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Enhancement of broadband entangled two-photon absorption by resonant spectral phase flips
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Broadband energy-time entanglement can be used to enhance the rate of two-photon absorption (TPA) by
combining a precise two-photon resonance with a very short coincidence time. Because of this short coincidence
time, broadband TPA is not sensitive to the spectrum of intermediate levels, making it the optimal choice when
the intermediate transitions are entirely virtual. In the case of distinct intermediate resonances, it is possible to
enhance TPA by introducing a phase dispersion that matches the intermediate resonances. Here, we consider the
effects of a phase flip in the single photon spectrum, where the phases of all frequencies above a certain frequency
are shifted by half a wavelength relative to the frequencies below this frequency. The frequency at which the
phase is flipped can then be scanned to reveal the position of intermediate resonances. We find that a resonant
phase flip maximizes the contributions of the asymmetric imaginary part of the dispersion that characterizes a
typical resonance, resulting in a considerable enhancement of the TPA rate. Due to the bosonic symmetry of
TPA, the enhancement is strongest when the resonance occurs when the frequency difference of the two photons
is much higher than the linewidth of the resonance. Our results indicate that broadband entangled TPA with
spectral phase flips may be suitable for phase-sensitive spectroscopy at the lower end of the spectrum where
direct photon detection is difficult.
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I. INTRODUCTION

It is well known that energy-time entanglement not only
results in a linear dependence of the two-photon absorption
(TPA) rate on photon flux [1,2] but also in additional en-
hancements of the TPA rate [3–8]. These quantum advantages
have been demonstrated experimentally in atomic [9–11] and
molecular [12–14] systems, motivating a number of system-
atic studies of the influence of the specific level structure of
these systems on the TPA rate [11,15–28]. However, there
is still considerable debate concerning the reliability of the-
oretical predictions with regard to specific molecular systems
[29–34]. The main conclusion that can be drawn from these
studies seems to be that the actual enhancement depends on
the specific level structure of the intermediate levels. The
physical mechanism of entanglement-enhanced TPA is more
complicated than the original idea suggested, and it is in-
teresting to ask whether it is possible to introduce a new
experimental method that would allow us to characterize the
dependence of TPA enhancement on the spectrum of interme-
diate levels in a sufficiently simple and systematic manner.
Specifically, we will focus on the possibility of modifying
a broadband entangled state to maximize the off-resonant
contributions to the TPA rate, resulting in an enhancement of
TPA that makes optimal use of the broad range of frequency
differences between the two photons in a broadband entangled
state.
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In the present paper, we point out that the theoretical de-
scription of TPA includes a very broad spectral feature that
is antisymmetric around the resonant frequency. The contri-
bution of this antisymmetric feature to the TPA rate can be
enhanced significantly by introducing a phase flip in the spec-
trum of the broadband entangled two-photon state. Although
the same phase flip reduces the symmetric contributions that
are responsible for resonant absorptions, the enhancement of
off-resonant absorption by a resonant phase flip tends to out-
weigh the loss of resonant TPA contributions. Our theoretical
analysis is based on a general description of the TPA process
where intermediate resonances are represented by Lorentz
lines. We can then characterize the effects of a phase flip at
a specific frequency for each of the intermediate resonances.
The effect of the phase flip on a single intermediate reso-
nance shows the expected resonant enhancement, which can
be evaluated in terms of the ratio of the TPA rate relative to
the TPA rate without the phase flip. We find that the resonant
enhancement depends on the distance between the resonant
frequency and the center of the spectrum, where both input
photons have the same frequency. This result indicates that
spectral phase flips could be used to identify intermediate
resonances at the low end of the two-photon spectrum without
the need for direct photon detection in that frequency region.

In systems with more complicated level structures, quan-
tum interferences between the different intermediate levels
may modify the effects of resonant enhancements. We studied
the effects of interferences between two levels with regard
to both constructive and destructive interferences. When
the linewidths are narrow, the resonant enhancements are
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modified only slightly. However, interference modifies the
contributions to the TPA rate for entangled photons without a
phase flip. In particular, two contributions can be completely
canceled by destructive interference. In this case, the phase
flip is needed to activate TPA involving these intermediate
levels. Spectral phase flips can thus be used to characterize
interference effects between different resonances by contrast-
ing the TPA observed when the phase flip is between the two
resonances with the TPA observed without a phase flip.

