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Multiphoton correlations between quantum images
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Experimental demonstrations of entangled quantum images produced through parametric down conversion
have so far been confined to studying two-photon correlations. Here we show that multiphoton correlations
between quantum images are accessible experimentally and exhibit many new features including being sensitive
to the phase of the biphoton wave function. As a concrete example, we consider a modification of existing
quantum imaging experiments in which the charge-coupled device cameras are moved out of focus, provide
detailed analytical predictions for the resulting four-photon interferences, and support these by numerical
simulations. The proposed experiment can also be interpreted as entanglement swapping: Bob’s photons are
initially unentangled, but the joint detection of Alice’s photons projects Bob’s photons onto an entangled
state. The general approach proposed here can be extended to other quantum optics experiments involving
high-dimensional entanglement.
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I. INTRODUCTION

Since the seminal works of Freedman and Clauser [1]
and Aspect and Dalibard [2], entangled photons have been
one of the workhorses of quantum information sciences.
Nowadays high-dimensional entangled photon pairs can be
routinely produced in the laboratory, using different degrees
of freedom such as angular momentum [3,4], time-energy
[5–8], position-momentum [9–12], path entanglement (using
integrated optics) [13], or multiple degrees of freedom simul-
taneously [14]. The number of modes that can be entangled
can reach hundreds, or even thousands (see, e.g., [4,8,10–12]).
These experiments have focused on the correlations between
two entangled photons. Here we show that if one extends
them to the study of multiphoton correlations, then novel
phenomenology and interference patterns emerge. These new
features are experimentally accessible with current technol-
ogy, as they already appear in four-photon correlations. In
the same way that the quantum teleportation experiment of
Bouwmeester et al. [15] revolutionized quantum optics, we
expect the present proposal to considerably broaden the scope
and interest of high-dimensional photonic entanglement.

An important inspiration for the present paper is boson
sampling [16] (see the experimental realizations of [17–21]).
On the one hand boson sampling provides the theoretical
framework for describing multiphoton correlations. On the
other hand the computational complexity arguments of [16]
show that as the number of modes and the number of photons
increase, the correlation pattern become exceedingly complex
and impossible to simulate efficiently on a classical computer.
But for a moderate number of photons (say 4 or 6), while this
complexity already shows up, it should be possible to fully
investigate the system experimentally. The present paper is
most closely related to the extension of boson sampling to
Gaussian bipartite states [22,23], and to the low optical depth
boson sampling of [24].

For definiteness we illustrate our approach in the case
of spatially entangled photons, as realized in [10,11], and
schematized in Fig. 1. A spatially extended, pulsed, pump
laser illuminates a thin nonlinear crystal in which photon
pairs are produced by spontaneous parametric down con-
version (SPDC) using type-II phase matching. The signal
and idler photons are not collinear and are imaged sepa-
rately on Alice’s and Bob’s cameras. Single-photon resolution
on each pixel of the camera is achieved by using electron
multiplying charge-coupled devices (CCDs). Such quantum
imaging experiments were introduced theoretically in [25].
Using CCD cameras, they have been applied to demonstra-
tions of the Einstein-Podolsky-Rosen paradox [11,26], ghost
imaging [27], quantum adaptive optics [28], quantum holog-
raphy [12], sub-shot-noise imaging [29,30], and quantum
imaging with undetected photons [31] (see [32] for a review).
Note that additional optical elements, such as a spatial light
modulator (SLM), or a diffuser [28,33], can be inserted be-
tween the source and the CCD if desired. Ghost imaging
with entanglement-swapped photons was reported in [34]
demonstrating the feasibility of multiphoton quantum imaging
experiments.

Here we consider multiphoton correlations on the image
planes. If the produced photons are indistinguishable (except
for the position-momentum degree of freedom), then we do
not know which photon detected on Alice’s camera is the
partner of which photon detected on Bob’s camera. The proba-
bility for a specific detection event is obtained by summing all
the possible pairings of signal and idler photons, as illustrated
in Fig. 1 in the case of four-photon correlations.

II. MULTIPHOTON CORRELATIONS
IN QUANTUM IMAGES

We treat the pump beam classically which implies that the
quantum state of the signal and idler photons is Gaussian and
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FIG. 1. Schematic of the proposed setup and interferences be-
tween four-photon correlations. A spatially extended, pulsed, pump
laser (L) generates photon pairs in a nonlinear crystal (C) through
spontaneous parametric down conversion. The signal and idler pho-
tons (red lines) are imaged onto Alice’s and Bob’s CCD cameras.
If two photons are detected on Alice’s camera and two photons are
detected on Bob’s camera, then we don’t know which photon is the
partner of which photons. The amplitudes for the two processes in-
terfere, and must be summed when computing the probability of this
event [see Eq. (4)]. This is indicated schematically in the figure by
the “+” sign between the two amplitudes which must be taken before
squaring. x, y, z and x′, y′, z′ are the coordinates used in the main
text. The lens in the image indicates schematically that an imaging
system is used, specifically either a 2 f or 4 f optical system, slightly
defocused as measured by z and z′.

can be written as

|�〉 = N exp

(∫∫
dxdx′�(x, x′)a†

xa†
x′

)
|0〉, (1)

where �(x, x′) is the biphoton wave function with x = (x, y)
and x′ = (x′, y′) the positions on Alice’s and Bob’s image
planes [we denote throughout Alice’s (Bob’s) variables with
unprimed (primed) letters], a†

x and a†
x′ are creation operators

for photons at x and x′, |0〉 is the vacuum state, and N is a
normalization factor.

