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Quantum interference and controllable magic cavity QED via a giant atom
in a coupled resonator waveguide
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We study the Markovian and non-Markovian dynamics in a giant atom system which couples to a coupled
resonator waveguide (CRW) via two distant sites. Under certain conditions, we find that the giant atom
population can exhibit an oscillating behavior and the photon can be trapped in the giant atom regime. These
phenomena are induced by the interference effect among the bound states both in and outside the continuum,
which is peculiar for two-site atom-CRW coupling. As an application of the photon trapping, we theoretically
propose a magic cavity model where the giant atom serves as either a perfect or leaky cavity, depending on the
distance between the coupling sites. The controllability of the magic cavity from a perfect to a leaky one cannot
be realized in the traditional cavity or circuit QED setup. The predicted effects can be probed in state-of-the-art
waveguide QED experiments and provide a striking example of how the different kinds of bound states modify
the dynamics of a quantum open system in a structured environment.
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I. INTRODUCTION

Ever since the pioneering work which couples the trans-
mon qubits to the propagating surface acoustic wave [1,2],
the giant atom (GA), which can also be realized by a super-
conducting qubit [3–5] and magnon spin ensemble [6], has
attracted considerable attention in the context of waveguide
QED. Beyond the dipole approximation in the conventional
quantum optics treatment, the GA couples to the waveg-
uide via more than one connecting point [7]. The nonlocal
light-matter interaction in GA gives rise to lots of interest-
ing physical effects, such as frequency-dependent relaxation
[8,9], decoherence-free interaction [10,11], chiral photonic
population [12–15], non-Markovian oscillating [2,3,16–18],
and phase controlled entanglement [19,20], just to name a
few. In these works, the non-negligible time and phase accu-
mulation as the photon propagates between and among the
atom-waveguide coupling points play predominant roles.

The GA in most of the previous studies is usually assumed
to couple to the waveguide with a linear dispersion relation
[19,21–23], in which the group velocity of the photon is
independent of the wave vector. However, the discrete site
waveguide via tight-binding interaction can be constructed by
photonic crystals or superconducting quantum circuits with
the technologies that are available nowadays [24–27]. Such
waveguide supports a quasicontinual band structure with co-
sine dispersion relation. Therefore, a natural question arises:
How does the GA behave in a structured environment which
is composed of the coupled resonator waveguide (CRW)? In
this paper, we address this question by analyzing a system
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where a two-level GA couples a CRW via two coupling points.
Appropriately choosing the distance between the two cou-
pling points, we can achieve the atomic oscillation beyond
the Markovian dynamics, in which case the photon is trapped
inside the GA regime via the quantum interference effect. We
find that this behavior is led by the interference between the
bound states in the continuum (BIC) [28–32] and outside of
the continuum (BOC) [33–36]. It is therefore dramatically
different from the mechanism of the oscillating bound state
in a linear waveguide and the CRW in Ref. [37], where only
the BICs are involved with some harsh terms. Thanks to the
BIC-BOC interference mechanism in our two-site coupling
scheme, it becomes much easier to implement compared to
the multiple coupling points scheme in Ref. [37].

As an application of the photon trapping by GA, we pro-
pose an effective magic cavity QED setup by introducing
another auxiliary conventional small atom, which locates be-
tween the coupling points between the GA and CRW. Here,
the GA serves as a controllable magic cavity and the small
atom plays as the emitter. Different from the magic cavity
formed by two small atoms in a linear or nonlinear waveguide
[38–40], our effective magic cavity can be either a perfect or
a leaky one, depending on the distance between the atom-
waveguide coupling points, due to its size-dependent decay
rate. We further show the Rabi splitting and oscillation in the
perfect cavity and dark state, which is a BIC in the leaky cavity
limit, respectively.

II. SINGLE GIANT ATOM

As schematically shown in Fig. 1(a), we begin with the
model that a single GA couples to a CRW via two coupling
sites, which are labeled 0 and N , respectively. The CRW is
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FIG. 1. (a) Sketch of the waveguide QED setup, where a GA
is coupled to a CRW via two sites with labels 0 and N . (b) The
corresponding energy diagram in the single excitation subspace.
(c) Atomic population and (d) photonic amplitudes for the bound
state inside and outside of the continual band. The parameters are set
as � = ωc = 0, N = 6 in (b)–(d) and g = 0.15ξ in (d).

modeled by the tight-binding Hamiltonian (hereafter h̄ = 1)

HC = ωc

∑
j

a†
j a j − ξ

∑
j

(a†
j+1a j + a†

j a j+1), (1)

where aj is the photon annihilation operator of the jth res-
onator, and ωc and 4ξ are the central frequency and the total
width of the continuum, respectively. The Hamiltonian of the
whole system, including the GA and the CRW, is

Hs = HC + �σ+σ− + g[(a†
0 + a†

N )σ− + (a0 + aN )σ+], (2)

where � is the transition frequency of the GA between its
ground state |g〉 and excited state |e〉, σ+ = (σ−)† = |e〉〈g| is
the raising operator of the GA, and g is the coupling strength
between the GA and the resonator in the waveguide.