The results of our analysis show that spectral phase flips
can be used to characterize intermediate resonances in TPA
using broadband entangled photons. Interestingly, the sensi-
tivity of this method increases at the lower and higher ends of
the spectrum, indicating that spectral phase flips may be a use-
ful alternative to direct detection of radiation at these ends of
the spectrum. It is also worth noting that the phase flip method
can be applied to enhance TPA without any prior knowledge
of the level structure of a material, simply by adapting the
frequency of the phase flip to the experimentally observed
resonances. Spectral phase flips may thus serve as a practical
and uncomplicated method of adapting the phase dispersion of
broadband entangled light to the spectral features of a specific
material.

The rest of the paper is organized as follows. In Sec. II, we
give a brief introduction on the theoretical description of TPA
in terms of the spectrum of intermediate levels and introduce
a phase flip to the input state. In Sec. III, we discuss the
enhancement of the TPA rate achieved by the introduction of
the phase flip for a single intermediate level. In Sec. IV, we
discuss the interference effects between different resonances.
Section V summarizes the results and concludes the paper.

II. EFFECTS OF A SPECTRAL PHASE FLIP ON THE
ABSORPTION OF BROADBAND ENTANGLED PHOTONS

The TPA process is described by the linear dynamics of
a two-photon wave function and the level structure of the
absorbing material. It is therefore possible to represent the
probability of a TPA in terms of an inner product of the initial
two-photon state and a maximally absorbed state representing
the dynamics of the intermediate levels. If we consider only
a single two-photon excited level, the absorption process will
select photon pairs with a single sum frequency ω+ = ω1 +
ω2. When coherent input light is used, only a small fraction
of the incoming photon pairs will satisfy this condition. When
entangled photons are used, the sum frequency of the two pho-
tons can be resonant with the two-photon transition between
the ground state |g > and the final state | f >, resulting in
maximal absorption rates for the two-photon state. The rate of
TPA then depends only on the overlap between the frequency
difference wave function �(ω−) of the input photons with the
frequency difference wave function of the optimally absorbed
state �(ω−) [35,36]

PTPA = Pgf

∣∣∣∣
∫

�(ω−)�(ω−)dω−

∣∣∣∣
2

. (1)

The probability Pgf determines the transition probability when
the overlap between the wave functions is 1, representing the
maximal achievable value of PTPA. The material response is
encoded in the wave function of the optimally absorbed state.

As shown in [35], it is possible to derive this wave function
directly from the Hamiltonian of the electronic system, where
different energy eigenstates appear as delta-like resonances

�(ω−) =
∑

m

2Cm

(
πδ(ω− + νm) + πδ(ω− − νm)

+ i

ω− + νm
− i

ω− − νm

)
. (2)

In an idealized system, each intermediate level m is an eigen-
state of the Hamiltonian with an energy uncertainty of zero.
The complex coefficients Cm represent the transition matrix
elements and the frequencies νm represent the difference be-
tween the single photon resonance of the level and the average
frequency of the two absorbed photons, ωgf /2. Equation (2)
shows that every level m contributes both a resonant part given
by the delta functions at ω− = ±νm and an off-resonant part
related to the resonant contributions by Kramers-Kronig rela-
tions [35]. �(ω−) thus represents the Hamiltonian dynamics
of the material response responsible for TPA.

In a realistic description of the material response, the
Hamiltonian of the material system would have to include all
interactions between the electronic system and other degrees
of freedom. It should be noted that Eq. (2) can be applied
to arbitrarily complicated Hamiltonians, including molecules
with vibrational degrees of freedom resulting in the inclusion
of the corresponding Franck-Condon factors. Unfortunately,
it is difficult to handle the numerics of such a large number of
intermediate states in an efficient manner. It may be interesting
to consider possible simplified descriptions that can sum-
marize clusters of intermediate states related to each other,
but unfortunately, the discussion of a possible application to
realistic molecules is beyond the scope of the present paper.
Here, our main goal is the investigation of the physics of TPA
with broadband entangled photons. We will, therefore, limit
the following discussion to intermediate levels that couple to
other degrees of freedom in a dissipative manner represented
by a Lorentzian broadening of each level. The wave function
describing the absorption process can then be expressed as