The probability of detecting n photons on Alice’s camera
at positions X(n) = x1, · · · , xn and n photons on Bob’s camera
at positions X′

(n) = x′
1, · · · , x′

n is given by [22,23]

P(2n)(X(n); X′
(n) ) = |〈0|ax1 · · · axn ax′

1
· · · ax′

n
|�〉|2

= |N |2|Perm(�x1,··· ,xn;x′
1,··· ,x′

n
)|2 (2)

where �x1,··· ,xn;x′
1,··· ,x′

n
is the n × n matrix whose (i, j)th entry

is given by the biphoton wave function at positions (xi, x′
j ),

i.e., by �(xi, x′
j ), and Perm is the permanent of the matrix.

In order to simplify expressions, we make the following
approximations. First, in order to get the response of the
camera we need to integrate Eq. (2) over the area of each
pixel. We assume that � varies little over the area of a pixel
and therefore omit this integration. Second we assume that
the mean number of photons is much smaller than the number
of pixels, and consequently the probability of two photons
reaching the same pixel is small, and we do not consider these
events. Third we assume that losses are negligible.

Thus the probability of detecting a single pair at positions
(x; x′) is given by

P(2)(x; x′) = |N |2|�(x, x′)|2, (3)

and depends only on the norm of the biphoton wave function.
But if two pairs are detected at (x1, x2) and (x′

1, x′
2), then the

corresponding probability is given by

P(4)(x1, x2; x′
1, x′

2) = |N |2|�(x1, x′
1)�(x2, x′

2)

+ �(x1, x′
2)�(x2, x′

1)|2. (4)

A new interference effect arises because we do not know
whether the photon detected at x1 is the partner of the photon
detected at x′

1 or at x′
2, and we must sum the amplitudes for

these two processes as illustrated in Fig. 1. Therefore Eq. (4)
is sensitive to the phase of the biphoton wave function.

III. DEFOCUSING THE QUANTUM IMAGES

For the purpose of analytical predictions, we assume that
the biphoton wave function is Gaussian, which is a widely
used and well-justified approximation [35–37]. At the surface
of the nonlinear crystal (i.e., in the near field) the biphoton
wave function is thus given by

�(x, x′) ∝ exp

(
− 1

4w2
0

|x + x′|2 − b2

4
|x − x′|2

)
. (5)

For simplicity of notation we omit, here and in the following
expressions, the constant that multiplies the exponentials in
�, and denote this by the symbol ∝. In Eq. (5), w0 is the
width of the pump beam, while b takes into account that
the phase-matching conditions are only partially enforced due
to the finite thickness of the nonlinear crystal. The photon
pairs are produced approximately in the same location, up
to an uncertainty 1/b. The Schmidt number of this biphoton
wave function is K = 1

4 (bw0 + 1
bw0

)2[35]. We are interested
in the situation where w0 � 1/b, corresponding to a large
area of illumination of the crystal and a high Schmidt number.
Experimentally the total number of spatial modes in entangled
images of order 2000 is reported [10], although direct mea-
surements of the Schmidt number have yielded a lower value
of order 200 [11].

The Fourier transform of Eq. (5) gives the biphoton wave
function in the far field

�̃(p, p′) ∝ exp

(
−w2

0

4
|p + p′|2 − 1

4b2
|p − p′|2

)
(6)

where p and p′ are the transverse momenta of Alice’s and
Bob’s photons.

For interesting interferences to arise in the four-photon
coincidences Eq. (4) we need a complex, oscillating biphoton
wave function. This is not the case for the near- and far-field
biphoton wave functions Eqs. (5) and (6) which are real and
positive. But in [37] it was shown that as the photons prop-
agate, the entanglement between Alice’s and Bob’s photons
becomes encoded in the phase of the biphoton wave function.
This situation is a readily accessible regime experimentally:
One simply needs to move the cameras out of focus. Note that
because of the symmetry between Eqs. (5) and (6) one could
either defocus the near-field image or the far-field image. Be-
low we consider the case of defocusing the near-field image.

If Alice’s and Bob’s photons travel a distance z and z′ from
the crystal surface, then in the paraxial approximation, the
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biphoton wave function in momentum space is given by

�̃(p, p′; z, z′) ∝ exp

(
−w2

0

4
|p + p′|2 − 1

4b2
|p − p′|2

−i
z

2k
|p|2 − i

z′

2k
|p′|2

)
(7)

where k is the longitudinal momenta of the idler and signal
photons (assumed equal). In order to simplify the expression
for the Fourier transform of Eq. (7), we take the limit w0 →
∞ in the resulting expression, whereupon �(x, x′; z, z′) only
depends on x − x′, i.e., we are in the translation invariant
limit. We then have

�(x, x′; z, z′) ∝ exp

(
−α − iβ

4
|x − x′|2

)
(8)

where α = b2

1+Z2 and β = b2Z
1+Z2 are real and positive with Z =

b2(z+z′ )
2k . The uncertainty in the joint positions is of size 1/

√
α,

and increases when the defocusing (i.e., z and z′) increases.
The defocusing is important when Z � 1, whereupon β �
α, and the biphoton wave function exhibits many oscillations
within a defocusing spot.

Going back to Fig. 1, Eqs. (5), (6), and (8) correspond
to the biphoton wave function on the camera planes when
imaging the near field (the crystal surface), the far field, and
the defocused near field, respectively. The coordinates (x, y)
and (x′, y′) in Fig. 1 correspond to x and x′ in the case of
Eqs. (5) and (8) and to p and p′ in the case of Eq. (6), while the
z and z′ coordinates correspond to the degree of defocusing.