Now, we resort to the Fourier transformation a†
k =∑

j e−ik ja†
j/

√
Nc, with Nc → ∞ being the length of the CRW,

and the Hamiltonian in the momentum space yields

Hs = �σ+σ− +
∑

k

ωka†
kak +

∑
k

[gka†
kσ− + H.c.]. (3)

Here, the dispersion relation of the waveguide satisfies
ωk = ωc − 2ξ cos k, gk = g(1 + eikN )/

√
Nc, and the coupling

strength g is considered to be real. In what follows, we will
consider that the giant atom is resonant with the bare resonator
in the waveguide and set their frequency as zero, that is,
� = ωc = 0, such that the waveguide supplies an effective
structured environment for the GA.

As shown in Fig. 1(b), we illustrate the energy spectrum of
the whole GA-CRW coupled system in the single excitation
subspace as a function of the coupling strength g by setting
N = 6. We observe a continual band in the frequency regime
between −2ξ and 2ξ , which is the same as that without the

giant atom. Moreover, the giant atom gives birth to three
exotic states (EU , EL, and EI ), which are denoted by the red
solid lines in Fig. 1(b). To study them in detail, we assume
the single excitation wave function in the momentum state as
|Eα〉 = (

∑
k bα,ka†

k + cασ+)|g, vac〉; the eigenenergy E then
satisfies the transcendental equation (see Appendix A for the
detailed derivations)

E = g2

π

∫ π

−π

dk
1 + cos kN

E + 2ξ cos k
. (4)

In the regime of |E | > 2ξ , we find a pair of solutions which
locate outside of the continuum [41–43] and are denoted by
EU and EL, respectively. These two energies come from the
breakdown of the translational symmetry, which is induced
by the GA-CRW coupling. With the increase of coupling
strength, they gradually depart from the upper and lower
boundaries of the continuum, and therefore we name them
BOC. One should note that these BOCs are not unique for the
GA. For example, when a small atom couples to the CRW,
we can still observe the BOCs [42]. These two BOCs are
actually the atom-photon hybrid state. For the atom partner, as
show in Fig. 1(c), the atomic population satisfies |cU | = |cL|
and increases with the GA-CRW coupling strength. This trend
is also similar to that in the small atom setup [42]. For the
photonic partner, we show that it is centralized at the two legs
of the GA and exponentially decays along two directions; this
is why we named them BOC. Meanwhile, is satisfies the sym-
metry relation dU, j = (−1) j+1dL, j , as sketched in Fig. 1(d),
where dα, j = ∑

k bα,ke−ik j/
√

Nc is the photonic excitation
amplitudes in the jth site for the state |Eα〉.

In addition, we also unexpectedly find that E = 0 is a
solution to Eq. (4), which is denoted by EI in Fig. 1(b). Since
it locates inside the continuum, and hybrids the atomic and
photonic excitation as shown in Figs. 1(c) and 1(d), we name
it BIC. In Fig. 1(c), we sketch the atomic population |cα|2
for the BIC. The single excitation is mainly on the atom in
the weak-coupling regime, and continually decreases as the
coupling strength increases. For the other eigenstates except
for these three bound states, there is almost no atomic ex-
citation. Meanwhile, different from the BOCs, the photonic
excitation probability is only valued at the first, third, and fifth
lattices which are between the two legs of the GA for BIC.
The photonic amplitudes satisfy dI,1 = −dI,3 = dI,5 [see the
red curve in Fig. 1(d)] and more discussions about the BIC
are given in Appendix A.

The above results show that the BIC exists in the single
two-leg giant atom system when � = ωc, N = 6. We also find
that the BIC is always present when

∑M
1 exp(iKn j ) = 0 in a

single giant atom with more than two legs. Here, K satisfies
� = ωc − 2ξ cos K , n j is the position of the jth coupling
point in the coupled resonator waveguide, and M is the num-
ber of the total coupling points between the giant atom and the
CRW; this result agrees with that given in Ref. [37].

A. Markovian dynamics

In Figs. 2(a) and 2(b), we show the evolution of the ex-
cited state population Pe(t ) = 〈|e〉〈e|〉 for the initially excited
GA. Under the Markov approximation, the master equation is
obtained as (see Appendix B and Ref. [44] for the detailed
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FIG. 2. Evolution of the (a),(b) atomic excited state and
(c),(d) photonic population. We set (a),(c) N = 4 and (b),(d) N = 6.
(e) Time evolution of D(t ) in Eq. (8). (f) Photonic population inside
of the regime of the giant atom for N = 6. The parameters are set as
� = ωc, g = 0.1ξ .

derivation)

ρ̇ = − i�[|e〉〈e|, ρ] + (A + A∗)σ−ρσ+ − Aσ+σ−ρ

− A∗ρσ+σ−, (5)

where

A = g2

ξ
(1 + eiπN/2). (6)

