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Effects of environment correlations on the onset of collective decay in waveguide QED
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We analyze the dynamics of one and two two-level atoms interacting with the electromagnetic field in the
vicinity of an optical nanofiber without making either the Born or the Markov approximations. We model the
dielectric response of the nanofiber with a constant dielectric function and the Drude-Lorentz model, observing
deviations from the standard super- and subradiant decays. We discuss the validity of approximating the speed
of atom-atom communication to the group velocity of the guided field in the presence of nontrivial environment
correlations. Our work presents a deeper understanding of the validity of commonly used approximations in
recent waveguide QED platforms.
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I. INTRODUCTION

The theory of open quantum systems studies the interaction
of a quantum system with its environment. Through a series
of approximations, one can describe the problem with simple
equations, which allow for analytical solutions in some par-
ticular cases [1–6]. The most common approximations assume
that the quantum system never entangles with its environment,
known as the Born approximation, and that the evolution
timescale of the system is much larger than the evolution of its
environment, known as the Markov approximation. Although
these approximations accurately describe common scenarios,
such as atoms interacting through the electromagnetic envi-
ronment in free space [7,8], one should question their validity
when describing novel experimental configurations beyond
what they originally intended to represent. In particular, the
rapidly growing field of waveguide quantum electrodynamics
(wQED), which describes atoms along a waveguide collec-
tively interacting through the guided field [9–17], is built upon
knowledge from open quantum systems. However, the validity
of the approximations borrowed from open quantum systems
interacting with the free space as their environment should
be questioned considering novel experimental configurations
[10,11,15] and theoretical proposals [18–24], where the atoms
interact with each other at large distances.

Quantitative analyses of atoms interacting with waveguides
are intrinsically system-dependent. Without losing sight of the
phenomenology, we focus our attention on optical nanofibers
(ONFs) [25], a platform that facilitates the interaction of
emitters separated by macroscopic distances. Reference [26]
derives the Markovian master equation for atoms interacting
with an electromagnetic environment in the presence of a
nanofiber. The authors assume that the distance between the
atoms is negligible and that the environment is Dirac delta
correlated. Nevertheless, approximating the correlation func-
tions of the electromagnetic environment with a Dirac delta
function is unrealistic since the field emitted by an atom into

the guided modes can strongly affect another at a later time. A
correlation function with two Dirac delta functions separated
by the delayed interaction time can simplify the problem,
interestingly leading to non-Markovian dynamics [18]. Ap-
proximating the correlation functions of the electromagnetic
environment of a nanofiber with Dirac delta functions is so
far a standard procedure in wQED; thus, proving its validity
is crucial. Besides estimating quantitative deviations from
the predictions, a detailed study of the correlation functions
allows for answering fundamental questions. For example,
what is the field velocity that accurately describes the delayed
interaction time between two atoms: phase or group velocity?
What is the timescale and dynamics for the appearance of
collective dynamics? Is it possible to observe these effects
with current experimental technology?

In this paper we study how the dynamics of two sepa-
rated two-level atoms is affected by the correlations of the
fundamental guided modes of an ONF at zero temperature,
which acts as the environment for the atoms. To do so, we
calculate and analyze in detail the correlation functions of the
guided modes as a function of the separation between atoms.
We consider two dispersion relations, a commonly assumed
constant dielectric function and the more realistic Drude-
Lorentz (DL) model for the nanofiber dielectric function. By
numerically solving the dynamical equations, we estimate the
modification of the collective decay rates of the atoms and
explore the effects of explicitly considering the correlations
of the environment.