In order to obtain predictions for the four-photon corre-
lations, we insert Eq. (8) into Eq. (4). One finds that the
four-photon correlation probability takes the simple form

P(4)(X; X′; z, z′) ∝ exp

(
−α

4
D

)(
cosh

(
α

2
S

)
+ cos

(
β

2
S

))

(9)

where D(X; X′) = |x1 − x′
1|2 + |x1 − x′

2|2 + |x2 − x′
1|2 +

|x2 − x′
2|2 and S(X; X′) = (x1 − x2).(x′

1 − x′
2). When the

defocusing is significant (β � α) then the four-photon co-
incidence probabilities have strong oscillations given by the
term cos( β

2 S). In Appendix A we show that the oscillating
term in Eq. (9) [the term in cos( β

2 S)] is a robust prediction
that does not depend on the Gaussian approximation Eq. (5).
And in Appendix B we generalize Eq. (9) to higher-order
correlations and show that the expressions for P(2n) are much
more complex as soon as n > 2.

IV. NUMERICAL SIMULATIONS

In order to confirm these analytical predictions, we carried
out numerical simulations using the method introduced in [38]
and since used extensively (see, e.g., [39]). The idea of the
simulations is to take as input for the signal and idler fields
Gaussian white noise with intensity corresponding to half a
photon per mode. This field is numerically propagated through
the system, including the nonlinear crystal. The obtained
fields are used to obtain, after averaging over repetitions of the
simulation and appropriate subtractions, expectation values of

FIG. 2. Comparison of analytical predictions and numerical sim-
ulations for four-photon correlations in quantum images. To allow
the comparison, the correlations of each row are normalized to unity
and represented with a false color scale expressed in normalized units
(N.U.). The coordinates that are not fixed in the figure are averaged
out.

the four-point intensity correlations

I (x1, x2; x′
1, x′

2) = 〈�|nx1 nx2 nx′
1 nx′

2 |�〉 (10)

where nx = a†
xax is the number operator at position x. We then

subtract the correlations of lower order: Accidental coinci-
dences between nontwin photons and between nontwin signal
and idler pairs (two bunched photons in an image, that do not
correspond to twin photons in the other image) to obtain the
genuine four-point intensity correlations.

In Fig. 2 we compare the numerical simulations with the
analytical predictions of Eq. (9). The numerical simulations
were carried out for a pump beam with a waist w0 = 200 µm,
a crystal thickness of 50 µm, and a pump laser wavelength of
351 nm. The pixel size (used to discretize the numerical sim-
ulations) is 2.7 µm. The field of view is 256 × 256 pixels. The
intensity of the pump beam is adjusted so that the intensity
at the center of the signal and idler beams after propagation
through the crystal is approximately 0.6 photon per pixel. The
beam is then propagated 100 µm beyond the crystal in order to
defocus it. The stochastic simulations were repeated 5 × 105

times in order to obtain sufficient statistics. To exhibit the
oscillations of P(4) encoded in the variable S we fix two coor-
dinate differences, use two other coordinate differences as plot
variables, and average over the remaining four coordinates.
The differences between theory and numerics correspond to a
signal-to-noise ratio (SNR) of 4.9, in agreement with a model
of the numerical uncertainties developed in Appendix C.

V. EXPERIMENTAL IMPLEMENTATION

Experimental parameters for an experimental implementa-
tion could be as follows: 100-fs pump pulses at 355 nm, with
a waist w0 = 200 µm, produce photon pairs in a β-barium
borate crystal of thickness 50 µm. The noncollinear signal
and idler photons pass through a 3-nm-wide notch filter to
ensure that they are indistinguishable. They are imaged onto
the CCD cameras with either a 2 f or 4 f optical system,
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slightly defocused as discussed in the main text. The over-
all detection efficiency (the probability that a signal or idler
photon is registered on the camera, taking into account all
losses and detector inefficiency) can be taken to be η = 0.3. In
Appendix C we estimate that 105 to 106 images need to be
taken in order to reproduce experimentally images similar
to those in Fig. 2. For comparison [28] used 107 images to
analyze in detail the biphoton wave function in a quantum
imaging experiment, showing that such an experiment is ac-
cessible using present technology. Two related experiments
are [34], that demonstrated quantum imaging experiments
with four photons but with images restricted to 4 pixels, and
[40], that studied four-photon correlations but using the polar-
ization degree of freedom.

VI. INTERPRETATION AS ENTANGLEMENT SWAPPING

The high-dimensional space in which the proposed four-
photon experiment takes place makes the experiment much
richer. As illustration of the features that emerge we show that
a modification of the experiment allows for an interpretation
as entanglement swapping [41].

Recall that initially the photon pairs shared between Alice
and Bob are entangled, but there is no entanglement between
Bob’s photons. The joint detection of Alice’s two photons
projects Bob’s photons into an entangled state. The intuition is
that the overlap of the wave functions of Alice’s two photons,
followed by the detection of these two photons at specific
positions, is analogous to the action of the beam splitter fol-
lowed by joint detection in the teleportation experiment in
[15]. Indeed, suppose we postselect that two-photon pairs are
produced and that Alice’s photons are detected at positions xA1

and xA2. Then it follows from Eq. (1) that Bob’s two photons
are projected onto the entangled state:

|φ〉 =
∫

dx′
1dx′

2[�(xA1, x′
1)�(xA2, x′

2) + �(xA1, x′
2)

× �(xA2, x′
1)]a†

x′
1
a†

x′
2
|0〉. (11)

To illustrate this in more detail, suppose that xA1 = (+a, 0)
and xA2 = (−a, 0), that the biphoton wave function is given
by Eq. (8), and that Bob’s photons are postselected to be in the
vicinity of (+l, 0) and (−l, 0). For large enough defocusing,
and small enough values of a and l , the quantum state Eq. (11)
is approximately given by a momentum entangled state (see
Appendix D for the derivation):

|φ〉 ≈ (eiϕ1 |p′
−+; +l〉|p′

+−; −l〉 + eiϕ2 |p′
−−; +l〉|p′

++; −l〉)

(12)

where ϕ1,2 are unimportant phases, and |p′; ±l〉 are approxi-
mate momentum states located near (±l, 0), respectively, with
zero momentum in the y direction, and momentum p′

±± =
± βl

2 ± βa
2 in the x direction.