In the case of N = 4, we show an exponential decay in
Fig. 2(a) for the atomic excitation. It shows that the results
based on the Markovian approximation agree with the nu-
merical results well. However, the Markovian approximation
is not valid for N = 6, and the numerical result in Fig. 2(b)
yields a small decay initially and a nearly steady oscillation
after a long time evolution. In Figs. 2(c) and 2(d), we fur-
thermore numerically illustrate the evolution of the photonic
distribution under the same initial state. For N = 4, the photon
emitted by the GA occupies in the resonator labeled by j = 2
and gradually diffuses to the whole waveguide, as shown in
Fig. 2(c). Therefore, the waveguide, which acts as the mem-
oryless environment, leads to an exponential atomic decay,
being similar to that under the Markovian approximation as
shown in Fig. 2(a). For N = 6, the photon is trapped in the
resonators between the two legs of the GA with site number
label j = 1, 3, 5, leading to an obvious non-Markovian atomic
evolution. The above atomic decay (oscillation) phenomena

also occur for N = 4m (N = 4m + 2) for arbitrary integer m
when g � ξ [44].

B. Non-Markovian dynamics

To understand how the quantum interference effect leads to
these dramatically different dynamical behaviors in Figs. 2(a)
and 2(b), we write the single excitation wave function as

|ψ (t )〉 = e−i�t

[
α(t )σ+|G〉 +

∑
k

βk (t )a†
k |G〉

]
, (7)

and perform some detailed calculations under the Weisskopf-
Wigner approximation, as shown in Appendix C, in which the
atomic excitation amplitude can be obtained as

α(t ) = e−D(t ), (8)

where D(t ) = −2g2
∫ t

0 dt1
∫ t1

0 dτG(τ ), and G(τ ) =
J0(2ξτ ) + iN JN (2ξτ ). In Figs. 2(a) and 2(b), we give the
atomic dynamics based on Eq. (8). When N = 4, the results
of the non-Markovian approximation based on Eq. (8) agree
well with the numerical simulation. However, for N = 6, the
Markovian approximation breaks down and Eq. (8) predicts a
valid result in comparison to the numerical calculations.

Furthermore, the photonic population in the real space is

β j = 1√
Nc

∑
k

βke−ik j = −ig
∫ t

0
dτα(t − τ )Fj (τ ), (9)

where the quantum interference effect can be extracted
from the functions G(τ ) = J0(2ξτ ) + iN JN (2ξτ ) and Fj (τ ) =
i jJj (2ξτ ) + i j−N Jj−N (2ξτ ), with Jm being the mth-order
Bessel function. First, for the case of N = 4, the constructive
interference with G(τ ) = J0 + J4 leads to a fast atomic decay.
As for the photon distribution, the constructive interference
F2(τ ) = −2J2(2ξτ ) and the destructive interference F1(τ ) =
F3(τ ) = i[J1(2ξτ ) − J3(2ξτ )] lead to the photonic occupation
in the resonator with j = 2 at the early time, as shown in
Fig. 2(c). Second, for N = 6, the destructive interference with
G(τ ) = J0(2ξτ ) − J6(2ξτ ) leads to the dissipation suppres-
sion and constructive (destructive) interference between the
two Bessel functions in Fj for j = 1, 3, 5 (2,4), which leads
to the striped photonic distribution as shown in Fig. 2(d). In
Fig. 2(e), we plot the curve for D(t ) as a function of the
evolution time t . We observe that D(t ) will obtain a relatively
larger positive value for N = 4 than that of N = 6, while the
former one increases with time and the latter one keeps a
steady small value as the time evolution. This fact agrees with
the results in Figs. 2(a) and 2(b) in that the atom will dissipate
fast for N = 4, while keeping a large excitation state popu-
lation for N = 6. Furthermore, according to Eq. (9), we give
the distribution of photons in 0,1,2,3 lattices in the waveguide
when N = 6, as sketched in Fig. 2(f). The result is completely
consistent with Fig. 2(d), in which the second site has almost
no photons, and the photons are concentrated in the first and
third sites.

C. BIC-BOC oscillation

Meanwhile, the small oscillation in Figs. 2(b) and 2(d) for
N = 6 indicates that the GA coherently exchanges excitation
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FIG. 3. (a) Evolution of atomic excitation probability based on
numerical calculation (red solid line) and Eq. (10) (green dashed
line). (b) Evolution of photonic population |β1|2 and |β3|2. The
parameters are set as N = 6, � = ωc = 0, g = 0.8ξ .

with the photon in the waveguide. The oscillation behavior can
be explained by the interference between the BIC and BOCs
during the time evolution. Enlightened by the atomic popula-
tion for BIC and BOCs, as shown in Fig. 1(c), the initial state
|ψ (0)〉 = σ+|g, vac〉 can be written as |ψ (0)〉 = cU |EU 〉 +
cL|EL〉 + cI |EI〉 + ∑

c ck|Ek〉, where |Ek〉 is the states in the
continuum. Then, the state of the system at long time moment
t is obtained as |ψ (t )〉 = e−iEI t [e−iδt cU |EU 〉 + eiδt cL|EL〉 +
cI |EI〉], where δ = EU − EI = EI − EL is the detuning be-
tween the BIC and the BOC, and the states in the continuum
will play no role in the atomic population when the evolution
time is long enough. As a result, we will obtain

|α(t )|2 = ∣∣c2
I + 2c2

U cos(δt )
∣∣2

, (10)

|β j (t )|2 = |e−iδt cU dU, j + eiδt cLdL, j + cI dI, j |2. (11)

Therefore, the transition between BOCs and BIC induces
the excitation exchange between the GA and the photon
with the period T = 2π/δ, and we show the agreement be-
tween the results based on the above equation and those
obtained numerically in Fig. 3(a). To show an obvious oscilla-
tion, here we choose a larger GA-waveguide coupling strength
g = 0.8ξ , in which the Weisskopf-Wigner approximation no
longer works. In Fig. 3(b), we illustrate the photonic pop-
ulation, which shows that the photon oscillates between the
different resonators with odd labels.