We show that for a single atom in the vicinity of an ONF
at zero temperature, it is unnecessary to modify the spectral
density of the environment to render its correlation close to a
Dirac delta distribution, contrary to the free space case [1,27].
In such a scenario, the Markovian approximation is valid for
the two dielectric functions we consider, a result which, to
our knowledge, has not been previously verified despite its
widespread use in this context. For two atoms, we observe
that the correlation functions for a constant dielectric function
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FIG. 1. Schematic representation of the system. Two two-level
atoms with resonant frequency ω0 separated a distance d interact
via a common bath, given by the evanescent field of the guided
modes eμ of an optical nanofiber. The optical nanofiber of radius a is
characterized by a dielectric function ε(ω).

resemble displaced Dirac delta distributions. However, the de-
layed maxima of the environment correlations are not centered
at nor determined by the time it takes the electromagnetic
field to propagate between the atoms at the group or phase
velocities. Nevertheless, when we study the dynamics of the
collective behavior, we obtain that the onset of the collective
behavior is consistent with assuming that the atoms interact
with a delay given by the group velocity only if the atoms are
distant enough. Additionally, we find that atoms prepared in
(anti)symmetric states radiate at rates slightly below (above)
those obtained with the Markovian approximation, suggesting
the impossibility of realizing perfect subradiant states. Our
study provides a test for the validity of usual approximations
employed in wQED.

Our paper is organized as follows: in Sec. II we present
the model for the system and describe how the correlation
functions and the atoms’ evolution are numerically calculated.
In Sec. III we show and discuss the main results of this work,
as well as its implications. Finally, we summarize and give an
outline in Sec. IV.

II. PHYSICAL MODEL

We consider two identical two-level atoms with resonance
frequency ω0 (Ee − Eg = h̄ω0) in the vicinity of an optical
nanofiber of radius a and a frequency-dependent dielectric
function ε(ω) (see Fig. 1). We consider two dielectric func-
tions for our study: a commonly assumed constant function
εC (ω) ≈ εC (ω0), yielding a constant refractive index n1 =√

εC (ω)/ε0 ≈ 1.4534, which is a typical value for ONF
operating at optical frequencies [25], and the more realis-
tic Drude-Lorentz (DL) dielectric function εL(ω)/ε0 = 1 +
ω2

p[(ω2
R − ω2) − iγω]−1, where ωR and γ are the resonant

frequency and decay rate of the constituents of the ONF,
respectively, and ωp is its plasma frequency [28]. We choose
a constant dielectric function to emulate the effect of the
Markovian approximation in the study of the subsystem and
reservoir dynamics. Namely, it singles out the parameters of
the reservoir associated with the resonant frequency of the

subsystem as the only relevant one in the overall dynamics.
But, of course, it does not describe a realistic media since it
would violate Kramers-Kroning relations. In contrast, the DL
function is an excellent model to approximate the behavior of
many realistic dielectric functions since it exhibits the effects
of regular and anomalous dispersion and absorption. The pa-
rameters of the DL function are chosen so that they mimic
the essential features of silica glass, such as a high absorption
for frequencies in the ultraviolet regime and refractive indices
close to 1.5 in the optical regime [25]. We take the values of
these parameters to be ωR = ω350 = 2πc/350 nm and γ350 =
4αa2

0ω
3
350/3c2, corresponding to half of the ultraviolet interval

and the decay rate of a single constituent via an electric dipole
transition, respectively; the value of the plasma frequency is
fixed by setting the refractive index of the ONF to be n1 at the
resonance frequency of the atoms. We neglect the effects of
absorption associated with the imaginary part of this function
near the atomic resonance.

We study the case in which the atoms couple exclusively
with the fundamental mode HE11 of the guided field of the
ONF by means of electric dipole interactions. In the interac-
tion picture, the atom-field interaction Hamiltonian after the
rotating wave approximation (RWA) is given by

Hint = ih̄
∑

μ

2∑
m=1

Gμme−i(ω−ω0 )tσ †
maμ + H.c., (1)

Gμm =
√

ωβ ′

4πε0 h̄
p̄mēμ(x̄m)ei[ f β(ω)zm+lφm]. (2)

Here the index m = 1, 2 labels an atom in position x̄m =
(rm, φm, zm) in cylindrical coordinates, and the sum

∑
μ =∑

l, f

∫ ∞
0 dω goes over the field polarization in the circular

basis, the propagation direction along the fiber’s axis, and the
frequency of the guided modes, which are encoded through
the variable μ = (l = ±1, f = ±1, ω); σm = |gm〉〈em| is the
atomic lowering operator, and aμ is the annihilation operator
of a photon with parameters μ. The coupling frequencies Gμm

are written in terms of the propagation constant β(ω), the den-
sity of states β ′ = ∂β/∂ω, the electric dipole matrix element
of the mth atom p̄m, and the components of the guided field
modes ēμ, which are explicitly given in Ref. [26]. For each
frequency component of the field, the propagation constant of
the fundamental mode is obtained by numerically solving the
following eigenvalue equations [29]:

J0(ha)

haJ1(ha)
=

[
n2

1 + n2
2

4n2
1

]
K ′

1(qa)

qaK1(qa)
+

(
1

ha

)2

+ R(ω, β ),

(3)

R(ω, β ) =
{[

n2
1 − n2

2

4n2
1

K ′
1(qa)

qaK1(qa)

]2

+
[

β

k1

(
1

(ha)2
+ 1

(qa)2

)]2} 1
2

, (4)

where n j represents the refractive indices of the ONF ( j = 1)

and the vacuum ( j = 2), h =
√

k2
1 − β2 , q =

√
β2 − k2

2 , k j =
n j (ω)ω/c, and Jj , Kj are the jth-order Bessel functions of the
first kind and the modified of the second kind, respectively.
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FIG. 2. Dispersion relation (a) and group and phase velocities (b) of the ONF’s fundamental mode as a function of the field’s frequency
and using the constant εC and Drude-Lorentz εL dielectric functions. In (a) the solid curves depict the mode’s dispersion relation for both
dielectric functions, while the dashed lines represent their low- and high-frequency asymptotic behavior corresponding to that of vacuum and
an infinite dielectric medium with dispersion relation n1(ω)ω/c. In (b) the solid and dashed lines portray the mode’s group and phase velocities
normalized with respect to c, while the dashed vertical and horizontal lines correspond to the ONF’s resonant frequency and the value of the
asymptotic velocity when employing the constant dielectric function v∞ = c/n1, respectively. The set of solid and dashed curves obtained with
the constant dielectric function approach c/n1 as ω → ∞, while those calculated with the DL function go to 0 as ω → ω350 − γ350.

Since the Hamiltonian under the RWA preserves the total
excitation number, we consider the evolution of the following
state in the single excitation manifold:

|ψ (t )〉 =
2∑

m=1

cm(t )σ †
m|gg〉 ⊗ |{0}〉 +

∑
μ

cμ(t )|gg〉 ⊗ |1μ〉,

(5)

where cm and cμ are the atomic and field excitation proba-
bility amplitudes, respectively. Assuming that both atoms are
prepared with their electric dipoles pointing along the radial
direction p̄m = p̄n = pr̂ and located at the same distance from
the surface of the fiber rm = rn = R, we derive the equation of
motion for the atomic amplitudes using Eq. (1). Formally
integrating out the field excitation probability amplitudes and
substituting them in the equation for cm we obtain

ċm(t ) = −
2∑

n=1

∫ t

0
dt ′Fmn(t − t ′)cn(t ′), (6)

Fmn(t ) =
∑

μ

GμmG∗
μne−i(ω−ω0 )t

=
∫ ∞

0
dω e−i(ω−ω0 )t S(ω, R)

× cos[β(ω)d] cos(φm − φn), (7)

S(ω, R) =
( |p|2

πε0h̄

)
ω

∂β

∂ω
|er (ω, R)|2. (8)

Here S(ω, R) is the one-point spectral density of the guided
mode. Fmn(t ) represents the zero-temperature correlation

function at the position of each atom (m = n) and between
the two atomic positions (m �= n) separated a distance d =
|zm − zn| along the ONF and a distance R from its surface.
The correlation function is given by the Fourier transform of
S(ω, R) cos[β(ω)d] cos(φm − φn). When m = n, its real part
is associated with the spontaneous decay of a single atom
into the fundamental mode and its imaginary part with the
Lamb shift induced by the ONF. When m �= n, the correlation
function corresponds with the influence one atom exerts on
the other, with its imaginary part giving rise to the so-called
dipole-dipole interaction. Since the angular coordinates of the
atoms are not coupled to the frequency components of the
field, the shape of the two-point correlation function is not
affected by the particular choice of these coordinates (only
its strength), and, therefore, we set cos(φm − φn) = 1. When
Fmm(t ) is a Dirac delta centered at zero and Fmn(t ) is given by
two Dirac deltas displaced by the retarded time, we recover
the equations of motion in [18].