In order to demonstrate that the resulting state indeed has
the form Eq. (12), one needs to measure the first photon
[located near (+l, 0)] in the basis spanned by |p′

−±; l〉 and the
second photon [located near (−l, 0)] in the basis spanned by
|p′

+±; −l〉. Such measurements can be realized by inserting
along the paths of the photons a SLM such that around re-
gions (±l, 0) the SLM has phase profiles which are periodic

FIG. 3. Proposed setup to demonstrate entanglement swapping
between quantum images (the lens indicates schematically that imag-
ing optics is required). Alice’s camera plane is defocused with
respect to imaging the crystal surface (z coordinate in the image). The
joint detection of Alice’s photons at a specific position, say (+a, 0)
and (−a, 0), leaves Bob’s photons in an entangled state. In order to
analyze the entanglement between his photons, Bob uses a SLM on
which is imprinted a periodic phase profile (represented by gray lines
in the figure). The SLM is positioned so as to be in the plane imaging
the crystal surface. If one photon passes through one window of his
SLM, and the other photon passes through the other window, then
the periodic phase imprinted on the photons allows Bob to analyze
the momentum entanglement between his photons. This is obtained
by positioning Bob’s camera in the far field (where detection events
measure the transverse momentum of the photons). (The detailed
procedure is described in Appendix E.)

with period 2π/
p, with 
p = p±+ − p±− = βa, and then
measuring in the far field (see Fig. 3 and Appendix E).

VII. CONCLUSION

In the present paper we have shown that entangled photons
of high dimension exhibit interesting multiphoton correla-
tions, focusing on the specific case of entangled quantum
images. Interesting multiphoton correlations already appear in
the four-photon case. They can be exhibited by defocusing the
images, which is of course easy experimentally. We provide
detailed analytical predictions for the resulting four-photon
interferences. These are supported by numerical simulations.
We further show that this experiment can be interpreted as
entanglement swapping between photons. Bob’s photons are
initially unentangled. But the joint detection of Alice’s pho-
tons projects Bob’s photons onto an entangled state.

The present paper could be extended in several direc-
tions. First of all it calls for an experimental demonstration
as the multiphoton correlations described here are accessible
with current experimental techniques. The main experimen-
tal difficulties are to make the different photons produced
indistinguishable (except for the spatial degree of freedom)
in order to allow for multiphoton interferences, and to ac-
cumulate sufficient statistics in order to see the correlations
emerge from the background. As discussed above, this seems
of comparable difficulty to other experiments that have been
realized previously. A successful experiment of four-photon
correlations would set the stage for investigating higher-order
correlations (six and more photons).

Second, the proposed experiment should be compared with
boson sampling experiments [17–21] whose aim is to have a
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highly complex biphoton wave function in order to maximize
the complexity of a classical simulations. Here we propose
using a quite simple biphoton wave function, leading to simple
expressions for the multiphoton correlations. However the
biphoton wave function can be complexified, for instance by
inserting SLMs along the optical path as proposed in [24].
Since quantum imaging experiments with hundreds to thou-
sands of modes have been demonstrated [10,11], quantum
imaging may ultimately provide a more scalable approach to
boson sampling.

Third, the interpretation as entanglement swapping sug-
gests that many multiphoton experiments such as generation
of Greenberger-Horne-Zeilinger states [42], W states [43],
etc., could find analog implementations using quantum imag-
ing experiments.

Finally, the general approach proposed here is not limited
to the spatial degrees of freedom. Photons entangled in other
degrees of freedom, such as frequency or angular momentum,
could also be used to investigate multiphoton correlations.
These directions in which the present paper can be extended
show that multiphoton correlation between quantum images
promises to be a rich area of study, both theoretically and
experimentally.

APPENDIX A: ROBUSTNESS

In this section we show that in the limit of large defocusing
our results do not depend on the Gaussian approximation used
in the main text. We derive a form for the biphoton wave
function and for the four-photon coincidence probabilities that
is valid when z + z′ is large.

In order to compare the results obtained in this section with
the results obtained in the main text, we note that when z + z′
is large Eq. (8) in the main text takes the form

�(x, x′; z, z′) ≈ exp

(
− k2

b2(z + z′)2
|x − x′|2

+ i
k

2(z + z′)
|x − x′|2

)
.

In general the biphoton wave function at transverse po-
sitions x and x′ on Alice’s and Bob’s cameras, which are
positioned a distance z and z′ from the nonlinear crystal, is
given by

�(x, x′; z, z′) ∝
∫∫

dpdp′ �̃(p, p′)

× exp

(
−i

z

2k
|p|2 − i

z′

2k
|p′|2

+ ip · x + ip′ · x′
)

(A1)

where �(p, p′) is the biphoton wave function (in momentum
space) at the crystal surface, which we no longer take to be
Gaussian.

We place ourselves in the translation invariant limit, so that

�̃(p, p′) = δ(p + p′) f̃

(
p − p′

2

)
. (A2)

Equation (A2) therefore becomes

�(x, x′; z, z′) ∝
∫

dp f̃ (p)

× exp

(
−i

(z + z′)
2k

|p|2 + ip · (x − x′)
)

.