III. MAGIC CAVITY QED MODEL

The above results show that the GA with appropriate size
will effectively prevent the photon in the waveguide between
the coupling points from escaping, which is similar to a two-
atom setup [38–40]. It has the same effect as the traditional
optical cavity, that is, trapping photons. Followed by the two-
atom setup with a linear waveguide [40] or CRW [39], we
name this giant atom as a magic cavity. One of the promising
applications is to construct a controllable cavity-QED setup
by effectively coupling a conventional small atom to the magic
cavity. To this end, we introduce an auxiliary small two-level
atom, which has the same transition frequency � with the GA

FIG. 4. (a) Sketch of the magic cavity QED setup, where an aux-
iliary small atom is introduced. (b) Excitation of the giant atom as a
function of the driving detuning 
. (c) Population of the GA 〈σ+σ−〉
and the small atom 〈τ+τ−〉 when the driving field is absent. (d) Pop-
ulation of the small atom with and without the GA. In (c) and (d),
the circles represent the numerical result, the triangles are the results
of the Markovian approximation master equation (13), and the solid
lines are obtained based on the non-Markovian approximation given
by Eq. (20). The parameters are set as (b) � = ωc = 0, η = 10−3ξ ,
(c) N = 6, M = 1, (d) N = 4, M = 2, and (b)–(d) g = gs = 0.1ξ .

and is located in the Mth (0 < M < N) resonator. As shown
in Fig. 4(a), the Hamiltonian of the magic cavity QED model
is written as

HQED = Hs + �τ+τ− + gs(τ+aM + a†
Mτ−), (12)

where τ± is the Pauli operator for the auxiliary small atom,
and real gs is its coupling strength to the Mth resonator in the
CRW.

Taking the CRW as the structured environment and per-
forming the Markovian approximation, the dynamics of the
magic cavity QED mode is governed by the master equa-
tion (see Appendix B)

d

dt
ρ = − i[Heff , ρ] + γgD[σ+,σ−]ρ + γsD[τ+,τ−]ρ

+ γI (D[τ+,σ−]ρ + D[σ+,τ−]ρ), (13)

where D[O1,O2]ρ = 2O2ρO1 − ρO1O2 − O1O2ρ. Here, γg =
ReA, A = g2(1 + iN )/ξ , and γs = g2

s/(2ξ ) are the individ-
ual decay rates of the giant and small atoms, respectively.
γI = ReB, B = ggs(iM + i(N−M ) )/(2ξ ) is their collective de-
cay rate, which is induced by the common CRW environment.
Taking the classical driving to the GA into consideration, the
effective Hamiltonian in the rotating frame is expressed as

Heff = (
 + δg)σ+σ− + 
τ+τ−
+gI (σ+τ− + τ+σ−) + η(σ+ + σ−), (14)

where 
 is the detuning between the atom and the driving
field, and η is the driving strength. δg = ImA and gI = ImB
are the CRW-induced Lamb shift for the GA and effective
coupling strength between the two atoms, respectively.

013704-4



QUANTUM INTERFERENCE AND CONTROLLABLE MAGIC … PHYSICAL REVIEW A 108, 013704 (2023)

The results within Markovian approximation tell us that
the GA with N = 6 will not dissipate; that is, it forms a
perfect magic cavity. In Fig. 4(b), we plot the GA popu-
lation as a function of the detuning 
 for different setups.
The typical Rabi splitting for N = 6, M = 1 implies that we
have achieved the strong coupling gI = ggs/ξ in the effective
magic cavity QED model. Also, the fact that γI = 0 implies
that the collective dissipation disappears, so that we reach
a cavity QED model in which only the small atom under-
goes dissipation. We can also observe the Rabi oscillation as
shown in Fig. 4(c), where the external driving is dismissed
and the initial state is prepared as |ψ (0)〉 = σ+|g, g, vac〉 in
the numerical simulation. It further predicts the validity of the
effective magic cavity QED model and the decrease of the
oscillation amplitudes are only due to the dissipation of the
small atom.

