α (ω)âα (ω) = iN̂α, (A7)

where the operator N̂α counts the number of photon operators
in the mode α.

The action of the both operators ω̂ and t̂ can be computed
on the JSA and we have

ω̂ : S(ω) �→ ωS(ω), t̂ : S(ω) �→ −i∂ωS(ω). (A8)

APPENDIX B: DERIVATION OF EQS. (8) AND (9)

a. Equation (8)

To show Eq. (8) we start with the state before the BS:

Û |ψ〉 =
∫

dω1dω2F (ω1, ω2)|ω1, ω2〉. (B1)

The usual balanced BS relation reads

|ω1〉1|ω2〉2 �→ 1
2 [|ω1〉1|ω2〉1 − |ω1〉1|ω2〉2

+ |ω1〉2|ω2〉1 − |ω1〉2|ω2〉2]. (B2)

To be able to use it, we introduce two mode changing opera-
tors T̂1 and T̂2 defined by

T̂1|ω1〉1|ω2〉2 = |ω1〉1|ω2〉1, T̂2|ω1〉1|ω2〉2 = |ω1〉2|ω2〉2.

(B3)

With these definitions the BS splitter relation is equivalent to
applying the operator:

1
2 (T̂1 − 1̂ + Ŝ − T̂2), (B4)

where Ŝ is the swap operator, defined as Ŝ|ω1, ω2〉 = |ω2, ω1〉.
So the state coming out of the BS is

|ψout〉 = 1

2

∫
dω1dω2F (ω1, ω2)

× [T̂1Û − Û + ŜÛ − T̂2Û ]|ω1, ω2〉. (B5)

If we do selection on coincidence, we only keep the part of
the state with one photon in each mode. We get the state

|ψfin〉 = −1

2

∫
dω1dω2F (ω1, ω2)[Û − ŜÛ ]|ω1, ω2〉

(B6a)

= 1

2
[ŜÛ − Û ]|ψ〉. (B6b)

We can finally compute the coincidence probability by taking
the norm square of |ψfin〉:

Pc = 〈ψfin〉 (B7a)

= 1
4 〈ψ |[Û † − Û †Ŝ][Û − ŜÛ ]|ψ〉 (B7b)

= 1
4 〈ψ |[Û †Û︸︷︷︸

=1

−2Û †ŜÛ + Û †ŜŜÛ︸ ︷︷ ︸
=Û †Û=1

]|ψ〉 (B7c)

= 1
2 [1 − 〈ψ |Û †ŜÛ |ψ〉]. (B7d)

b. Equation (9)

The expression for Q is a direct consequence of the expres-
sion of the QFI for a pure state. The proof of the expression of
F is a little bit more involved. We have to compute

FI (κ ) = 1

Pc

(
∂Pc

∂κ

)2

+ 1

Pa

(
∂Pa

∂κ

)2

. (B8)

We have seen the expression of the (anti)coincidence
probability Pc and Pa that depends on 〈ψ |Û †ŜÛ |ψ〉. If we
make the assumption that the state |ψ〉 is either symmet-
ric or antisymmetric we know that we have 〈ψ |Û †ŜÛ |ψ〉 =
±〈ψ |Û †ŜÛ Ŝ|ψ〉 = 〈ψ |V̂ (κ )|ψ〉, where we denote V̂ (κ ) =
Û †ŜÛ Ŝ = eiκĤ e−iκ ŜĤ Ŝ . We first start by expanding this scalar
product up to the second order in κ , using the shorthand
notation 〈·〉 = 〈ψ | · |ψ〉:

〈ψ |V̂ (κ )|ψ〉 = 〈eiκĤ e−iκ ŜĤ Ŝ〉 (B9a)

�
〈(

1 + iκĤ − κ2

2
Ĥ2

)

×
(

1 − iκ ŜĤ Ŝ − κ2

2
(ŜĤ Ŝ)2

)〉
(B9b)

=
〈
1 + iκĤ − iκ ŜĤ Ŝ − κ2

2
Ĥ2

− κ2

2
(ŜĤ Ŝ)2 + κĤ ŜĤ Ŝ

〉
. (B9c)

Since the state |ψ〉 is (anti)symmetric, for any opera-
tors Ĝ, we have 〈ŜĜ〉 = ±〈Ĝ〉 = 〈ĜŜ〉, which allows some
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simplifications:

= 1 − κ2

2
(〈Ĥ2〉 + 〈(ŜĤ Ŝ)2〉 − 〈Ĥ ŜĤ Ŝ〉 − 〈ŜĤ ŜĤ〉)

(B9d)

= 1 − κ2

2
〈(Ĥ − ŜĤ Ŝ)2〉 (B9e)

= 1 − κ2

2
�(Ĥ − ŜĤ Ŝ)2. (B9f)

Thanks to the symmetry of |ψ〉, 〈Ĥ − ŜĤ Ŝ〉 = 〈Ĥ − Ĥ Ŝ2〉 =
0.