III. RESULTS

A. Dispersion relations, spectral density,
and correlation functions

In order to calculate the correlation functions Fmn(t ), we
first need to solve Eq. (3) to obtain the dispersion relation
β(ω), shown in Fig. 2(a). Since the fraction of the guided
electromagnetic field contained inside the dielectric nanofiber
is inversely proportional to its wavelength, the dispersion re-
lation of the guided mode is asymptotically bounded between
the vacuum one at low frequencies and that of a pure dielectric
medium, n1(ω)ω/c, at large frequencies. Figure 2(b) shows
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FIG. 3. One-point spectral density S(ω, R = 100 nm) for the constant εC (a) and the DL εL (b) dielectric functions as a function of the
ONF’s radius a.

the group vg = (∂β/∂ω)−1 and phase vp = ω/β velocities for
both dielectric functions we consider. When using the DL
model, both group and phase velocities becomes negligible
as the frequency approaches the resonance frequency of the
ONF. For frequencies greater than ω350, the anomalous disper-
sion phenomenon breaks down the guiding condition of the
ONF, n1(ω) − n2 > 0. On the other hand, when considering
a constant dielectric function, the propagation constant β(ω)
increases linearly with frequency, and both group and phase
velocity coincide, asymptotically approaching the speed of
light inside the dielectric, c/n1.

Using the numerically calculated β(ω) and Eq. (8) we plot
the one-point spectral density S(ω, R) in Fig. 3. For T = 0 the
spectral density is the inverse Fourier transform of the correla-
tion function [4], which implies that for the constant dielectric
function [see Fig. 3(a)] large frequency contributions lead
to correlation functions localized in time. Furthermore, the
time-domain correlations in the DL model are much broader
since the spectral density cuts off at the resonant frequency of
the ONF [see Fig. 3(b)].

We discretize the integration over ω in Eq. (7), allowing us
to compute Fmn(t ) with a fast Fourier transform in an equally
spaced time grid {t j | t j = t1 + ( j − 1)�t, j ∈ N}. The fact
that the propagation constant β(ω) becomes large near the
dielectric resonance in the DL model complicates the calcu-
lation of the two-atom correlation function. The cos[dβ(ω)]
factor in the two-point spectral density in Eq. (7) oscillates
increasingly fast as the integration approaches the resonant
frequency, making its sampling above the Nyquist frequency
computationally expensive. In order to resolve this, preventing
the phenomenon of aliasing and considering that our field
theory is incapable of describing the effects of high absorption
and dispersion, we introduce a hard cutoff far below ω350 at
one of the zeros of the cos[dβ(ω)] factor, which is chosen
such that the variation in the results obtained with higher

frequency zeros is negligible [4]. We note that, in contrast
to the free space case [30,31], the spectral densities obtained
from the guided modes of the ONF do not diverge at high fre-
quencies, producing correlation functions with a finite width
even at zero temperature.

Figure 4 shows the real and imaginary parts of the cor-
relation function of the fundamental mode for one and two
atoms 100 nm away from the fiber surface separated at
the resonant atomic wavelength d = 780 nm for a fiber
radius of 200 nm. When using a constant dielectric func-
tion we obtain single-atom correlation functions with a
sharp and well-localized peak at the origin and a two-atom
correlation function with two peaks separated by a time
difference t = 2dn1/c.

For a constant dispersion relation, the width of the corre-
lation function, which is a measure of the correlation time of
the field and one of the sources of non-Markovian effects in
the atomic dynamics, is less than 0.05 fs. This implies that,
in the case of a single atom, the Markov approximation is
justified at zero temperature, a result whose foundation in its
vacuum counterpart has been widely discussed by many au-
thors such as Carmichael [30] and demonstrated only recently
by Rivas et al. [27]. For two atoms, the correlation function
has two narrow peaks resembling two Dirac deltas. However,
the time interval between them, given by t = 2dn1/c, differs
from the intuitive assumption of atom-atom communication at
a group velocity, leading to t = 2d/vg. We further investigate
this in the next section.