Now, we investigate how the magic cavity QED system
behaves for N = 4, where the GA acts as a leaky magic cavity
due to its decay, as shown in Fig. 2(a). When the small atom
is located in the resonator with M = 1, it cannot effectively
couple to the GA (gI = γI = 0). Meanwhile, both the small
atom and GA emit a photon to the CRW and we observe a
nearly flat curve for the GA population in Fig. 4(b). Alterna-
tively, as for M = 2, although the small atom and GA cannot
effectively couple to each other coherently, they undergo col-
lective dissipation to the CRW and a single peak appears when
the GA is driven resonantly, as shown in Fig. 4(b). Via the
collective dissipation, the GA will modulate the dissipation
of the small atom. As shown in Fig. 4(d), the small atom
undergoes an exponential decay with a characteristic rate γs

in the absence of GA (g = 0). The role of the GA is clearly
demonstrated in Fig. 4(d), in which we observe a fast initial
decay, which is induced by the collective dissipation between
the small atom and GA. After that, the system is trapped
in the single excitation subspace without further decay. This
rather unexpected feature can be explained by the dark-state
mechanism. We find that the master equation in the case of
N = 4, M = 2 can be simplified as

dρ

dt
= 2KρK† − ρK†K − K†Kρ, (15)

where K = √
γgσ− + √

γsτ−. Therefore, the dark state in the
single excitation subspace is expressed as

|D〉 = (
√

γsσ+ − √
γgτ+)|g, g〉√

γs + γg
. (16)

This explains why the population of the small atom finally
achieves the steady value

〈τ+τ−〉(t → ∞) = γ 2
g

(γs + γg)2
(17)

for the initial state |ψ (0)〉 = τ+|g, g〉. Furthermore, we also
numerically find a BIC (|Em

I 〉) in this setup, which is free of
decoherence. In terms of this BIC, the final population of the
small atom is

〈τ+τ−〉(t → ∞) = ∣∣〈ψ (0)
∣∣Em

I

〉〈
Em

I

∣∣τ+
∣∣G〉∣∣2

. (18)

In such a way, we find that the dark state emerges into the
BIC, being similar to the two small atom setup, which couples

to a common CRW [45,46]. Meanwhile, since 〈ψ (0)|Em
α 〉 �

〈ψ (0)|Em
I 〉, (α = U, L), we find that the BOCs play a negli-

gible role in the dynamics. Therefore, we observe a steady but
not oscillation state in the magic cavity setup.

For the magic cavity system composed of a two-leg GA
and a single small atom, as shown in Fig. 4(a), the condition
for BIC can be summarized as KM = mπ, K (N − M ) = nπ,

(m, n ∈ Z and are both odd or both even), where � = ωc −
2ξ cos K . The case for the magic cavity QED model with a
multiple-leg giant atom is beyond our consideration in this
work.

Whether the small atom and GA undergo the coherent
interaction and collective dissipation can also be explained
beyond the Markovian process. To this end, we write the
wave function of the magic cavity QED system in the single
excitation subspace as

|ψ (t )〉 = αg(t )σ+|G〉 + αs(t )τ+|G〉 +
∑

k

βk (t )a†
k |G〉. (19)

We set the initial condition as |ψ (0)〉 = τ+|G〉, and the dy-
namical equations for αg and αs can be obtained as (see
Appendix C)

α̇g(t ) = Mgg(t )αg(t ) + Mgs(t )αs(t ),

α̇s(t ) = Mgs(t )αg(t ) + Mss(t )αs(t ), (20)

where

Mgg = −2g2
∫ t

0
dτG(τ ), Mss = −g2

s

∫ t

0
dτJ0(2ξτ ),

Mgs = −ggs

∫ t

0
dτQ(τ ). (21)

Therefore, the information of the interaction between the
small atom and GA can be extracted from

Q(τ ) = iMJM (2ξτ ) + iN−MJN−M (2ξτ ). (22)

For the case of N = 6, M = 1, we will reach Q(τ ) =
i[J1(2ξτ ) + J5(2ξτ )], in which the constructive interference
of the terms leads to a strong interaction, and we can observe a
Rabi splitting and oscillation. Similarly, for the case of N = 4,
the constructive interference for M = 2 and destructive inter-
ference for M = 1 leads to the dramatically different results,
which are shown in Fig. 4(b).

We note that in Figs. 4(c) and 4(d), we also give the com-
parison of the results of numerical, Markovian approximation,
and non-Markovian approximation. The three results agree
with each other in the considered parameter regime. It means
that the interference effect as well as the BIC play a key role
in the magic cavity QED system.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have proposed a magic cavity realized by
the on-demand GA, which couples to a CRW via two con-
necting points. Such GA traps the emitted photons between
the coupling points via the BIC-BOC interference mechanism.
We further proposed an effective magic cavity QED setup,
which can be tuned from the perfect cavity to a leaky cavity,
and therefore overcomes the difficulty of nonadjustability in
the real cavity QED scenarios. In the microwave domain,

013704-5



ZHANG, LIU, GONG, AND WANG PHYSICAL REVIEW A 108, 013704 (2023)

the GA has been realized by coupling the transmon qubit to
the transmission line. In such systems, the parameters can
be achieved in the regime g, gs � ξ ≈ 50–200 MHz with the
existing technology [47–49]. Alternatively, the single small
atom can also be implemented by the superconducting qubits
[50]. The single small atom can also be replaced by an ensem-
ble of Rydberg atoms to enhance the light-matter interaction
and demonstrate the effects in the magic cavity QED model
which is predicted in this paper.