By defining Ĝ = Ĥ − ŜĤ Ŝ it remains to compute the FI:

FI (κ = 0) = 1

Pc

(
∂Pc

∂κ

)2

+ 1

Pa

(
∂Pa

∂κ

)2

(B10a)

= 1

4Pc
(κ�(Ĝ)2)2 + 1

4Pa
(κ�(Ĝ)2)2 (B10b)

= κ2�(Ĝ)4

4

(
1

Pc
+ 1

Pa

)
(B10c)

= κ2�(Ĝ)4

4

Pa + Pc

PcPa
(B10d)

= κ2�(Ĝ)4

4

4

(1 + 〈ψ |V̂ (κ )|ψ〉)(1 − 〈ψ |V̂ (κ )|ψ〉)

(B10e)

= κ2�(Ĝ)4 1

1 − 〈ψ |V̂ (κ )|ψ〉2 (B10f)

= κ2�(Ĝ)4 1

κ2�(Ĝ)2
(B10g)

= �(Ĝ)2. (B10h)

It is interesting to note that the computation of the Fisher
information is singular. Indeed for the HOM interferome-
ter around κ = 0 the derivative of the probabilities vanishes
∂κPc,a = 0, while one of the two probabilities (Pc if the state
is symmetric or Pa if it is antisymmetric) is also equal to
zero. We thus obtain here the FI at zero by computing it at
κ 	= 0 and taking the limit. As a result we see that the FI
is proportional to the second derivative of the coincidence

TABLE III. Expectation values of the various products of plus
and minus operators on the states |ψG〉 and |ψC〉 (in dimensionless
units)

Operator Variable + Variable for |ψG〉 Variable for |ψC〉
ω̂ ωp 0 0

ω̂2 ω2
p + σ 2

+ σ 2
− σ 2

− + 1
4 �2

ω̂3 3σ 2
+ωp + ω3

p 0 0

ω̂4 3σ 4
+ + 6σ 2

+ω2
p + ω4

p 3σ 4
− 3σ 4

− + 3
2 σ 2

−�2 + 1
16 �4

t̂ 0 0 0

t̂2 1
σ 2+

1
σ 2−

1
σ 2−

t̂3 0 0 0
t̂4 3

σ 4+
3

σ 4−
3

σ 4−

ω̂t̂ i i i
ω̂2t̂ 2iωp 0 0

ω̂t̂2 ωp

σ 2+
0 0

ω̂2t̂2 ω2
p

σ 2+
− 1 −1 �2

4σ 2−
− 1

probability. This means that for such a measurement what is
important is the curvature of the probability peak or dip.

APPENDIX C: DETAILS ON THE COMPUTATION
OF THE VARIOUS VARIANCES

To compute explicitly the various variances of this paper
on the two states |ψG〉 and |ψG〉 one can note that, since these
states are separable in the variables ω±, if we consider two
operators Ĥ+ and Ĥ− which are respectively functions of ω̂+
and t̂+ or ω̂− and t̂− we have 〈Ĥ+Ĥ−〉 = 〈Ĥ+〉〈Ĥ−〉, where, for
a fixed state |ψ〉, 〈Ĥ〉 = 〈ψ |Ĥ |ψ〉.

In order to compute any variance, one only has to com-
pute some expectation values. By expanding and using the
independence property from above, one only needs to com-
pute a building block expectation value of the form 〈ω̂k

±t̂ l
±〉.

Indeed we can use the commutation relation to reorder any
product such that the frequency operators are on the left of
the time operators. One has to pay attention that due to the
choice of normalization in the definition of ω̂± = ω̂1 ± ω̂2 and
t̂± = t̂1 ± t̂2 we have [ω̂±, t̂±] = 2i. Such expectation values
can be obtained systematically using a software (here we used
MATHEMATICA); we have the values in Table III.
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