When using the DL dispersion relation the resulting cor-
relations present an oscillatory behavior resembling sinc(t )
functions whose width is approximately 1.5 fs in both the
single- and two-atom cases. This validates the Markovian
approximation for a single atom. Contrary to the case with
a constant dielectric function, it’s not clear how to associate
a communication time between the atoms. In light of these
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FIG. 4. Real (a) and imaginary (b) parts of the fundamental mode’s correlation functions Fmn(t ) for a 200 nm radius ONF in the presence of
one (m = n) and two (m �= n) atoms, both separated 100 nm away from the fiber’s surface and a distance between them of an atomic resonant
wavelength d = 2π/β0 = 780 nm along the fiber’s axis. Here the solid curves depict the correlation functions computed using the constant
dielectric function εC , while the dashed ones portray those obtained with the DL function εL . Note that for a constant dielectric function the
correlation functions have peaks with small widths, resembling Dirac delta functions. For the DL dielectric function the two-atom correlation
function has decaying oscillations, and so it is not clear how to approximate with Dirac delta functions.

results, we integrate Eq. (6) to elucidate the influence of the
correlation functions on the collective atomic evolution.

B. Atomic dynamics

We solve for the dynamics of two atoms in initially sym-
metric or antisymmetric states |ψ±〉 = (|eg〉 ± |ge〉)/

√
2 using

the real and imaginary parts of the numerically calculated
field correlation functions, which account for the decay rate
into the guided mode of the ONF and the atomic energy
shifts. We apply the trapezoidal rule twice on the right-hand
side of Eq. (6) to numerically solve for the evolution of the
atomic excitation probability amplitudes (see the Appendix
for details). We analyze our results neglecting the atomic
decay into other modes, which is well justified since there
is negligible coupling to thermal photons in the limit of zero
temperature and optical frequencies, and given the fact that
the radiated modes of the waveguide serve as an additional
dissipative channel and, therefore, do not contribute to the
coherent dynamics of the atoms, which is the focus of our
paper.

As Fig. 5 shows, the collective excitation probabilities
|c±(t )|2 behave as that of independent emitters before the
communication between the atoms is established. After that,
collective features manifest as decay rates close to twice and
zero times the natural decay rate for the symmetric and an-
tisymmetric states, respectively, i.e., super and subradiance.
The superradiant decays in Fig. 5(a) display only quantitative
differences between both models, while the onset of subradi-
ance inherits the behavior of the correlation functions used to
calculate them, as Fig. 5(b) shows. In contrast with the Marko-
vian case, where the collective behavior starts instantaneously

upon atom-atom communication, there is a smooth transition
from independent to collective decay. Figure 5(c) shows an
example comparing the two behaviors. Note that, although the
atoms are prepared in the antisymmetric state, and at distances
which are integer multiples of π/β0, our solutions predict
that they must radiate, even if it is at a rate several orders of
magnitude below that of a single atom. This contrasts with
the picture established in [18], where the emission process is
completely inhibited in this situation.

We estimate the modified collective decay rates from the
solutions by fitting the data to a straight line P(t ) = γcolt + P0