(A3)

We suppose that the crystal is not very thick, so that at the
crystal surface the photons are highly correlated in position.
This implies that f (the Fourier transform of f̃ ) is strongly
peaked around zero, and hence that f̃ is a slowly varying
function. Therefore, for large enough z + z′, the integral in
Eq. (A4) can be approximated by saddle-point integration.
The saddle is at

p∗ = k(x − x′)
z + z′ (A4)

and �(x, x′; z, z′) is approximately given by

�(x, x′; z, z′) ≈ f̃

(
k(x − x′)

z + z′

)
exp

(
i

k

2(z + z′)
|x − x′|2

)
.

(A5)

This can be compared with Eq. (A1). We see that the quadratic
phase of � is a robust prediction of the model. On the other
hand the Gaussian prefactor is not.

Upon inserting Eq. (A6) into Eq. (4), one finds that the
four-photon correlation probability takes the form

P(2)(x1, x2; x′
1, x′

2; z, z′)

∝ | f̃11′ |2| f̃22′ |2 + | f̃12′ |2| f̃21′ |2 + 2| f̃11′ f̃22′ f̃12′ f̃21′ |

× cos

(
k

z + z′ (x1 − x′
1) · (x2 − x′

2) + ϕ

)
(A6)

where we use the notation

f̃i j′ = f̃

(
k(xi − x′

j )

z + z′

)
(A7)

for the slowly varying prefactors, and ϕ is the phase of
f̃11′ f̃22′ f̃ ∗

12′ f̃ ∗
21′ .

Equation (A7) has the same structure as Eq. (9) in the main
text. In particular the last term in Eq. (A7) corresponds to the
oscillating term cos(βS/4) in Eq. (9). The argument of the
harmonic function is the same (βS/4) in both expressions, up
to the phase ϕ.

Further note that when x1, x2, x′
1, and x′

2 are all close to
each other, then we have approximate equality of the pref-
actors f̃11′ = f̃22′ = f̃12′ = f̃21′ = f̃ (0), and consequently ϕ =
0, and therefore Eq. (A7) further simplifies to

P(2)(x1, x2; x′
1, x′

2; z, z′)

∝ 2| f̃ (0)|4
[

1 + cos

(
k

z + z′ (x1 − x′
1) · (x2 − x′

2)

)]
.

(A8)

Equations (A6) and (A8) show that the oscillation in the
four-photon probabilities is thus a robust prediction of the
proposed experiment.
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APPENDIX B: HIGHER-ORDER CORRELATIONS

In this section we give expressions for higher-order cor-
relations in quantum imaging experiments, i.e., between n
photons on Alice’s camera and n photons on Bob’s camera.
The case n = 2 yields Eq. (9) in the main text.

The amplitude to find n photons on Alice’s camera at posi-
tions x1, · · · , xn and n photons on Bob’s camera at positions
x′

1, · · · , x′
n is given by

〈0|ax1 · · · axn ax′
1 · · · ax′

n |�〉
∝ Perm(�x1,··· ,xn;x′

1,··· ,x′
n )

=
∑

σ

exp

(
−α − iβ

4

n∑
i=1

|xi − x′
σ (i)|2

)

= exp

(
−α − iβ

4
D(n)

)∑
σ

exp

(
−α − iβ

4
S(n)

σ

)
(B1)

where we have used Eq. (8) in the main text for the biphoton
wave function, and where

D(n) = 1

n

n∑
i, j=1

|xi − x′
j |2, (B2)

S(n)
σ =

n∑
i=1

⎛
⎝|xi − x′

σ (i)|2 − 1

n

n∑
j=1

|xi − x′
j |2

⎞
⎠

= 2
n∑

i=1

⎛
⎝xi · x′

σ (i) − 1

n

n∑
j=1

xi · x′
j

⎞
⎠. (B3)

[Note that D(2) = 2D where D(2)
is defined in Eq. (B2) and D

is defined in the main text below Eq. (9).]
We therefore find that

P(n)(x1, · · · , xn; x′
1, · · · , x′

n) ∝ exp

(
− α

2
D(n)

)∣∣∣∣∣
∑

σ

exp

(
−α − iβ

4
S(n)

σ

)∣∣∣∣∣
2

= exp(−α

2
D(n) )

[∑
σ

exp
(
−α

2
S(n)

σ

)
+ 2

∑
σ<σ ′

exp
(
−α

4

(
S(n)

σ + S(n)
σ ′

))
cos

(
β

4

(
S(n)

σ − S(n)
σ ′

))]

(B4)

[where by
∑

σ<σ ′ we mean that we do a double sum over
all permutations, with σ �= σ ′, and each pair (σ, σ ′) is only
counted once].

Equation (B4) contains n!(n!+1)
2 terms. In the case n = 2

the expression simplifies because there are only two permu-
tations, the identity I and σ12, and also because we have that
S(2)

I = −S(2)
σ12

. This yields Eq. (9) in the main text. In the case
n = 3 there are six permutations, corresponding to 21 terms.
The complexity of the multiphoton correlations thus grows
rapidly as the number of photons increases.

APPENDIX C: SIGNAL-TO-NOISE RATIO

Here we estimate the SNR in the proposed experiment, and
hence the number of camera frames required to reach a desired
SNR. We present a qualitative estimate that shows the depen-
dence on the main parameters. For instance our estimates are
only valid for a low or moderate number of produced pairs,
and we do not take into account effects due to the interference
effects described in the main text (this is precisely the signal
we want to measure). A more precise estimate would compute
exactly all the probabilities for the signal we want to mea-
sure and all the backgrounds. This goes beyond the present
paper.

1. Parameters

.For ease of reading, we list here the parameters that will
be used in our analysis.

(1) N is the average number of photons produced by the
pump pulse.