�(ω−) =
∑

m

2Cm

(
1

γm − i(νm + ω−)
+ 1

γm − i(νm − ω−)

)
,

(3)

where γm is the linewidth of the resonance associated with the
intermediate level m. The complex Lorentz lines in Eq. (3)
describe the characteristic phase dispersion of this resonance.
It is possible to identify the real part of this response with
the resonant contribution to the absorption and the imaginary
part with the off-resonant contribution. It may be worth not-
ing that this separation of real parts and an imaginary parts
corresponds to the separation shown in Eq. (2), which can be
obtained from Eq. (3) by taking the limit of γm → 0 for all m.
The resonant contribution is symmetric in the frequency dif-
ference ω− around the resonance at ±νm and the off-resonant
contribution is antisymmetric around ±νm. The spectrum of
the off-resonant contribution is wider, confirming that it is the
dominant contribution when the frequencies of the input pho-
tons do not match the resonances of the intermediate levels.
However, the antisymmetry of the off-resonant contribution

013706-2



ENHANCEMENT OF BROADBAND ENTANGLED TWO-PHOTON … PHYSICAL REVIEW A 108, 013706 (2023)

means that they will tend to cancel out in the integral given
in Eq. (1) if the input state �(ω−) has the same phase for
all frequency differences ω− because the contributions have
opposite sign for ω− < νm and for ω− > νm. To maximize
the absorption associated with the imaginary part of �(ω−),
it is therefore useful to introduce a spectral phase flip in
the spectral wave function �(ω−) of the input photons at
ω− = νm.

The introduction of a spectral phase flip at a specific fre-
quency is a comparatively simple modification of a broadband
entangled state that can be applied independent of the material
properties of the absorber. Here, we consider the application
of a phase shift of π to all photons above a frequency of
ωgf /2 + δs emitted from a source of broadband entangled
photons by an appropriate modulator. We would like to note
that this is a particularly simple version of the more versatile
pulse shapers that were used to modify the wave function of
entangled photons in previous experiments [10,37–39]. Using
such techniques, it is possible to implement a broadband en-
tangled state with a bandwidth of b determined by the source
of entangled photons and a phase flip at a variable frequency
difference of ω− = δs

�(ω−) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1√
b

for |ω−| < δs,

1√
b

for δs < |ω−| < b/2,

0 for |ω−| > b/2,

(4)

where 0 < δs < b/2. Note that the phase flip appears at both
positive and negative values of ω−. This is a result of the
bosonic symmetry of the photon wave function. Also, we
chose a negative sign for the wave function of the original
input state, so that the wave function at δs = 0 is positive. Both
δs = 0 and |δs| = b/2 reproduce the original broadband entan-
gled state, but the overall phase is opposite. The dependence
of bandwidth and linewidth on the TPA rate without the phase
flip was studied in our previous work.

The phase flip in the dispersion of the state will change
the contribution of each resonance to the integral in Eq. (1)
according to the difference between the resonance δs at which
the phase flip is applied and the resonant frequencies νm and
−νm. It is possible to solve these integrals for each level m,
where we distinguish the integral of the resonant contribu-
tion Am(δs) from the integral of the off-resonant contribution
Bm(δs). The rate of TPA is then expressed by the squared sum
of these contributions

PTPA(δs) = Pgf

b

∣∣∣∣∣
∑

m

2Cm[Am(δs) + iBm(δs)]

∣∣∣∣∣
2

, (5)

where

Am(δs) =
[

2arctan

(
b/2 + νm

γm

)
+ 2arctan

(
b/2 − νm

γm

)]

− 2

[
2 arctan

(|δs| + νm

γm

)
+ 2 arctan

( |δs| − νm

γm

)]
,

(6)

Bm(δs) = ln

(
(b/2 + νm)2 + γm

(b/2 − νm)2 + γ 2
m

)

− 2 ln

(
(|δs| + νm)2 + γ 2

m

(|δs| − νm)2 + γ 2
m

)
. (7)

The dependence of the amplitudes Am(δs) and Bm(δs) on
the frequency δs of the phase flip is shown in Fig. 1. The
resonant contributions Am(δs) describe a change of sign at
δs = −νm and at δs = +νm, broadened by the linewidth γm.
The absolute value of this contribution only changes close
to the resonance, where it drops to zero as the sign changes.
This is very different from the dependence of the off-resonant
contributions Bm(δs) on the frequency δs of the phase flip.
These contributions are rather close to zero at δs = 0 because
of the cancellation of positive and negative contributions in the
integral. The phase flip modifies this cancellation, achieving a
maximal absolute value when the phase flip is at resonance
(δs = ±νm).