at times greater than 300 fs so that we can ensure that the
collective behavior has been fully established. We show in
Fig. 6 the quotient between the symmetric and antisymmetric
collective decay rates and that of a single atom as a function
of the ONF’s radius γcol/γ . We find that the quotients are in-
dependent from the separation between the atoms and that the
deviations from what is obtained with the Markovian approxi-
mation become apparent for radii approximately less than four
times the resonant wavelength of the atomic transition, with
variations up to 0.5% and 4% for the DL and constant dielec-
tric functions, respectively. In spite of the minor differences
between our results and the predictions given by the Marko-
vian approximation, similar differences of a few percent of
the decay rate have been measured for single atoms around
an ONF [32]. However, collective effects require a precise
positioning of the atoms, hindering its observation for atoms
along a nanofiber, but feasible in other wQED platforms. For
ONF radii smaller than 150 nm, the calculations were not
carried out because of the increasing difficulty involved in
computing the dispersion relation of the field.
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FIG. 5. Collective excitation probabilities for initial symmetric (a) and antisymmetric (b) states for atoms 100 nm away from a 200 nm
radius ONF for several equilibrium separations deq = nπ/β0. In both panels the solid curves refer to the emission probabilities using the
constant dielectric function, while the dashed ones depict those obtained with the DL dielectric function. Note that the transition from
independent to collective decay is smooth, taking a longer time for the DL dielectric function. In (c) we compare the collective excitation
probabilities calculated with different correlation functions for an antisymmetric state for atoms separated at 3π/β0 using both dielectric
functions. The solid curves result from ONF’s correlation functions, while the dashed ones were obtained using displaced Dirac delta
correlations. Using Dirac delta correlations we obtain an instantaneous establishment of a not decaying collective behavior. For the other
two correlation functions the collective behavior continues to decay, although slowly.

C. Onset of the collective decay

Figure 5 shows that it is unclear when the collective be-
havior is fully established. In Ref. [18] the transition from
independent emitters to the collective regimes occurs in-
stantaneously at the time t = d/vg(ω0), which is the time
displacement between the Dirac deltas in the correlation func-
tions, commonly introduced ad hoc. To estimate a time where
the collective behavior starts, we extrapolate to earlier times
the exponential decay observed at times beyond 300 fs and

define the communication time tcom to be that at which the
single atom and the approximated long-time collective emis-
sion probabilities intersect. Figure 7(a) shows an example
of this procedure, and Fig. 7(b) portrays the communication
rate vcom = d/tcom as a function of the separation between
atoms, the ONF radius, and both dielectric functions. We
find that vcom is independent of the initial state of the atoms
and that deviations from the group velocity are significant
only for separations less than the atomic resonant wavelength
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FIG. 6. Collective decay rates of superradiant (a) and subradiant (b) atoms (normalized with respect to the decay rate of an independent
atom in the vicinity of the ONF, γ ) separated at the resonant atomic wavelength d = 2π/β0 = 780 nm and at 100 nm away from the ONF’s
surface as a function of the fiber’s radius. In both panels the circular dots depict the collective rates using the constant function, while the
diamonds portray the results obtained with the DL dielectric function.

λ0 = 2π/β0, the exception being the rates calculated with the
DL function for a 150 nm ONF, which are attributable to the
significant oscillations in its correlation functions. This offers
a satisfactory justification for approximating the correlation
function with two Dirac delta peaks separated by the time the
field propagates between the atoms at group velocity even if it

is the phase velocity that appears in the Hamiltonian through
its relation to the propagation constant β(ω).

To estimate the time to establish the collective behav-
ior tEst, we account for the fact that the solutions vary
insignificantly in magnitude during the transition from the
independent to the collective behavior, and, thus, we extract

FIG. 7. (a) Intersection of the linearized collective emission probabilities for initially symmetric (lower curve) and antysimmetric (upper
curve) atomic states with the single-atom emission probability for atoms separated at their resonant wavelength d = 2π/β0 at 100 nm away
from the surface of a 200 nm radius ONF modeled with the DL dielectric function εL . (b) Atom-atom communication speed for atoms separated
at integer multiples of π/β0 at 100 nm away from the ONF’s surface. The circular dots and rhombuses portray the results for a 150 nm and a
200 nm fiber’s radius, respectively. The dashed horizontal lines are the group velocities for the atom’s resonant frequency and a given dielectric
function. The speeds are normalized with respect to the speed of light in vacuum.
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FIG. 8. Absolute value of the spontaneous decay rate of an atom
due to the influence of the second γmn(t ) = ∫ t