(2) nPixels � 1 is the number of pixels over which photons
can be registered. Note that this does not necessarily corre-
spond to the number of pixels of the camera as one may bin
several camera pixels together, and on the other hand part of
the camera area may not be used.

(3) 0 < η < 1 is the probability that a photon is detected.
(1 − η are the losses, including all optical losses, detector
efficiency, etc.)

(4) nPixelsCond > 1 is the number of pixels over which Bob’s
photon can be found, given that Alice detected a photon at a
specific pixel.

(5) P1 denotes the probability that a photon is registered on
a pixel of Alice’s camera (or a pixel of Bob’s camera).

(6) PCoincid
2 denotes the probability that two photons from

a pair are registered, one on Alice’s camera and one on Bob’s
cameras.

(7) PCoincid
4 denotes the probability that four photons from

two pairs are registered, two on Alice’s camera and two on
Bob’s cameras.

(8) nframes is the number of camera frames accumulated to
get sufficient statistics.

(9) Pdark is the probability of a dark count. We will take
Pdark = 0 below (supposing that it is not the dominant source
of noise). We indicate below how to take into account Pdark �=
0.

(10) ntemp is the number of temporal or spectral modes
of Alice’s and Bob’s photons. We will initially suppose that
there is a single temporal mode (i.e., that the pump pulse
is sufficiently short, and subsequent spectral filtering of sig-
nal and idler sufficiently narrow, that the down-converted
photons cannot be distinguished based on temporal-spectral
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information). We will then show how our estimates change
when there is more than one temporal mode.

2. Single pixel detection probability

The probability of having a click on a given pixel i of
Alice’s camera (or i′ of Bob’s camera) is

P1(i) = P1(i′) = η
N

nPixels
. (C1)

3. Two-photon coincidence probability

If Alice registers a photon at pixel i, then the other photon
of the pair can be registered over a certain zone Zi of the Bob’s
camera. Let us consider the probability of a coincidence (i, i′)
where i′ belongs to the zone Zi:

PCoincid
2 (i, i′) = P1(i)PCoincid(i′|i)

= P1(i)
η

nPixelsCond
(C2)

where PCoincid(i′|i) is the probability that Bob detects the part-
ner photon at pixel i′, given that Alice detected a photon from
the same pair at pixel i.

4. Four-photon coincidence probability

What is the probability that Alice detects photons at pixels
i and j and Bob detects photons at pixels i′ and j′? The inter-
esting case is when i′, j′ ∈ Zi, that is, photon i′ could be the
partner of photon i or of j, and similarly for j′. Then there can
be interferences between the different pairs. This is given by

PCoincid
4 (i j, i′ j′) = PCoincid

2 (i, i′)PCoincid
2 ( j j′) (C3)

(up to order-1 factors due to the interferences described in the
main text, which is precisely what we want to measure). Thus

PCoincid
4 = (

PCoincid
2

)2 =
(

P1
η

nPixelsCond

)2

. (C4)

5. Total coincidence probabilities

The probability of a click on one pixel is

P(click) = P1 + Pdark (C5)

where we indicate how to take into account the dark counts.
We neglect Pdark in what follows, but it could be easily be
included in the estimates of the SNR.

The total probability of a coincidence (i, i′) where i′ be-
longs to the zone Zi on one image is

PCoincidTotal
2 (i, i′) = PCoincid

2 (i, i′) + [P(click)]2 (C6)

where the second term is due to accidental coincidences.
The probability of a fourfold coincidence is

PCoincidTotal
4 (i j, i′ j′|1 image)

= PCoincid
4 (i j, i′ j′|1 temp mode) + [P(click)]4 + . . .

(C7)

where the second term is due to accidental fourfold co-
incidences (there are other accidental kinds of fourfold
coincidences, for instance when two photons belong to a pair,

and the other two do not; for simplicity we do not write all
these terms).

6. SNR for two-photon correlations

To measure the correlations, we need to accumulate nframes

camera images.
The number of single detections on pixel i is

N1(i) = nframesP(click) ±
√

nframesP(click) (C8)

where we add the statistical uncertainty.
The number of coincidences on pixels i and i′ follows from

Eq. (C6):

Ncoincid
2 (i, i′) = nframesPCoincid

2 + nframesP(click)2. (C9)

The signal we want to measure is

S2 = nframesPCoincid
2 (C10)

while the noise is the statistical fluctuations of the two terms
in Eq. (C9):

N2 = ±
√

nframesPCoincid
2 + ±

√
nframesP(click)2. (C11)

The first noise term will dominate when we have low pump
power so that photon pairs are rare, while the second noise
term will dominate when photon pairs are common. The two
noise terms are of comparable magnitude when P(click)2 =
PCoincid

2 which corresponds to

N = nPixels

nPixelsCond
. (C12)

That is, the two noise terms are comparable when approxi-
mately one pair is produced per zone of size nPixelsCond. Since
the first noise term is the fluctuations of the signal, to improve
the SNR ratio we should increase the pump power (i.e., in-
crease N) until the second noise term becomes comparable to
the first. From now on we assume that this is the case, and that
the first noise term is smaller than or equal to the second.