The precise resonant features described by Eqs. (6) and (7)
depend on the bandwidth b, the linewidth γm and the resonant
frequency νm. In Fig. 1, the variable δs is scaled using the res-
onance νm to accommodate the fact that resonance is achieved
at δs = νm. The linewidth then determines the broadening of
the resonant features in a rather straightforward manner. The
bandwidth b has an effect on the values of Am and Bm at δs =
0, which corresponds to a broadband entangled state without
any phase flip. It may be interesting to consider the values of
Am and Bm at δs = 0 in the limit of bandwidths that are much
larger than νm and γm. In this broadband limit, Am(δs = 0)
approaches 4 arctan(∞) = 2π and Bm(δs = 0) is negligibly
small, reflecting the integrals of the real and imaginary parts
of a Lorentz line over all frequencies. In general, the band-
width b introduces an offset to both Am and Bm, with positive
values smaller than 2π for Am and positive values that drop to
zero in the broadband limit for Bm. In most of the following
discussion, we will focus on the role of the linewidth γm

and the resonant frequency νm since the bandwidth-dependent
offset does not change the characteristic features of Am and
Bm. Consistent with the observation that larger bandwidths are
desirable when trying to achieve high off-resonant TPA rates
[10,32,36], we find that the features introduced by the phase
flips are easiest to observe in the broadband limit. However,
sufficiently clear results can already be obtained when the
bandwidth is given by b = 4νm, which is the reason why
we are using this bandwidth in Fig. 1. For comparison, the
broadband limit is shown for a linewidth of γm = νm/20. As
can be seen in the figure, the main features of the phase flip
effects do not change much between a bandwidth of b = 4νm

and the broadband limit.
At δs = 0, there is a significant resonant contribution

Am and a much smaller contribution Bm. In the broadband
limit, Am(δs = 0) = 2π and Bm(δs = 0) = 0. As the phase
flip frequency δs is moved towards resonance, Am decreases
and Bm increases, until the values at resonance are effec-
tively reversed. For sufficiently narrow linewidths (γm � νm),
the broadband limit gives Am(|δs| = νm) = 0 and Bm(|δs| =
νm) = −4 ln(2νm/γm), indicating an enhancement of the
TPA rate given by the squared ratio of Bm(|δs| = νm) and
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FIG. 1. Dependence of (a) the resonant contribution Am and (b) the off-resonant contribution Bm on the frequency δs of the phase flip for
an intermediate level of frequency νm = b/4, where b is the bandwidth of the entangled input state. Sharp resonant features are obtained for a
linewidth of γm = νm/20 (solid line) and γm = νm/10 (dashed line). At γm = νm/3 (dotted line), the features are significantly reduced by the
broadening of the resonance. For comparison, the dashed-dotted lines represent the corresponding dependence at a linewidth of γm = νm/20 for
the broadband limit. The main features of the dependence on the phase flip frequency δs do not change much when the bandwidth is increased.

Am(δs = 0),
(

Bm(|δs| = νm)

Am(δs = 0)

)2

≈
(

2

π
ln(2νm/γm)

)2

. (8)

However, this enhancement factor cannot be observed in iso-
lation since it always appears in a sum with all of the other
intermediate levels m. For a systematic analysis of the en-
hancement effect, it is therefore convenient to consider the
case of a single intermediate level first.