In the previous studies, it was shown that the bound state
in the open system is helpful for preventing decoherence and
beneficial for quantum precision measurement [51,52]. Here
we further exhibit how the interference effect among different
kinds of bound states modifies the dynamics of a quantum
system in the structured environment and can be developed to
a more complex waveguide setup or to investigate the many-
body physics.
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APPENDIX A: BOUND STATE IN THE CONTINUUM (BIC)

In this Appendix, we discuss the property and existence
condition of the BIC.

We first consider that a single giant atom couples to the
CRW via the zeroth and N th resonators, in which the Hamil-
tonian is written as (h̄ = 1)

HGA = ωc

∑
j

a†
j a j − ξ

∑
j

(a†
j+1a j + a†

j a j+1) + �σ+σ−

+ g[(a†
0 + a†

N )σ− + (a0 + aN )σ+]. (A1)

Working in the momentum space, we introduce the Fourier
transformation a j = ∑

k akeik j/
√

Nc, with Nc = ∞ being the
length of the CRW; then the Hamiltonian becomes HGA =
H0 + HI , where

H0 =
∑

k

ωka†
kak + �|e〉〈e|, (A2)

HI = g√
Nc

∑
k

[(1 + eikN )a†
kσ− + H.c.], (A3)

where ωk = ωc − 2ξ cos k is the dispersion relation of the
CRW.

Based on the Hamiltonian in Eqs. (A2) and (A3), we can
obtain the bound state of the atom-waveguide coupled system.
To this end, we assume the eigenstate |E〉 with eigenenergy E
in the single excitation subspace as

|E〉 =
( ∑

k

bka†
k + cσ+

)
|g, vac〉. (A4)

Then the Schrödinger equation H |E〉 = E |E〉 yields the cou-
pled equations

cE = g√
Nc

∑
k

bk (1 + e−ikN ), (A5)

(E + 2ξ cos k)bk = g√
Nc

c(1 + eikN ), (A6)

where we have set ωc = � = 0. As a result, eliminating the
photonic amplitudes bk , we will obtain the transcendental
equation for the eigenenergy as

E = g2

π

∫ π

−π

dk
1 + cos kN

E + 2ξ cos k
. (A7)

Reference [34] shows that one can always obtain two BOCs,
in which the photon is mainly populated on the atom-
waveguide coupling sites. We also find the interesting BIC
with E = 0 for N = 4m + 2, m ∈ Z . In this case, we can
obtain, from Eq. (A6),

bk

c
= g(1 + eikN )

2ξ
√

Nc cos k
. (A8)

Furthermore, we can extract the photonic distribution in the
real space as

b j

c
= 1√

Nc

∑
k

bk

c
e−ik j =

∑
k

g(1 + eikN )eik j

2ξNc cos k

= g

4πξ

∫ π

−π

dk
(1 + eikN )eik j

cos k
. (A9)

In Figs. 5(a) and 5(b), we show the histogram for the photonic
distribution for N = 6 and N = 10, respectively. It shows that
the photon is bounded inside the giant atom (bj = 0 for j > N
or j < 0). Moreover, the photons only uniformly populate
the sites with odd number for j = 1, 3, 5, . . . . Meanwhile,
we find that the value of bj/c increases with the coupling
strength g; therefore, the atomic population decreases after
normalization, as shown in Fig. 5(c).

For the magic QED system, we also find a BIC for N =
4, M = 2, in which the population for the small atom 〈τ+τ−〉
and giant atom 〈σ+σ−〉 is plotted as a function of coupling
strength g and gs in Figs. 6(a) and 6(b). For g = 0.1ξ, gs =
0.1ξ , we plot the photonic population for the BIC in Fig. 6(c),
which shows that the photons are only bound in the first and
third sites.

The above discussions and the results in the main text show
that the BIC exists in the single two-leg giant atom system
when � = ωc, N = 6 and magic QED system when � =
ωc, N = 4, M = 2. We also find that the BIC is always present
when

∑M
1 exp(iKn j ) = 0 in a single giant atom with more

than two legs, where K satisfies � = ωc − 2ξ cos K and n j is
the position of the jth coupling point in the coupled resonator
waveguide and M is the number of the total coupling points
between the giant atom and the CRW; this result agrees with
that given in Ref. [37]. Moreover, for the magic cavity system
composed of a two-leg giant atom and a single small atom, as
shown in Fig. 4(a) of the main text, the condition for BIC can
be summarized as KM = mπ, K (N − M ) = nπ, (m, n ∈ Z
and are both odd or both even), where � = ωc − 2ξ cos K .
The case for a magic cavity QED model with a multiple-leg
giant atom is beyond our consideration in this work.
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FIG. 5. (a),(b) Photonic distribution and (c) atomic excitation in the BIC. The parameters are set as (a) � = ωc = 0 and N = 6, g = 0.1ξ

and (b) N = 10, g = 0.1ξ . In (c), the solid (dashed) line represents N = 6 (10).

APPENDIX B: MASTER EQUATION UNDER MARKOVIAN
APPROXIMATION

In this Appendix, we derive the master equation which
governs the dynamics of the system by considering the
coupled resonator waveguide (CRW) as the structured envi-
ronment; the similar calculation can also be found in Ref. [44].