The SNR is then

SNR2 =
√

nframes
PCoincid

2

P1
. (C13)

Hence the number of frames needed to exhibit two-photon
coincidences is

nframes
2 = SNR2

2
P1

PCoincid
2

= SNR2
2

n2
PixelsCond

η2
. (C14)

7. SNR for four-photon correlations

Similarly the number of fourfold coincidences on pixels
i, j, i′, and j′ follows from Eq. (C7):

NCoincid
4 (i j, i′ j′) = nframesPCoincid

4 (i j, i′ j′)

+ nframesP(click)4 + . . . . (C15)

013705-7



MASSAR, DEVAUX, AND LANTZ PHYSICAL REVIEW A 108, 013705 (2023)

The signal we want to measure is

S4 = nframesPCoincid
4 (C16)

while the noise is the statistical fluctuations of the two terms
in Eq. (C15):

N4 = ±
√

nframesPCoincid
4 + ±

√
nframesP(click)4. (C17)

One easily shows that two noise terms are comparable
when Eq. (C12) is satisfied. To make the SNR ratio maximal,
one should work in a regime where the pump power is large
enough that the first noise term is smaller than or equal to the
second.

The SNR is then

SNR4 =
√

nframes
PCoincid

4

P2
1

=
√

nframes

(
PCoincid

2

P1

)2

=
√

nframes
η2

n2
PixelsCond

. (C18)

Hence the number of frames needed to exhibit four-photon
coincidences is

nframes
4 = SNR2

4

(
P1

PCoincid
2

)4

= SNR2
4

n4
PixelsCond

η4
. (C19)

8. Effect of distinguishable photons

If one uses a long pump pulse (or equivalently a too broad
spectral filter), then photon pairs produced at different times
will be distinguishable. This situation would also arise if the
pump pulses were short enough, but the camera averages over
several successive pump pulses. We denote ntemp the number
of temporal modes that are averaged over in one camera
frame.

Then we have that P1, PCoincid
2 , and PCoincid

4 are all multi-
plied by ntemp.

Therefore the factor ntemp cancels in the SNR for pho-
ton pairs Eq. (C13). Hence one can study the photon pair
correlations using a clockwise pump (which is often done
experimentally).

However the factor ntemp does not cancel in the SNR
for four-photon coincidences. Indeed only a fraction 1/ntemp

fourfold coincidences will come from indistinguishable pairs
while all other fourfold coincidences will come from distin-
guishable pairs and will contribute to background but not to
the desired signal. Hence we will have

SNR4 → SNR4√
ntemp

(C20)

and

nframes
4 → ntempnframes

4 . (C21)

9. Estimation of the number of frames needed

We assume the following parameters:

η = 0.3,

nPixelsCond = 30,

SNR = 10,

nPixels

nPixelsCond
= 103. (C22)

The last estimate expresses the fact that the total size of
a camera image is much larger than the zone over which
photons are correlated. Hence a single camera image contains
effectively nPixels

nPixelsCond
independent images, each covering a zone

of size nPixelsCond, and the number of frames that need to be
taken is reduced by this factor.

Hence from Eq. (C14) we have

nframes
2 = 103 (C23)

and from Eq. (C19)

nframes
4 = 107. (C24)

This estimate is reduced if one wants to obtain a figure such
as Fig. 2 in the main text, as in this figure K ≈ 50 fourfold
correlations are averaged to obtain each pixel in the figure.
To obtain the same SNR, the number of frames required is
reduced by a factor K (see discussion in the next subsection).
We thus reach an estimate between 105 and 106 frames to
reproduce experimentally a figure such as Fig. 2.

10. Comparison between analytics and simulations in Fig. 2

In the simulation, we perform for each pixel of Fig. 2 an
average of K = 49 values of fourfold correlations between
Alice’s pixels of coordinates x1 and x2 and Bob’s pixels of
coordinates x′

1 and x′
2. The averaged values correspond to a

unique value of x1 − x2, x′
1 − x′

2. This averaging multiplies
the SNR by

√
S, giving, in the conditions of the simulation

corresponding to ntemp = 1, η = 1, an expected SNR of

SNR =
√

S
√

nframes

n2
PixelsCond

. (C25)

With nframes = 5 × 105, nPixelsCond = 32, we obtain with
Eq. (C25) an SNR of 4.8. This value of nPixelsCond seems
reasonable because of the decreasing of the correlations close
to the edges of the subfigures in Fig. 2.

We can compare this with the SNR estimated from the
images by comparing the analytical and the simulated values
in Fig. 2. This gives an estimated SNR of

SNRest = Analytic√
(Analytic − simulated)2

= 4.9. (C26)

There is thus a good agreement between the two estimates.

APPENDIX D: ENTANGLEMENT SWAPPING

We give here details about the interpretation in terms of
entanglement swapping.
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We suppose that the biphoton wave function is given
by Eq. (8) and that Alice detects her photons at positions
xA1 = (+a, 0) and xA2 = (−a, 0). We denote the transverse

coordinates on Bob’s detection plane by x′
1 = (x′

1, y′
1) and

x′
2 = (x′

2, y′
2). Then the wave function of Bob’s two photons

takes the form [insert Eq. (8) into Eq. (11)]

|φ〉 = exp

(
−α − iβ

4

[
(a − x′

1)2 + y′
1

2 + (a + x′
2)2 + y′

2
2]) + exp

(
−α − iβ

4

[
(a + x′

1)2 + y′
1

2 + (a − x′
2)2 + y′

2
2])

= exp

(
−α − iβ

4

(
y′

1
2 + y′

2
2)) exp

(
−α − iβ

4

(
2a2 + x′

1
2 + x′

2
2))

×
[

exp

(
−α − iβ

2
a(x′

2 − x′
1)

)
+ exp

(
−α − iβ

2
a(x′

1 − x′
2)

)]
. (D1)

We suppose that x′
1 = (x′

1, y′
1) and x′

2 = (x′
2, y′

2) are located
in the vicinity of (l, 0) and (−l, 0). We then write

x′
1 = l + δ′

1, x′
2 = −l + δ′

2. (D2)

We bound the region in which Bob’s particles can be located
by

−δ � δ′
1, δ

′
2 � +δ,

(D3)
−y � y′

1, y′
2 � +y

with

δ � l. (D4)

In order to simplify Eq. (D1) we make the following as-
sumptions:

β � α (large defocusing, i.e., Z � 1),

(α, β ) × y � 1 (neglect y dependence),

(a2, al, l2) × α � 1 (neglect all terms that depend on α),

δ2β � 1 (neglect second-order terms in δ′
1, δ

′
2),

(a2, al, l2) × β � 1 (keep phases proportional to β).