0 dt ′Re[Fmn(t − t ′)]
[normalized with respect to the decay rate of an independent atom in
the vicinity of the ONF, γ (t )] for atoms separated at twice the atomic
resonant wavelength d = 4π/β0 at 100 nm away from the surface
of a 200 nm ONF for both dielectric functions. The dots represent
the local maxima and minima of the curve obtained with the DL
function, and the time of establishment of the collective regime
tEst in this case is defined as that at which the middle point of the
line connecting two successive maximum and minimum lies within
0.01 from |γmn(t )|/γ (t ) = 1. For the constant dielectric function, we
consider the establishment time to be when the quotient reaches 0.99.
For separations much smaller than the coherence length of a superra-
diant photon lcoh = vg(ω0)/γsup, there is an eight orders of magnitude
difference between the timescale of transitioning from independent
to collective emission (10−15 s) and the single-atom emission into
the guided mode of the nanofiber (10−7 s). This difference indicates
that the transition between the independent and collective regimes is
irrelevant to the overall dynamics of the atoms.

the probability amplitudes in Eq. (6) out of the time integral
and study the behavior of the correlation functions integrals.
Considering this and the fact that the imaginary parts of the
correlation approach their asymptotic behavior in the same
timescales as their real counterparts, the evolution equations
become

ċm(t ) = −[γmm(t )cm(t ) + γmn(t )cn(t )], (9)

γmn(t ) =
∫ t

0
dt ′Re[Fmn(t − t ′)]. (10)

Here, in correspondence to the results obtained with the
Markovian approximation [26], the collective decay rates of
(anti-) symmetric states are given by

γ∓(t ) = γ (t ) ∓ |γmn(t )|, (11)

which in case of the Markovian approximation and separa-
tions which are integer multiples of π/β0, |γmn| = γ , and
thus, these states correspond to a (sub-) superradiant emis-
sion. Figure 8 depicts the time-dependent quotient of the
decay rates |γmn(t )|/γ (t ) for atoms separated at twice their

resonant wavelength and 100 nm away from the surface of
a 200 nm radius ONF for both dielectric functions. When
using the constant dielectric function, the quotient becomes
1 for times greater than t = dn1/c, and the time of estab-
lishment of the collective behavior is regarded as the time
the quotient reaches 0.99. Meanwhile, for the the DL func-
tion, the quotients calculated for different separations grow
to a maximum and converge asymptotically towards 1 as
t → ∞ while oscillating. In this case, we define the time
to establish the collective behavior as the time at which the
midpoint of the line joining two successive maximum and
minimum of the curve lies within a range less than 0.01 from
|γmn(t )|/γ (t ) = 1, as shown in Fig. 8. Figure 9 shows the
time to establish the collective decay for both dielectric func-
tions normalized with respect to the time a photon propagates
between the atoms moving at the group velocity, which we
denote as tvg = d/vg(ω0). The results are shown as a function
of the separation between the atoms and the ONF’s radius.
Again, we find the time to establish collective behavior is
independent of the initial atomic state and that it decreases
to values less than 2tvg when employing the DL function, and
almost to tvg when considering the constant dielectric func-
tion. Thus, when the atoms are separated several times their
resonant wavelength, the distinction between the independent
and collective regimes is established in a time smaller than
2tvg .

IV. CONCLUSIONS

In this work we analyzed the correlation functions of the
electromagnetic environment provided by the fundamental
guided mode of an optical nanofiber. We studied their effects
on the collective dynamics of two separated two-level atoms.
The width and central position of the correlation functions
depend strongly on the dispersion relation of the waveguide.
The correlation functions resemble nascent delta distributions
when considering a constant dielectric function. Still, the time
difference between their peaks does not coincide with the time
that would take for the field to propagate between the two
atoms propagating at group or phase velocity. Nevertheless,
when studying the dynamics of the atoms, we found that
approximating the correlation function with two Dirac delta
functions separated by the time the field propagates between
the atoms at group velocity is a good approximation, provided
the atoms are placed far enough. When the atoms are just
a few wavelengths apart, the intuition from a well-defined
traveling wave package breaks down, and it becomes hard to
define a unique characteristic timescale to establish collective
behavior. We obtained the collective excitation probabilities
of super- and subradiant atoms by solving their Schrödinger
equation in the non-Markovian regime and found that the
collective decay rates can differ by less than 5% and 1% com-
pared to the Markovian approximation when considering a
constant and Drude-Lorentz dielectric functions, respectively.
We conclude that the Markov approximation is good enough
for state-of-the-art experiments involving atoms around op-
tical nanofibers. However, its validity must be examined in
other waveguide QED platforms, considering their particular
dielectric function, dispersion relation, and the level of preci-
sion the experiments might require.
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FIG. 9. Times of establishment of the collective decay tEst for the constant εC (a) and the DL εL (b) dielectric functions. The atoms are
separated at integer multiples of π/β0 and at 100 nm away from the fiber’s surface. The results are normalized with respect to the travel time
of a photon moving between the atoms at the group velocity tvg = d/vg(ω0).
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APPENDIX: SOLUTION OF THE EQUATIONS