III. ENHANCEMENT OF ABSORPTION FOR A SINGLE
INTERMEDIATE RESONANCE

In the case of a single intermediate level at a resonant
frequency of ν0, the rate of TPA can be found by adding
the squared values of the real and imaginary contributions A0

and B0,

PTPA(δs) = Pgf |C0|2
b

[
A2

0(δs) + B2
0(δs)

]
. (9)

To understand the physics of TPA enhancement, it is useful to
consider the values of A2

0 and of B2
0 separately. Figure 2 shows

the resonant contribution A2
0 and the off-resonant contribution

B2
0 for different linewidths. Using the squared values, it is

easy to confirm the opposite roles of these two contributions.
B2

0 is very low at δs = 0 and initially drops to zero at small
values of |δs|, while A2

0 is initially at its maximal value. As
δs approaches the resonance at |δs| = ν0, A2

0 drops to zero
and B2

0 rises towards its maximum. It is important to note
that the shape of the minimum of A2

0 is not very different
from the shape of the maximum of B2

0, despite the different
mathematical forms given by Eqs. (6) and (7). As discussed
above, the two contributions exchange roles on resonance, and
enhancements are possible because the value of B2

m at reso-
nance (δs = ν0) exceeds the value of A2

m at δs = 0. However,
Fig. 2 also illustrates the limits of this enhancement effect.
At a linewidth of γ0 = ν0/3 and a bandwidth of b = 4ν0, the
suppression of A2

0 and the enhancement of B2
0 approximately

cancel each other. Enhancement thus depends on both band-
width and linewidth, both expressed in terms of the separation
ν0 between the resonance of the single intermediate level and
the average photon frequency ωgf /2.

To evaluate the enhancement, it is useful to compare the
TPA rate with a phase flip at δs with the TPA rate in the

FIG. 2. Contributions to the TPA rate for a single intermediate level for various linewidths γ0 at a bandwidth of b = 4ν0. The dashed lines
show the resonant contribution A2

0/4π 2 and the solid lines show the off-resonant contribution B2
0/4π 2 as a function of the frequency δs of the

phase flip. (a) The results for a linewidth of γ0 = ν0/3, (b) the results for γ0 = ν0/10, and (c) the results for γ0 = ν0/20.
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FIG. 3. The enhancement factor g as a function of the frequency δs of the phase shift for different linewidths. (a) The enhancement for a
bandwidth of b = 4ν0, (b) the enhancement for b = 6ν0, (c) the enhancement for b = 8ν0, and (d) the enhancement for the broadband limit.
The solid lines shows the enhancement for γ0 = ν0/20, the dashed lines show the enhancement for γ0 = ν0/10, and the dashed-dotted lines
show the enhancement for γ0 = ν0/3. The bold black line indicates g = 1 (no enhancement) for reference.

absence of a phase flip, corresponding to δs = 0,

g(δs) = PTPA(δs)

PTPA(0)
. (10)

The enhancement factors for different linewidths are
shown in Fig. 3. The four panels show the enhancement
factors for different bandwidths. In all cases, very little en-
hancement is observed at a linewidth of γ0 = ν0/3. At a
bandwidth of b = 4ν0, no enhancement is observed for the
entire range of frequencies δs. Even in the broadband limit,
the TPA rate for γ0 = ν0/3 is actually reduced by phase flips
close to δs = 0. The reason for this drop of the enhancement
factor below 1 at small values of |δs| can be traced back to
the reduction of the values of both A2

0 and B2
0 shown in Fig. 2.

However, significant enhancements are observed at narrower
linewidths when the frequency of the phase flip is close to the
resonance at δs = ±ν0. As expected from the previous dis-
cussion of Am and Bm, the enhancement effect becomes more
pronounced as the bandwidth b increases. Enhancements are
observed for phase flips around δs = ν0, and the maximal
value of the enhancement depends on the ratio of linewidth γ0

and resonant frequency ν0. Optimal results are obtained in the
broadband limit, but the comparison between different band-
widths shows that the linewidth is the more relevant factor.
Since the maximal enhancement is typically obtained at the

resonant frequency δs = ν0, it is useful to define the resonant
enhancement as gres. = g(δs = ν0). In the broadband limit, the
corresponding resonant enhancement factor is given by

gres.(broadband) =
(

1 − 2

π
arctan(2ν0/γ0)

)2

+
(

2

π
ln(1 + 2ν0/γ0)

)2

. (11)

Figure 4 shows the dependence of resonant enhancement
on the ratio of resonant frequency ν0 and linewidth γ0. Since
we are mostly interested in the conditions under which large
enhancements can be achieved, we focus on the regime of
narrow linewidths above ν0/γ0 = 5, where the enhancement
factors are larger than 1. The broadband limit describes the
maximal enhancement for the respective linewidth ratio, and
the enhancements achieved at narrower bandwidths are cor-
respondingly lower. As discussed previously, this is a direct
result of the nonzero value of the off-resonant contribution A2