In the interaction picture, the interaction Hamiltonian is
written as

HI (t ) = g
2∑

i=1

[σ+E (ni, t )ei�t + σ−E†(ni, t )e−i�t ], (B1)

where E (ni, t ) = 1√
Nc

∑
k (e−iωkt eikni ak ) and n1 = 0, n2 = N .

Under the Markov approximation and working in the interac-
tion picture, the formal master equation for a quantum open
system reads

ρ̇(t ) = −
∫ ∞

0
dτTrc[HI (t ), [HI (t − τ ), ρc ⊗ ρ(t )]]. (B2)

Since we are working at zero temperature, the CRW
is in the vacuum state initially; therefore, we will have
Trc[E†(ni, t )E (nj, t − τ )ρc] = 0 and the above equation be-
comes (going back to the Schrödinger picture)

ρ̇ = − i�[|e〉〈e|, ρ] + (A + A∗)σ−ρσ+ − Aσ+σ−ρ

− A∗ρσ+σ−, (B3)

where [42]

A = g2
∫ ∞

0
dτei�τ Trc

⎡
⎣∑

i, j

E (ni, t )E+(n j, t − τ )ρc

⎤
⎦

= g2
∑
i, j

∫ ∞

0
dτei�τ Tr[E (ni, t )E+(n j, t − τ )ρc]

= g2
∑
i, j

∫ ∞

0
dτ

ei�τ

Nc

× Tr

[ ∑
k,k′

e−iωkt eikni akeiωk′ (t−τ )e−ik′n j a†
k′ρc

]

= g2
∑
i, j

∫ ∞

0
dτ

1

Nc

∑
k

[e−i(ωk−�)τ e−ik(n j−ni )]

= g2
∑
i, j

∫ ∞

0
dτ

1

Nc

Nc−1∑
n=0

e−i
cτ e
−2π i(n j −ni )n

Nc e2iξ cos( 2πn
Nc

)τ

= g2
∑
i, j

∫ ∞

0
dτ

e−i
cτ

Nc

Nc−1∑
n=0

e
−2π i(n j −ni )n

Nc

×
∞∑

m=−∞
imJm(2ξτ )ei2πnm/Nc
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FIG. 6. Population of the (a) small atom and (b) giant atom for the BIC in the magic cavity QED setup. (c) Photon distribution for the BIC
when g = gs = 0.1ξ . The parameters are set as N = 4, M = 2, and � = ωc = 0.

013704-7



ZHANG, LIU, GONG, AND WANG PHYSICAL REVIEW A 108, 013704 (2023)

= g2
∑
i, j

∫ ∞

0
dτe−i
cτ i|ni−n j |J|ni−n j |(2ξτ )

= g2
∑
i, j

1

2ξ
e

iπ |ni−n j |
2 = g2

ξ
(1 + eiπ |n1−n2|/2). (B4)

In the above calculations, we have considered that the giant
atom is resonant with the bare cavity (
c := ωc − � = 0),
and used the formula∫ ∞

0
dτJm(aτ ) = 1

|a| . (B5)

Back to the configuration we are considering (n1 = 0, n2 =
N), we finally obtain

A = g2

ξ
(1 + eiπN/2). (B6)

Therefore, we will have A = 2g2/ξ for N = 4, in which the gi-
ant atom undergoes an exponential decay. More interestingly,
when N = 6, we will have A = 0, which implies that the giant
atom will not decay within the Markovian approximation.

Then, we further consider the magic cavity QED system
where an additional small atom couples to the Mth (0 < M <

N) resonator in CRW, and the interaction Hamiltonian in the
momentum space is written as

HI (t ) = g
2∑

i=1

[σ+E (ni, t )ei�t + σ−E†(ni, t )e−i�t ]

+ gs[τ+E (m, t )ei�t + τ−E†(m, t )e−i�t ]. (B7)

Following the similar derivations as those for a single giant
atom, the master equation for the magic cavity QED model
can be obtained as

dρ

dt
= − i�[σ+σ− + τ+τ−, ρ]

+ (A1 + A∗
1 )σ−ρσ+ − A1σ+σ−ρ − A∗

1ρσ+σ−
+ A2[2τ−ρτ+ − τ+τ−ρ − ρτ+τ−]

+ (B + B∗)(σ−ρτ+ + τ−ρσ+) − B(τ+σ−ρ + τ−σ+ρ)

− B∗(ρτ+σ− + ρτ−σ+), (B8)

where

A1 = g2(1 + iN )

ξ
, A2 = g2

s

2ξ
, B = ggs

2ξ
[iM + i(N−M )]. (B9)

When the external driving is taken into consideration phe-
nomenologically, we should work in the rotating frame to
eliminate the time dependence in the Hamiltonian. After re-
grouping some individual terms, we will get the final form,
which is given in Eq. (13) of the main text.

APPENDIX C: NON-MARKOVIAN DYNAMICS

In this section, we give the non-Markovian amplitude equa-
tions for both the single giant atom and magic cavity QED
systems.