With these assumptions Eq. (D1) takes the form

φ � exp

(
i
β

2
(a2 + l2)

)

×
[

exp

(
i
β

2
[−2al + (l − a)δ′

1 − (l − a)δ′
2]

)

+ exp

(
i
β

2
[+2al + (l + a)δ′

1 − (l + a)δ′
2]

)]
(D5)

which we can rewrite in terms of momentum states as

|φ〉 � exp

(
i
β

2
(a2 + l2)

)(
exp (−iβal )

∣∣∣p′
1 = −βl

2
+ βa

2
; +l

〉∣∣∣p′
2 = +βl

2
− βa

2
; −l

〉
+ exp (+iβal )

∣∣∣p′
1

= −βl

2
− βa

2
; +l

〉∣∣∣p′
2 = +βl

2
+ βa

2
; −l

〉)
. (D6)

This is the expression given in the main text in Eq. (12).

APPENDIX E: DEMONSTRATING
ENTANGLEMENT SWAPPING

In the main text we sketched how to demonstrate experi-
mentally that state Eq. (D6) is entangled by inserting a SLM
in the beam of Bob’s photons (see Fig. 3 in the main text). We
present here the argument in more detail.

The state Eq. (D6) is a two-qubit state, which we can write
in abstract notation as

|φ〉 = a|0〉B|0〉B′ + b|1〉B|1〉B′ (E1)

where

a = exp (−iβal ),

b = exp (+iβal ),

|0〉B =
∣∣∣∣p′

1 = −βl

2
+ βa

2
; +l

〉
,

|1〉B =
∣∣∣∣p′

1 = −βl

2
− βa

2
; +l

〉
,

|0〉B′ =
∣∣∣∣p′

2 = +βl

2
− βa

2
; −l

〉
,

|1〉B′ =
∣∣∣∣p′

2 = +βl

2
+ βa

2
; −l

〉
, (E2)

and where the subscripts B and B′ denote the photons that are
located near +l and −l , respectively.

Measuring in the {|0〉B, |1〉B} and {|0〉B′ , |1〉B′ } bases is
straightforward. First insert a mirror to separate spatially the
B states from the B′ states (recall that these states are localized
in momentum and in space). Then put the CCD camera in the
far field.

But measuring only in the computational basis (the basis
{|0〉, |1〉}) is not enough to demonstrate entanglement. For this
we need additional measurements. We show how to do so
using a SLM.
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Suppose that we put on the SLM a periodic phase profile
ϕ(x) = ε cos(kx + θ ). Then a wave function ψ (x) becomes

ψ (x) → ψ (x)eiϕ(x). (E3)

We can expand the phase in Fourier series as

eiε cos(kx+θ ) =
∑

n

an(ε)ein(kx+θ )

≈ 1 + i
ε

2
ei(kx+θ ) + i

ε

2
e−i(kx+θ ) + O(ε2) (E4)

where the exact coefficients an(ε) = inJn(ε) follow from the
Jacobi-Anger expansion (with Jn the Bessel function of the
first kind). In the second line we give the expression for
small ε which we use below as it is conceptually simpler, and
sufficient to demonstrate the principle.

From Eq. (E4) it follows that acting on a momentum state
|p〉, the SLM carries out the transformation

|p〉 → |p〉 + i
εeiθ

2
|p − k〉 + i

εe−iθ

2
|p + k〉. (E5)

Acting on the superposition of two momentum states
|ψ〉 = α|p〉 + β|p + k〉 (where we suppose that the momenta
differ by exactly the wave number k of the SLM phase), we
therefore have

|ψ〉 = α|p〉+ β|p+ k〉 → i
εeiθ

2
α|p− k〉+

(
α + i

εeiθ

2
β

)
|p〉

+
(

β + i
εe−iθ

2
α

)
|p + k〉 + i

εe−iθ

2
β|p + 2k〉. (E6)

By measuring in the far field, the probability of finding the
photon in spots corresponding to momenta p and p + k will
be equal to the norm square of the coefficients of the second
and third line in Eq. (E6). These probabilities are proportional
to ∣∣∣∣

(
〈p| − i

εe−iθ

2
〈p + k|

)
|ψ〉

∣∣∣∣
2

,

∣∣∣∣
(

− i
εe+iθ

2
〈p| + 〈p + k|

)
|ψ〉

∣∣∣∣
2

, (E7)

respectively.
Therefore by both measuring in the original {|p〉, |p + k〉}

basis and carrying out the above measurement for different
values of θ (for fixed ε) one easily obtains tomographically
complete information on the state.

Note that using the Jacobi-Anger expansion mentioned in
Eq. (E4), one can carry out the above analysis for a finite value
of ε. One finds for instance that the probabilities for the far-
field probabilities at momenta p and p + k are given by

|(a∗
0〈p| + a∗

1e−iθ 〈p + k|)|ψ〉|2,
(E8)

|(a∗
−1e+iθ 〈p| + a∗

0〈p + k|)|ψ〉|2

instead of the approximate expression Eq. (E7).
Going back to the problem Eqs. (E1) and (E2), we see that

choosing k = βa for the wave number of the phase on the
SLM will allow one to do a tomographically complete set of
measurements on the state Eq. (E1).
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