0
at δs = 0. The lower the bandwidth, the narrower the linewidth
must be to achieve a given enhancement. However, the qual-
itative dependence of resonant enhancement on the linewidth
ratio is independent of the bandwidth. Even in the broadband
limit, enhancement is only observed when the linewidth is
sufficiently narrow.
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FIG. 4. Dependence of the resonant enhancement factor gres. on
the inverse linewidth ν0/γ0. The solid line gives the broadband
limit, the dashed line corresponds to a bandwidth of b = 8ν0, the
dashed-dotted line to a bandwidth of b = 6ν0, and the dotted line to
a bandwidth of b = 4ν0. The bold black line indicates gres. = 1 (no
enhancement) for reference.

For sufficiently narrow linewidths, it is possible to simplify
the broadband limit formula by using Eq. (8). The approxi-
mate formula is given by

gres.(broadband) ≈
(

2

π
ln(2ν0/γ0)

)2

. (12)

This formula is particularly useful to estimate the necessary
inverse linewidth for a specific enhancement factor. For in-
stance, an enhancement by a factor of 4 requires a minimal
inverse linewidth of ν0/γ0 = 1

2 eπ , a ratio of approximately
11.6. Although the formula is less reliable at lower enhance-
ment factors, it may be interesting to use it to estimate the
inverse linewidth required for an enhancement factor of 1.
The formal result is ν0/γ0 = 1

2 eπ/2, a ratio of approximately
2.4. Although by no means precise, it seems reasonable to
assume that no enhancement can be observed when the inverse
linewidth ν0/γ0 is smaller than 2.4.

At first sight, it may seem difficult to find materials with
sufficiently narrow linewidths for a significant TPA enhance-
ment using a resonant phase flip. However, it should be kept
in mind that the condition refers to the ratio of the linewidth
γ0 and the resonant frequency ν0. If ν0 is large, it may be
possible to satisfy the condition even if γ0 is relatively broad.
Ideally, we would be looking for materials with intermediate
levels in the center of the lower or upper half of the broadband
spectrum, where ν0 = b/4. If the bandwidth of the input state
is sufficient, the resonant band at ν0 could be rather wide and
still produce a resonant enhancement effect. If a scan of the
phase flip frequency is used as a method of spectroscopy, it
may therefore be possible to use this enhancement effect to
identify intermediate levels with resonant transitions at very
high or very low frequencies. The argument that was given
here for a single resonant level may then be applied to an
entire band of intermediate states that are too close to each
other to be resolved. It may be good to remember that the

introduction of broadened resonances was motivated by the
dephasing and relaxation effects in open systems. We can thus
expect that a number of complicated systems can be described
in this approximate manner. To understand the possible limi-
tations of this method, it is necessary to consider the possible
effects of interferences between different intermediate levels,
as described by the general formula in Eq. (5).

IV. INTERFERENCE EFFECTS BETWEEN DIFFERENT
INTERMEDIATE RESONANCES

The basic enhancement effect consisting in an increase of
the value of Bm at resonance can be observed even in the
presence of multiple intermediate levels m. However, it needs
to be remembered that the sign of Am changes at resonance,
resulting in a switch between constructive and destructive
interferences of Am with the contributions from other inter-
mediate levels. In this section, we will investigate the effects
of such interferences on the TPA rate.

As an example, let us consider the case of two interme-
diate levels at resonances ν1 and ν2 with coefficients of C1

and C2 describing the associated transition matrix elements.
According to Eq. (5), the contributions of the two levels must
be added before the absolute square determines the TPA rate

PTPA(δs) = 4Pgf

b
|C1(A1 + iB1) + C2(A2 + iB2)|2. (13)

To analyze the interference effects, it is necessary to consider
the phase relation between the coefficients C1 and C2. For
simplicity, we will only consider real values of C1 and C2, with
the positive signs describing constructive interferences and
the opposite signs describing destructive interferences. It may
be worth noting that other phase differences would introduce
a rather complicated structure of interferences involving all
possible combinations of A1 and B1 with A2 and B2. The
advantage of limiting ourselves to real coefficients is that we
can separate the interference between A1 and A2 from the
interference between B1 and B2. If the absolute values of C1

and C2 are the same, interference effects are described by the
separate sums and differences of A1 and A2, and of B1 and B2.