In order to solve the dynamical equations of the atomic
probability amplitudes

ċm(t ) = −
2∑

n=1

∫ t

0
dt ′Fmn(t − t ′)cn(t ′), (A1)

we transform them into a linear system of equations by means
of the trapezoidal rule [33]. First, we integrate both sides
of Eq. (A1) between two successive points of the Fourier
transform time grid t j, t j+1, yielding

c j+1
m = c j

m −
2∑

n=1

∫ t j+1

t j

dt
∫ t

0
dt ′Fmn(t − t ′)cn(t ′). (A2)

Then, applying the trapezoidal rule

∫ b

a
dt f (t ) = h

2

[
2

N−1∑
k=2

f (tk ) + f (tN ) + f (t1)

]
+ O(h3)

(A3)

twice on the right-hand side of Eq. (A2) allows us to recur-
sively solve for the probability amplitudes in terms of the
following system:

Mx̄ = ȳ, (A4)

x̄ᵀ = [
a j+1

1 , a j+1
2 , bj+1

1 , bj+1
2

]
, (A5)

M = Id

+
(

h

2

)2

⎡
⎢⎢⎢⎣

A(1, 1) −B(1, 1) C(1, 1) −D(1, 1)

B(1, 1) A(1, 1) C(1, 1) D(1, 1)

C(1, 1) −D(1, 1) A(1, 1) −B(1, 1)

D(1, 1) C(1, 1) B(1, 1) A(1, 1)

⎤
⎥⎥⎥⎦,

(A6)

where Id is the 4 × 4 identity matrix, h = t j+1 − t j, ∀ j, and

A( j, k) = Re[Fmm(t j − tk )], B( j, k) = Im[Fmm(t j − tk )],

(A7)

C( j, k) = Re[Fmn(t j − tk )], D( j, k) = Im[Fmn(t j − tk )],

(A8)

a j
1 = Re[cm(t j )], a j

2 = Im[cm(t j )], (A9)

bj
1 = Re[cn(t j )], bj

2 = Im[cn(t j )], (A10)
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refer to the real Re and imaginary Im parts of both the correlation functions and the atomic probability amplitudes; the vector ȳ,
which takes into account the present and past states of the atomic amplitudes, is defined as

ȳ =

⎛
⎜⎜⎜⎜⎜⎝

[1 − Y A]a j
1 − [

X A
a1

− X B
a2

+ XC
b1

− X D
b2

] − [
Y Ba j

2 − Y Cbj
1 + Y Dbj

2

]
[1 − Y A]a j

2 − [
X A

a2
− X B

a1
+ XC

b2
− X D

b1

] − [
Y Ba j

1 − Y Cbj
2 + Y Dbj

1

]
[1 − Y A]bj

1 − [
X A

b1
− X B

b2
+ XC

a1
− X D

a2

] − [
Y Bbj

2 − Y Ca j
1 + Y Da j

2

]
[1 − Y A]bj

2 − [
X A

b2
− X B

b1
+ XC

a2
− X D

a1

] − [
Y Bbj

1 − Y Ca j
2 + Y Da j

1

]

⎞
⎟⎟⎟⎟⎟⎠, (A11)

Y F =
(

h

2

)2

[2F (2, 1) + F (1, 1)], (A12)

X F
d =

(
h

2

)2
{

2
j−1∑
l=2

[F ( j + 1, l ) + F ( j, l )]dl + [F ( j + 1, 1) + F ( j, 1)]d1

}
. (A13)
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