For the single giant atom, we assume the wave function at
time t is given by

|ψ (t )〉 = e−i�t

[
α(t )σ+ +

∑
k

βk (t )a†
k

]
|g, vac〉. (C1)

Governed by the Hamiltonian in Eqs. (A2) and (A3), we will
have

i
∂

∂t
α = g√

Nc

∑
k

βk (1 + e−iNk ), (C2)

i
∂

∂t
βk = 
kβk + g√

Nc
(1 + eikN )α, (C3)

where 
k = ωk − �. Then, in the condition of βk (0) =
0, α(0) = 1, we will have

βk = − ig√
Nc

(1 + eikN )
∫ t

0
dτα(τ )e−i
k (t−τ ). (C4)

As a result, Eq. (C2) becomes

∂

∂t
α = − g2

Nc

∑
k

[
(1+eikN )(1 + e−ikN )

∫ t

0
dτα(τ )e−i
k (t−τ )

]

= − g2

2π

∫ π

−π

dk
∫ t

0
dτ (1+eikN )(1+e−ikN )α(τ )e−i
k (t−τ )

= − g2

2π

∫ π

−π

dk
∫ t

0
dτ (1 + eikN )(1 + e−ikN )

× α(τ )e2iξ cos k(t−τ )

= − g2

2π

∫ π

−π

dk
∫ t

0
dτ (2+eikN + e−ikN )α(τ )e2iξ cos k(t−τ )

= −g2
∫ t

0
dτα(τ )

[
1

π

∫ π

−π

dke2iξ cos k(t−τ )

+ 1

2π

∫ π

−π

dkei[2ξ cos k(t−τ )+kN]

+ 1

2π

∫ π

−π

dkei[2ξ cos k(t−τ )−kN]

]
. (C5)

By use of the formula

eiz cos θ =
n=∞∑

n=−∞
inJn(z)einθ ,

∫ π

−π

ei(n−m)kdk = 2πδn,m,

J−N (x) = (−1)N JN (x), (C6)

we will have

∂

∂t
α(t ) = −2g2

∫ t

0
dτα(τ ){J0[2ξ (t − τ )]+iN JN [2ξ (t − τ )]}.

(C7)
We now further perform the Weisskopf-Wigner approxima-
tion to replace α(τ ) by α(t ) in Eq. (C7). Then we will have

∂

∂t
α(t ) ≈ −2g2α(t )

∫ t

0
dτ {J0[2ξ (t − τ )] + iN JN [2ξ (t−τ )]}

= −2g2α(t )
∫ t

0
dτ [J0(2ξτ ) + iN JN (2ξτ )]. (C8)
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Therefore, the solution of α(t ) can be obtained as

α(t ) = e−2g2
∫ t

0 dt1
∫ t1

0 dτ [J0(2ξτ )+iN JN (2ξτ )], (C9)

which is Eq. (8) in the main text. To find the dynamics of
the photon distribution, we should perform the inverse Fourier
transformation. Since∑

k

βka†
k |0g〉 = 1√

Nc

∑
k, j

βka†
j e

−ik j |0g〉 ≡
∑

j

β ja
†
j |0g〉,

(C10)
we have

β j = 1√
Nc

∑
k

βke−ik j . (C11)

Then, combining Eq. (C4), we will have

β j = − ig

Nc

∑
k

(1 + eikN )
∫ t

0
dτα(τ )e−i
k (t−τ )e−ik j

= − ig

2π

∫
dk(1 + eikN )

∫ t

0
dτα(τ )e−i
k (t−τ )e−ik j

= − ig

2π

∫ t

0
dτα(τ )F j (t − τ )

= − ig

2π

∫ t

0
dτα(t − τ )F j (τ ), (C12)

where

F j (τ ) =
∫

dke−i
kτ (1 + eikN )e−ik j

=
∫

dkeiτ2ξ cos k (1 + eikN )e−ik j

=
∫

dk
∑

n

inJn(2ξτ )eink (e−ik j + eik(N− j) )

= 2π [i jJj (2ξτ ) + i( j−N )Jj−N (2ξτ )]. (C13)

Therefore, we will have

β j (t ) = −ig
∫ t

0
dτα(t − τ )[i jJj (2ξτ ) + i( j−N )Jj−N (2ξτ )],

(C14)
which is Eq. (9) in the main text.

As for the magic cavity QED system, the Hamiltonian is
given in Eq. (B7), and following the same process as above,
we will obtain the amplitude equation for the wave function,

|ψ (t )〉 = αg(t )σ+|G〉 + αs(t )τ+|G〉 +
∑

k

βk (t )a†
k |G〉,

(C15)
as

α̇g = − ggsαs(t )
∫ t

0
dτ [iMJM (2ξτ ) + iN−MJN−M (2ξτ )]

− 2g2αg(t )
∫ t

0
dτ [J0(2ξτ ) + iN JN (2ξτ )], (C16)

α̇s = − ggsαg(t )
∫ t

0
dτ [iMJM (2ξτ ) + iN−MJN−M (2ξτ )]

− g2
sαs(t )

∫ t

0
dτJ0(2ξτ ), (C17)

which are actually Eqs. (20)–(22) in the main text.
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