Figure 5 illustrates the basic interference effects between
two intermediate levels with the same linewidths γ1 = γ2 =
ν1/20, where the resonances are sufficiently separate to recog-
nize two distinct enhancement effects. Interferences between
A1 and A2 result in regions where the two contributions cancel
each other and regions where they add up. The contributions
of A1 + A2 cancel each other for ν1 < |δs| < ν2 and add up
outside of this region. For A1 − A2, the contributions add up
for ν1 < |δs| < ν2 and cancel each other outside of this region.
B1 and B2 are dominated by the resonant enhancements. The
effects of interferences are strongest for ν1 < |δs| < ν2, where
B1 − B2 drops to zero and changes its sign, whereas B1 + B2

remains at high absolute values throughout. In summary, con-
structive interference results in negligible values of A1 + A2

and high values of B1 + B2 in the region between the reso-
nances, while destructive interferences result in high values of
A1 − A2 and low values of B1 − B2. In the sum of the squares,
these two interference effects may be hard to distinguish.

The characteristic difference between constructive and de-
structive interference is seen at δs = 0, corresponding to the
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FIG. 5. Illustration of the effects of interferences between two levels for ν2 = 3ν1 at a linewidth of γ1 = γ2 = ν1/20. (a) The δs dependence
of resonant contributions A1 (solid line) and A2 (dashed line), (b) the δs dependence of off-resonant contributions B1 (solid line) and B2 (dashed
line), (c) the constructive and destructive interferences A1 + A2 (solid line) and A1 − A2 (dashed line), and (d) the constructive and destructive
interferences B1 + B2 (solid line) and B1 − B2 (dashed line).

TPA rate without a phase flip. In the broadband limit, we have
A1(0) = A2(0) = 2π and B1(0) = B2(0) = 0. Constructive
interference results in A1(0) + A2(0) = 4π and destructive
interference results in A1(0) − A2(0) = 0. Due to this inter-
ference effect, it is not useful to compare the TPA rates at
different frequencies δs with the TPA rate at δs = 0. Instead,
we will simply compare the two results directly. Figure 6
shows the TPA rates for constructive and destructive inter-
ferences, with all other parameters being equal. As expected,
destructive interference reduces the resonant TPA rates while

constructive interferences enhance them. However, destruc-
tive interference completely suppresses the TPA rates close
to δs = 0. It is therefore quite remarkable that comparatively
high TPA rates can be obtained for destructive interferences
when the frequency of the phase flip is between the resonances
at ν1 < |δs| < ν2. This activation of transitions that interfere
destructively may be one of the most interesting aspects of
the phase relation between the coefficients Cm. Constructive
interference is consistent with the idea that levels close to
each other correspond to a single broadened transition, even

FIG. 6. Dependence of TPA rates of interferences between two intermediate levels on the frequency δs of the phase flip for the same
linewidths of γ1 = γ2 = ν1/20. The solid lines show the results for constructive interference and the dashed lines show the results for
destructive interference. In (a) the second resonance is at ν2 = 3ν1 and in (b) it is at ν2 = 1.5ν1.
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though the individual resonances can be resolved as long as
the linewidths are sufficiently narrow. The case of destructive
interference requires a more thorough analysis due to the
suppression of TPA rates at δs = 0.

V. CONCLUSION

We showed that a spectral phase flip introduced at a fre-
quency difference of δs from the average frequency of the
entangled photons can enhance the TPA of the entangled
photons significantly when it is resonant with an intermediate
level involved in the TPA process. This effect might be useful
in the characterization of intermediate levels far away from
the average photon frequency, providing access to frequen-
cies at the far ends of the broadband spectrum. Interference
effects between different transitions might complicate the pic-
ture somewhat, with an interesting possibility of activating

forbidden transitions when the phase flip is placed between
two destructively interfering transitions. In general, the appli-
cation of a spectral phase flip requires no prior knowledge
of the level structure of a two-photon absorber and can be
adjusted for optimal enhancement effects based on the experi-
mental data. The dependence of TPA rates on the frequency
of the phase flip highlights a fundamental aspect of phase
dispersion in the TPA process that may have a wide range of
applications in the future.
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